

High Performance,
High Density Servers for

Data Center, Virtualization, & HPC

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

http://www.iXsystems.com/e5

Key FeatureS

iXr-1204+10G

Dual Intel® Xeon® Processors e5-2600 Family•	
Intel® C600 series chipset•	
Intel® X540 Dual-Port 10 Gigabit ethernet Controllers•	
up to 16 Cores and 32 process threads•	
up to 768GB main memory•	
Four SaS/Sata drive bays•	
Onboard Sata raID 0, 1, 5, and 10•	
700W high-efficiency redundant power supply with •	
FC and PMBus (80%+ Gold Certified)

iXr-22X4IB

Dual Intel® Xeon® Processors e5-2600 Family per node•	
Intel® C600 series chipset•	
Four server nodes in 2u of rack space•	
up to 256GB main memory per server node•	
One Mellanox® ConnectX QDr 40Gbp/s Infiniband w/QSFP •	
Connector per node
12 SaS/Sata drive bays, 3 per node•	
Hardware raID via LSI2108 controller•	
Shared 1620W redundant high-efficiency Platinum •	
level (91%+) power supplies

MODeL: iXr-22X4IB

768GB
of raM in 1u

e5-2600
High-Density iXsystems Servers powered by the
Intel® Xeon® Processor e5-2600 Family and Intel®
C600 series chipset can pack up to 768GB of raM
into 1u of rack space or up to 8 processors - with
up to 128 threads - in 2u.

On-board 10 Gigabit ethernet and Infiniband for Greater
throughput in less rack Space.

Servers from iXsystems based on the Intel® Xeon® Processor E5-2600
Family feature high-throughput connections on the motherboard, saving
critical expansion space. the Intel® C600 Series chipset supports up to
384GB of raM per processor, allowing performance in a single server to
reach new heights. this ensures that you’re not paying for more than you
need to achieve the performance you want.

The iXR-1204 +10G features dual onboard 10GigE + dual onboard
1GigE network controllers, up to 768GB of raM and dual Intel® Xeon®
Processors e5-2600 Family, freeing up critical expansion card space for
application-specific hardware. the uncompromised performance and
flexibility of the iXr-1204 +10G makes it suitable for clustering, high-traffic
webservers, virtualization, and cloud computing applications - anywhere
you need the most resources available.

For even greater performance density, the iXR-22X4IB squeezes four
server nodes into two units of rack space, each with dual Intel® Xeon®
Processors e5-2600 Family, up to 256GB of raM, and an on-board Mellanox®
ConnectX QDr 40Gbp/s Infiniband w/QSFP Connector. the iXr-22X4IB is
perfect for high-powered computing, virtualization, or business intelligence
applications that require the computing power of the Intel® Xeon® Processor
e5-2600 Family and the high throughput of Infiniband.

IXr-1204+10G: 10GbE On-Board

IXr-22X4IB

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the u.S. and other countries.

http://www.ixsystems.com/

High Performance,
High Density Servers for

Data Center, Virtualization, & HPC

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

http://www.iXsystems.com/e5

Key FeatureS

iXr-1204+10G

Dual Intel® Xeon® Processors e5-2600 Family•	
Intel® C600 series chipset•	
Intel® X540 Dual-Port 10 Gigabit ethernet Controllers•	
up to 16 Cores and 32 process threads•	
up to 768GB main memory•	
Four SaS/Sata drive bays•	
Onboard Sata raID 0, 1, 5, and 10•	
700W high-efficiency redundant power supply with •	
FC and PMBus (80%+ Gold Certified)

iXr-22X4IB

Dual Intel® Xeon® Processors e5-2600 Family per node•	
Intel® C600 series chipset•	
Four server nodes in 2u of rack space•	
up to 256GB main memory per server node•	
One Mellanox® ConnectX QDr 40Gbp/s Infiniband w/QSFP •	
Connector per node
12 SaS/Sata drive bays, 3 per node•	
Hardware raID via LSI2108 controller•	
Shared 1620W redundant high-efficiency Platinum •	
level (91%+) power supplies

MODeL: iXr-22X4IB

768GB
of raM in 1u

e5-2600
High-Density iXsystems Servers powered by the
Intel® Xeon® Processor e5-2600 Family and Intel®
C600 series chipset can pack up to 768GB of raM
into 1u of rack space or up to 8 processors - with
up to 128 threads - in 2u.

On-board 10 Gigabit ethernet and Infiniband for Greater
throughput in less rack Space.

Servers from iXsystems based on the Intel® Xeon® Processor E5-2600
Family feature high-throughput connections on the motherboard, saving
critical expansion space. the Intel® C600 Series chipset supports up to
384GB of raM per processor, allowing performance in a single server to
reach new heights. this ensures that you’re not paying for more than you
need to achieve the performance you want.

The iXR-1204 +10G features dual onboard 10GigE + dual onboard
1GigE network controllers, up to 768GB of raM and dual Intel® Xeon®
Processors e5-2600 Family, freeing up critical expansion card space for
application-specific hardware. the uncompromised performance and
flexibility of the iXr-1204 +10G makes it suitable for clustering, high-traffic
webservers, virtualization, and cloud computing applications - anywhere
you need the most resources available.

For even greater performance density, the iXR-22X4IB squeezes four
server nodes into two units of rack space, each with dual Intel® Xeon®
Processors e5-2600 Family, up to 256GB of raM, and an on-board Mellanox®
ConnectX QDr 40Gbp/s Infiniband w/QSFP Connector. the iXr-22X4IB is
perfect for high-powered computing, virtualization, or business intelligence
applications that require the computing power of the Intel® Xeon® Processor
e5-2600 Family and the high throughput of Infiniband.

IXr-1204+10G: 10GbE On-Board

IXr-22X4IB

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the u.S. and other countries.

http://www.ixsystems.com/

02/20144

Security

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Contributing:
Michael Shirk, Andrey Vedikhin, Petr Topiarz,
Charles Rapenne, Anton Borisov, Jeroen van

Nieuwenhuizen, José B. Alós, Luke Marsden, Salih Khan,
Arkadiusz Majewski, BEng, Toki Winter, Wesley Mouedine

Assaby

Top Betatesters & Proofreaders:
Annie Zhang, Denise Ebery, Eric Geissinger, Luca

Ferrari, Imad Soltani, Olaoluwa Omokanwaye, Radjis
Mahangoe, Mani Kanth, Ben Milman, Mark VonFange

Special Thanks:
Annie Zhang
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak

pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Publisher:
Hakin9 Media SK

02-676 Warsaw, Poland
Postepu 17D

Poland
worldwide publishing
editors@bsdmag.org

www.bsdmag.org

Hakin9 Media SK is looking for partners from all over the
world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org.

All trademarks presented in the magazine were used
only for informative purposes. All rights to trademarks

presented in the magazine are reserved by the
companies which own them.

Dear BSD Readers,

We are pleased to present you with the newest issue of BSD
Magazine. In the February issue, we have decided to focus

on various important aspects for Unix users.
Inside, you will find interesting articles, such as Configure

OpenBSD 5.4 Basic Services. In short, thanks to reading this
article, you will learn what you need to do to configure a vether
(Virtual Ethernet Device Driver) to be able to provide NAT for
your PPTP clients.

The next article in the newest issue is entitled Getting to Grips
with the Gimp. In Rob’s new series on image manipulation and
design, you will look at graphic design basics, and you will learn
how to use the most popular Open Source graphics software
– The Gimp.

In the following section, that is Unix, you will find an article
entitled User, Group and Password Management on Linux and
Solaris and Securing CentOS and Solaris 11 with Puppet. The
first one will cover the user, group and password management
tools and the second one will provide you with detail about how
security can be managed on CentOS 6.x and Solaris 11.1 hosts
with Puppet 3.x.

We would also like to encourage you to read the interview
with Peter N.M. Hansteen in the February Issue.

Thank you BSD fans for your invaluable support and contribution.

Enjoy reading!
BSD Team

mailto:mailto:editors%40bsdmag.org?subject=

www.bsdmag.org 5

Contents

OpenBSD 5.4
Configure OpenBSD 5.4 Basic Services
Wesley Mouedine Assaby

The webserver has only one nic, so we need to configure a
vether (Virtual ethernet device driver) to be able to provide
NAT for our PPTP clients. It is connected to the Internet
through a simple modem-router. We use OpenBSD 5.4.
Tested with Apple, Samsung phones, and a laptop running
Windows 8: PPTP connection / reach a webpage hosted
by the webserver.

Security
How Secure can Secure Shell (SSH) be?
Arkadiusz Majewski

SSH, and especially OpenSSH, are very powerful
applications when beginners use a Unix-like or Linux
operating system. It is very useful for administrators to
secure access to the system and improve scalability to
whole networks. I hope this article on OpenSSH expanded
your knowledge and challenges you to use it. Try to employ
it in your next project. The article concentrates on SFTP
(SSH File Transfer Protocol) supported by OpenSSH
and sftp-server subsystem, but has useful information
for a standard file transfer preferring SFTP to FTP (File
Transfer Protocol).

GIMP
Getting to Grips with the Gimp – Part 1
Rob Somerville

It might seem strange having a “non-technical” how-to
series, but in this age of digital photography, graphics
intensive website design and visual icons, more and
more emphasis is being placed on imagery as a method
of communication. Good graphic design is also useful for
presentations, flyers, and publications; the list is endless.
Some people just lift images from Google or make use of
professional stock images, the latter being expensive and
the former dubious from a copyright perspective. What can
be more satisfying than manipulating and creating your
own artwork? In our new series on image manipulation
and design, we will look at graphic design basics, and how
to use the most popular Open Source graphics software
– The Gimp.

UNIX
User, Group and Password
Management on Linux and Solaris
Toki Winter

This article will cover the user, group and password
management tools available on the Linux and Solaris
Operating Systems. The specific versions covered here are
CentOS 6.4 and Solaris 11.1, though the commands will
transfer to many other distributions without modifications
(especially RHEL and its clones), or with slight alterations
to command options. Check your system documentation
and manual pages for further information.

Securing CentOS and Solaris 11 with
Puppet
Toki Winter

Puppet is system administration automation software
from Puppet Labs (http://puppetlabs.com). It has gained a
lot of popularity, and rivals other automation/orchestration
software such as Chef and Ansible. In this article, Toki will
detail how security can be managed on CentOS 6.x and
Solaris 11.1 hosts with Puppet 3.x. Some familiarity with
Puppet or some other automation software, as well as a
Linux/UNIX system administrator audience, is assumed.

Interview
Interview with Peter N. M. Hansteen
BSD Team

Peter N. M. Hansteen is a consultant, writer and sysadmin
from Bergen, Norway. A longtime freenix advocate and
during recent years a frequent lecturer and tutor with
emphasis on FreeBSD and OpenBSD, author of several
articles and “The Book of PF”. He writes a frequently
slashdotted blog at http://bsdly.blogspot.com/.

Column
With the collapse of Red Flag Software
(the world’s second-largest Linux
distributor) is the dream of Linux on
the Desktop even further out of reach?
Rob Somerville

06

40

50

56

22

10

12

02/20146

OpenBSD 5.4

The role-play: The webserver has only one nic, so
we need to configure vether to be able to provide
NAT for our PPTP clients. It is connected to the

Internet through a simple modem-router. We use Open-
BSD 5.4-RELEASE-i386 on the webserver. Tested with
Apple, Samsung phones, and a laptop running Windows

8: PPTP connection / reach a webpage hosted by the
webserver. First, read the man pages for, PF.CONF(5),
PFCTL(8), NPPPD(8), NPPPCTL(8), PPPX(4), PIPEX(4),
GRE(4), VETHER(4). Make sure the webserver is con-
nected to the Internet.

Configure OpenBSD 5.4
Basic Services
The webserver has only one nic, so we need to configure a
vether (Virtual ethernet device driver) to be able to provide
NAT for our PPTP clients. It is connected to the internet
through a simple modem-router. We use OpenBSD 5.4.
Tested with Apple, Samsung phones, and a laptop running
Windows 8: PPTP connection / reach a webpage hosted by
the webserver.

What you will learn…
• 	 Configure OpenBSD basic services.
• 	 Understand Packet Filter.
• 	 Build a PPTP vpn server.
• 	 How to use vether

What you should know…
• 	 Basic TCP/IP knowledge, OpenBSD installation and post-

configuration.

www.bsdmag.org

Update with a fresh copy of OpenBSD and install
to -stable, using Openup
Get it

ftp https://stable.mtier.org/openup

Run it

./openup

You need to reboot if the kernel has been replaced

Set the kernel state (reboot is not needed)
Permit forwarding (routing) of IPv4 packets

sysctl net.inet.ip.forwarding=1

Allow GRE packets in and out of the system

sysctl net.inet.gre.allow=1

Enable pipex (used with tun and pppx)

sysctl net.pipex.enable=1

Do not forget to enable them in the file /etc/sysctl.

conf to keep these settings at reboot.

Configure vether with this address :
172.17.2.54/24 (it is my choice)
Create interface vether0

echo “inet 172.17.2.54 255.255.255.0” > /etc/hostname.

vether0

sh /etc/netstart vether0

Verify

ifconfig vether0

By default, vether0 is associated to a group named

vether

And the internet interface is associated to the egress

group

Configure Packet-Filter (/etc/pf.conf)
No filters on loopback interface

set skip on lo

We do not want to load fingerprints

set fingerprints “/dev/null”

NAT for PPTP clients

match out on egress inet from vether:network to any

nat-to egress

Policy : block all and log all blocked packets

block log all

02/20148

OpenBSD 5.4

We trust outbound

pass out

PPTP traffic

pass in on vether

pass proto gre

pass on pppx0

pass in on egress inet proto tcp from any to any port

PPTP

Permit computers in our local network to use our

webserver

pass in on egress inet proto tcp from any to any port

www

Load the new ruleset
/sbin/pfctl -vf /etc/pf.conf

Configure npppd authentication using the file /
etc/npppd/npppd-users, this last one contains:
a username wesley and his password welCom3

wesley:\

 :password=welCom3:

Configure npppd authentication using the file /
etc/npppd/npppd-users, this last one contains
a username wesley and his password welCom3

wesley:\

 :password=welCom3:

Configure npppd (/etc/npppd/npppd.conf)
authentication LOCAL type local {

 users-file “/etc/npppd/npppd-users”

}

tunnel VPN protocol PPTP {

 listen on 0.0.0.0

}

ipcp IPCP {

 pool-address 172.17.2.100-172.17.2.150

 dns-servers 8.8.8.8

 }

interface pppx0 address 172.17.2.1 ipcp IPCP

Bind tunnel from VPN authenticated by LOCAL to pppx0

Configure npppd authentication using the file /
etc/npppd/npppd-users, this last one contains :
a username wesley and his password welCom3

wesley:\

 :password=welCom3:

Start npppd
echo “npppd_flags=” >> /etc/rc.conf.local

For troubleshootings : tail -f /var/log/daemon &

/etc/rc.d/npppd start

Verify that it listens on port 1723 (PPTP)

netstat -anf inet | grep 1723

Do not forget to open the port 1723 TCP in the
modem-router (Port forwarding from Any to
192.168.218.54:1723 TCP).

Start apache (webserver)
echo “httpd_flags=” >> /etc/rc.conf.local

/etc/rc.d/httpd start

Try on a computer in the local network

http://192.168.218.54

On PPTP clients : http://172.17.2.54

To connect a client, use the following information:
PPTP connection / IP: aa.bb.cc.dd / Username : wes-

ley / and password: welCom3

view connected clients (on the webserver)

npppctl session all

Conclusions
The trick is to use vether(4), and now we can provide nat
for our PPTP clients.

Wesley MOUEDINE ASSABY
Wesley MOUEDINE ASSABY lives in Reunion island, near Mauritius. He
works as a network administrator at AISE-INFORMATIQUE (http://www.
aise.re) where he installs some firewalls (Soekris appliances) and mail
servers, all using OpenBSD systems. He has used OpenBSD since 2007.
To contact the author write at wesley [at] mouedine [dot] net
© Copyright 2013

http://www.aise.re
http://www.aise.re

IN SOME CASES

nipper studio
HAS VIRTUALLY

REMOVED

MANUAL AUDIT
CISCO SYSTEMS INC.

theNEED FOR a

Titania’s award winning Nipper Studio configuration
auditing tool is helping security consultants and end-
user organizations worldwide improve their network
security. Its reports are more detailed than those typically
produced by scanners, enabling you to maintain a higher
level of vulnerability analysis in the intervals between
penetration tests.

Now used in over 45 countries, Nipper Studio provides a
thorough, fast & cost effective way to securely audit over
100 different types of network device. The NSA, FBI, DoD
& U.S. Treasury already use it, so why not try it for free at
www.titania.com

www.titania.com

U P D A T E
NOW WITH
S T I G
AUDITING

02/201410

Security

First, and most important, is security. SFTP is sup-
ported by OpenSSH and is secure by default. Traf-
fic between client and server is encrypted.

How to configure WinSCP client for SFTP was men-
tioned in the first article of the series named: Basic Config-
uration of OpenSSH (issue 11/2013). You can use private/
public keys and one time passwords just like a normal
SSH connection. Be informed that the application Locker
(www.iptrace.pl and Download->Locker) does not support
WinSCP client and others, so if you are going to use your
server as an SFTP server you need to disable and com-
ment the locker application in the .profile file.

When you configure SSH, SFTP is enabled by default
and can be used simultaneously with SSH terminal ac-
cess, VPNs, etc. The system service responsible for
SFTP is a subsystem sftp-server non-standalone system,
but is ready to work with the sshd daemon and has its
own configuration in the sshd_config file. The main option
in this file is:

subsystem sftp /usr/libexec/sftp-server

If you comment out the above line, you can still use your
system as an SFTP server.

The rest of the sshd_config file can be the same for SSH
terminal connections. If you want to apply the file transfer
for more than one or two users, just add the users to the
appropriate option in the sshd_config file.

Sometimes it is required to use SFTP in read-only
mode. In this case use the uncommented line above. Add
the sftp-server option –R to deny the writing of any data for
every user. The option with values is shown below:

subsystem sftp /usr/libexec/sftp-server -R

Some users may have read access to one or more directo-
ries and can copy some files, especially configuration files,
and have the ability to read and find bugs in your configura-
tions that are only useful for internal administrators.

How Secure can Secure
Shell (SSH) be?
(OpenSSH VPN tunnelling)

This article is the fourth part of the OpenSSH and
configurations series, and includes some tricks which make
the protocol more secure. The article concentrates on SFTP
(SSH File Transfer Protocol) supported by OpenSSH and sftp-
server subsystem, but has useful information for a standard
file transfer preferring SFTP to FTP (File Transfer Protocol).

What you will learn…
• 	 How to configure VPN using OpenSSH.
• 	 A good foundation to make something new and secure on your

own.

What you should know…
• 	 Unix/Linux commands and SHELL environments.
• 	 The basics of TCP/IP.
• 	 Basic configuration of SSH (1st and 2nd parts of the article

series)
• 	 Understanding of security necessities.

http://www.iptrace.pl

www.bsdmag.org

For the rest of the users, separate directories can be
used for each user, or group, to log in. One time pass-
words must be disabled, because they cannot be used in
this case. How to disable OTP was mentioned in the sec-
ond article of this series named: One Time Password aka
OTP (issue 12/2013).

Add the following lines to your sshd_config file. You can
specify group or user for such access.

Subsystem sftp internal-sftp

Match Group sftpusers

 ChrootDirectory %h

 ForceCommand internal-sftp

 AllowTcpForwarding no

Match User username

 ChrootDirectory %h

 ForceCommand internal-sftp

Sometimes it is desirable to allow a group to have read-
only access to files for a particular user. In this case you
can just use standard chown and chmod commands.

Conclusion
SSH, and especially OpenSSH, are very powerful appli-
cations when beginners use a Unix-like or Linux operat-
ing system. It is very useful for administrators to secure
access to the system and improve scalability to whole
networks. I hope this article on OpenSSH expanded your
knowledge and challenges you to use it. Try to employ it
in your next project.

ARKADIUSZ MAJEWSKI, BENG
Arkadiusz Majewski comes from Poland. He has 15 years’ experience
with ICT technologies, including 15 years of IT networks, 10 years of BSD
systems and MS Windows Server solutions. Ha has also 5 years’ experi-
ence with programming languages and Telco solutions. He’s interest-
ed in security on all business and ICT levels. In his free time he reads ICT
books and deepens his knowledge about science (math, physics, chem-
istry). His hobbies are cycling and motorization. He’s a graduate of War-
saw Information Technology under the auspices of the Polish Academy
of Sciences. He’s the IT Manager at an international company. Feel free
to contact the author via e-mail at bsd.magazine@iptrace.pl.

www.uat.edu > 877.UAT.GEEK

[IT’S IN YOUR DNA]

[GEEKED AT BIRTH]

You can talk the talk.
Can you walk the walk?

LEARN:
Advancing Computer Science
Arti� cial Life Programming
Digital Media
Digital Video
Enterprise Software Development
Game Art and Animation
Game Design
Game Programming
Human-Computer Interaction
Network Engineering
Network Security
Open Source Technologies
Robotics and Embedded Systems
Serious Game and Simulation
Strategic Technology Development
Technology Forensics
Technology Product Design
Technology Studies
Virtual Modeling and Design
Web and Social Media Technologies

Please see www.uat.edu/fastfacts for the latest information about
degree program performance, placement and costs.

References (order of relevance)
• 	 man sshd_config.
• 	 man sftp-server.
• 	 man sshd.
• 	 www.openssh.org.

mailto:mailto:bsd.magazine%40iptrace.pl?subject=
http://www.openssh.org
http://wwww.uat.edu

02/201412

GIMP

It might seem strange having a “non-technical” how-to
series, but in this age of digital photography, graphics
intensive website design and visual icons, more and

more emphasis is being placed on imagery as a method
of communication. Good graphic design is also useful for
presentations, flyers, and publications; the list is endless.
Some people just lift images from Google or make use of
professional stock images, the latter being expensive and
the former dubious from a copyright perspective. What

can be more satisfying than manipulating and creating
your own artwork?

I first became hooked on graphics programs in the mid-
eighties when I got my hands on an Amiga and Deluxe
Paint. Sadly no more, I spent years working with other
vector based programs such as Corel Draw, Arts and Let-
ters, etc. until I came across the Gimp in the early days of
Open Source. While Adobe Photoshop has always been
around, it was (and still is) prohibitively expensive for the

Getting to Grips with
the Gimp – Part 1
In our new series on image manipulation and design, we
will look at graphic design basics, and how to use the most
popular Open Source graphics software – The Gimp.

What you will learn…
• 	 How to manipulate images like a design pro

What you should know…
• 	 General PC administration skills

Figure 1. Raster and Vector images

www.bsdmag.org 13

Getting to Grips with the Gimp – Part 1

amateur design enthusiast, and un-
til the Gimp arrived there was no real
raster based alternative.

The Gimp (the GNU Image Manipu-
lation Program) can be used for pho-
to retouching, image authoring and a
host of other functions including creat-
ing animated GIFs, etc.

While both vector and raster based
programs have their uses, the former
is mainly used for posters, logos and
artwork that requires high definition
at high resolutions. Gimp on the oth-
er hand works at the pixel level and
therefore is suitable for image manip-
ulation. For vector graphics manipu-
lation, Inkscape is an excellent Open
Source tool. [See Figure 1 – Raster
and Vector graphics].

Requirements
The Gimp is available for Mac (OSX),
Windows and virtually every flavour of
Linux and *BSD. While version num-
bers may vary slightly across plat-
forms, I will be using 2.8.4 for this tu-
torial though some platforms may still
be on 2.6.x. There are some subtle
differences between the two versions
(e.g. window docking, file import and
export, etc.) but the majority of func-
tions are the same. What is more im-
portant than the version is the PC you
run the software on. You will need
plenty of RAM if you are going to be
working with large images. A good
quality graphics card and monitor are
also important, but most modern kits
will be fine. The biggest issue is colour
drift and lighting – editing an image on
a CRT monitor under flourescent light
will be a different visual experience
from using an LCD or LED monitor un-
der tungsten lighting. One of the rea-
sons why graphic designers are fanat-
ical about Mac’s is the excellent colour
balance and font support, something
that is not consistent across different
manufacturers.

Figure 2. Default Gimp layout

Figure 3. Single window mode

02/201414

GIMP

Also, it is important to respect copy-
right and attribute credit where it is due.
All images used in this series will either
come from the author’s own collection,
royalty free from http://www.sxc.hu or
under a Creative Commons licence.

Your Chance to Contribute
If you have an image you would like
manipulated, or have some ideas for
the series, please contact me via BSD
magazine. While my favourite task is
taking mundane images and apply-
ing liberal doses of satire, surrealism
or atmosphere, I am open to sugges-
tions and any commissions from read-
ers.

Let’s get started
Install Gimp on a PC and platform
of your choice, either via your pack-
age management system or by down-
load from www.gimp.org/downloads.
Upon opening the Gimp, you will be
presented with multiple windows [Fig-
ure 2]. As I am left handed and I don’t
like multiple floating windows clutter-
ing my desktop, I have selected Win-
dows → Single-Window mode [Fig-
ure 3]. I have also moved all the tabs
from Layers, Brushes, Gradients etc.
across to the left hand side dock, and
expanded the width slightly so all the
controls are visible [Figure 4]. You
may want to tweak the default settings
as well [Figure 5 – 8].

Figure 5. Use a smaller theme to increase desktop real estate

Figure 4. Controls moved to the left hand side

Figure 6. Show brushes and images

http://www.sxc.hu
http://www.gimp.org/downloads

www.bsdmag.org 15

Getting to Grips with the Gimp – Part 1

Editing an image
A list of the major tools and functions
is listed in Table 1. In the belated spirit
of St Valentines day, we will modify a
picture of a rose and add a shadow
using a mask and multiple layers to
produce the resulting Image 2. These
two tools are very powerful, and quick-
ly allow the designer to transform an
image with ease.

Figure 8. Increase undo levels and undo memoryFigure 7. Set the default template size

Image 2. The final picture

Image 1. rose-with-bud-ii-1436558-m.jpg

02/201416

GIMP

Step 1
Download rose-with-bud-ii-1436558
-m.jpg (Image 1) from the website list-
ed in Table 2. Open in the Gimp using
File → Open

Step 2
Rotate the image with Image → Trans-
form → Rotate 90 Degrees anti-clock-
wise. Zoom in by pressing + a couple
of times or click on the image with the
Zoom tool [Figure 9].

Step 3
Using the fuzzy select tool, click on
the image at position 100px x 50px
to make a selection. You will see a
boundary of “marching worms” [Fig-
ure 10].

Step 4
Click on the Toggle quick Mask icon
just to the bottom Left Hand Side of
the image or press Shift Q. A red mask
will cover the areas that will not be af-
fected by our changes [Figure 10].

Figure 10. Fuzzy select

Figure 9. Image loaded into the Gimp. New layer and mask icons highlighted

www.bsdmag.org 17

Getting to Grips with the Gimp – Part 1

Step 5
Using the erase tool, and increas-
ing / decreasing the size of the brush
as required, remove the mask from
the background to leave the rose,
the stem and a few leaves. Zoom in
and out as required (+ / –), and don’t
worry if you overshoot slightly. Either
press Ctrl Z to undo, or retouch with
the paintbrush tool. I used the 2. Hard-
ness 025 brush circular, but choose a
brush you feel comfortable with. The
final result should look like Figure 11.
[Figure 11 – 12].

Figure 12. Final masked area

Figure 11. Mask toggled on

02/201418

GIMP

Step 6
Un-toggle the Quick Mask and the
flower with leaves should be selected
[Figure 13].

Step 7
Press Ctrl, and the background will be
filled with a black background. Press
Shift Ctrl A to deselect the background
and zoom out to 100% [Figure 14].

Figure 14. Rose on black background

Figure 13. Selected area with “marching worms”

www.bsdmag.org 19

Getting to Grips with the Gimp – Part 1

Step 8
From the menu Image → Canvas size
resize the image to 300px x 410px.
Ensure the chain between width and
height is broken and that Resize lay-
ers → All layers is selected. Click on
the layers icon and add a new black
layer. Drag this new layer down so
the rose is the top layer. Right click
on the rose layer and add transpar-
ency by adding a new Alpha chan-
nel, then using the rectangular select
tool, highlight the white area beneath
the rose. Press Del to delete this se-
lection, then press Ctrl I to select the
upper part of the image. Press Ctrl C
to copy, click on the lower black layer
and press Ctrl V to paste the selec-
tion. Using the move tool, adjust the
copy of the rose so that it is roughly
below the first top rose, then select
Layer → Transform → Flip vertically.
Use the move tool to adjust the po-
sition of the lower layer so that ap-
proximately 1/3rd of the inverted rose
is showing. When satisfied, right click
on the floating selection and choose
Anchor layer. [Figure 15].

Figure 15. Rose with inverted reflection before top layer erased and transparency / blur
applied

Step 9
Click on the top rose layer. Using the
erase tool, remove just enough of the
top black area to make the reflection
look convincing. Add a new black lay-
er with 65% transparency between
the rose and the reflection. Select the
bottom layer and blur by 6px using Fil-
ters → Blur → Gaussian blur. Crop the
image using the crop tool and the fin-
ished result can be seen in Image 2.

02/201420

GIMP

Tool Description and usage
Rectangle select.

Ellipse select

Free select

Fuzzy select

Colour select

Scissors select

Foreground select

Paths tool

Colour picker

Zoom

Measure

Move

Alignment

Crop

Rotate

Scale

Shear

Perspective

Flip

Cage transform

Text

Bucket fill

Blend

Pencil

Paintbrush

Eraser

Airbrush

Ink

Clone

Healing

Perspective clone

Blur / sharpen

Smudge

Dodge / burn

Foreground /
background colours

Layers

Tool options

Brushes

Patterns

Gradients

Channels

Paths

Undo history

Configure tab

Table 1. Major tools and functions

Getting to Grips with the Gimp – Part 1

Table 2. Details and credits

Image URL Details and credits
Image 1 http://www.sxc.

hu/photo/1436558
ROSE with BUD II
Rose blossom and nearby bud in
vibrant color hues.
Uploaded by lance1

In the next article
We will look at improving our reflected image and lighting, shade and dark.

Rob Somerville
Rob Somerville has been passionate about technology since his early teens. A keen advocate of open systems since the mid-eighties, he has
worked in many corporate sectors including finance, automotive, airlines, government and media in a variety of roles from technical support, sys-
tem administrator, developer, systems integrator and IT manager. He has moved on from CP/M and nixie tubes but keeps a soldering iron handy
just in case.

Resources
The Gimp website – http://www.gimp.org	
Search Creative commons – http://search.creativecommons.org
Deviant art – http://www.deviantart.com
Stock.xchng – http://www.sxc.hu

a d v e r t i s e m e n t

http://www.gimp.org
http://search.creativecommons.org
http://www.deviantart.com
http://www.sxc.hu

02/201422

Unix

In this article, I will detail how security can be managed
on CentOS 6.x and Solaris 11.1 hosts with Puppet 3.x.
Some familiarity with Puppet or some other automa-

tion software, as well as a Linux/UNIX system administra-
tor audience, is assumed.

The topology being used for the examples given in this
article is shown in Figure 1.

As you can see, centosa is the Puppet master. Four
hosts will contact it for configuration, including itself.
There are three CentOS hosts in total (centos[a-c]) and
a single Solaris host (sol11test). We will start with serv-
er and agent installation, then move on to cover various
Puppet configuration tasks, and develop our own secu-
rity module to deploy a set of security configurations to
the hosts.

Whilst this article has been written with CentOS 6.x and
Solaris 11.1 in mind, the techniques utilised should trans-
late to RHEL/OEL 6.x and Solaris 10 without many chang-
es. In case of doubt, consult the relevant security guide for
your operating system at http://cisecurity.org.

Server Installation
The Puppet server is installed on host centosa. Start by
installing the latest repository RPM from http://docs.pup-
petlabs.com/guides/puppetlabs_package_repositories.
html#for-red-hat-enterprise-linux-and-derivatives. At the time
of writing, this was puppetlabs-release-6-7.noarch.rpm.

rpm -ivh https://yum.puppetlabs.com/el/6/products/

x86_64/puppetlabs-release-6-7.noarch.rpm

Securing CentOS and
Solaris 11 with Puppet
Puppet is system administration automation software from
Puppet Labs (http://puppetlabs.com). It has gained a lot
of popularity, and rivals other automation/orchestration
software such as Chef and Ansible.

Figure 1. Example Puppet topology

What you will learn…
• 	 How security can be managed on CentOS and Solaris with Puppet.
• 	 How to configure Puppet.
• 	 How to deploy a set of security configurations to the hosts.

What you should know…
• 	 Basic security knowledge.

http://cisecurity.org
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html#for-red-hat-enterprise-linux-and-derivatives
http://puppetlabs.com

www.bsdmag.org 23

Securing CentOS and Solaris 11 with Puppet

Let’s see what was just installed:

rpm -ql puppetlabs-release

/etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

/etc/yum.repos.d/puppetlabs.repo

The appropriate repositories are enabled by default
(check /etc/yum.repos.d/puppetlabs.repo for details):

[puppetlabs-products]

name=Puppet Labs Products El 6 – $basearch

baseurl=http://yum.puppetlabs.com/el/6/products/$basearch

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

enabled=1

gpgcheck=1

[puppetlabs-deps]

name=Puppet Labs Dependencies El 6 – $basearch

baseurl=http://yum.puppetlabs.com/el/6/

dependencies/$basearch

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-puppetlabs

enabled=1

gpgcheck=1

...

Next, install the Puppet server and agent packages,
and their dependencies. This will install various required
packages such as ruby, facter, hiera, and others.

yum -y install puppet-server puppet

The packages installed on a minimal CentOS installation
are as shown in Listing 1.

Once the packages are installed, the Puppet master
can be started. We will use the init scripts supplied with
the Puppet master to control the daemon, and chkconfig
to have it run at the appropriate runlevels.

First, start the Puppet master service:

service puppetmaster start

Starting puppetmaster: [OK]

Next, use chkconfig to enable the service:

chkconfig puppetmaster on

Confirm that the service is configured to start
as intended:

Listing 1. The Packages

==

 Package Arch Version Repository Size

==

Installing:

 puppet noarch 3.3.2-1.el6 puppetlabs-products 1.1 M

 puppet-server noarch 3.3.2-1.el6 puppetlabs-products 23 k

Installing for dependencies:

 augeas-libs x86_64 1.0.0-5.el6 base 308 k

 compat-readline5 x86_64 5.2-17.1.el6 base 130 k

 dmidecode x86_64 1:2.11-2.el6 base 71 k

 facter x86_64 1:1.7.3-1.el6 puppetlabs-products 85 k

 hiera noarch 1.3.0-1.el6 puppetlabs-products 23 k

 libselinux-ruby x86_64 2.0.94-5.3.el6_4.1 base 99 k

 pciutils x86_64 3.1.10-2.el6 base 85 k

 ruby x86_64 1.8.7.352-13.el6 updates 534 k

 ruby-augeas x86_64 0.4.1-1.el6 puppetlabs-deps 21 k

 ruby-irb x86_64 1.8.7.352-13.el6 updates 314 k

 ruby-libs x86_64 1.8.7.352-13.el6 updates 1.6 M

 ruby-rdoc x86_64 1.8.7.352-13.el6 updates 377 k

 ruby-rgen noarch 0.6.5-1.el6 puppetlabs-deps 87 k

 ruby-shadow x86_64 1.4.1-13.el6 puppetlabs-deps 11 k

 rubygem-json x86_64 1.5.5-1.el6 puppetlabs-deps 763 k

 rubygems noarch 1.3.7-5.el6 base 207 k

 virt-what x86_64 1.11-1.2.el6 base 24 k

02/201424

Unix

chkconfig puppetmaster --list

puppetmaster 0:off 1:off 2:on 3:on 4:on

5:on 6:off

Now we need to update the local firewall (iptables is en-
abled by default on a minimal CentOS install). The de-
fault ruleset is as follows:

iptables -L -n --line-numbers

Chain INPUT (policy ACCEPT)

num target prot opt source destination

1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

state RELATED,ESTABLISHED

2 ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0

3 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0

4 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0

state NEW tcp dpt:22

5 REJECT all -- 0.0.0.0/0 0.0.0.0/0

reject-with icmp-host-prohibited

Chain FORWARD (policy ACCEPT)

num target prot opt source destination

1 REJECT all -- 0.0.0.0/0 0.0.0.0/0

reject-with icmp-host-prohibited

Chain OUTPUT (policy ACCEPT)

num target prot opt source destination

All of my test hosts are on the 10.1.1.0/24 network, and
the Puppet master listens on port 8140. I therefore insert
the rule as follows:

iptables -I INPUT 5 -m state --state NEW \

> -p tcp --dport 8140 -s 10.1.1.0/24 -j ACCEPT

And verify:

iptables -L -n --line-numbers

Chain INPUT (policy ACCEPT)

...

5 ACCEPT tcp -- 10.1.1.0/24 0.0.0.0/0

state NEW tcp dpt:8140

...

If the ruleset looks good, save it:

service iptables save

iptables: Saving firewall rules to /etc/sysconfig/iptables:[OK]

From another host on the network, try using the openssl
s _ client to connect to the Puppet master:

openssl s_client -connect localhost:8140 -showcerts 2>&1

</dev/null |\

> egrep -i ‘(issuer|subject)’

subject=/CN=centosa.local

issuer=/CN=Puppet CA: centosa.local

All Puppet traffic is encrypted over SSL.
The Puppet server is now configured. We will use the

common name shown above, centosa.local, in the server
values in the [agent] section of puppet.conf, so take a
note of yours. To avoid issues later on, this should match
the FQDN of your host.

CentOS Agent Installation
On each server you wish to install the agent on (in our
case, centos{a,b,c}.local), perform the following steps.
Note that you don’t need to reinstall the packages on your
Puppet master as you already did them during the Server
Installation phase above.

Install the repository RPM:

rpm -ivh https://yum.puppetlabs.com/el/6/products/

x86_64/puppetlabs-release-6-7.noarch.rpm

Next, install Puppet and all dependencies. There is no
need to install the puppet-server package on the other
client nodes.

yum -y install puppet

Once complete, on all client nodes, update /etc/puppet/
puppet.conf. Edit (or add if it doesn’t exist) the [agent]
section and add the following:

server = centosa.local

Change the value of the server variable to suit your en-
vironment. This should be the FQDN of the host, and
should match the CN of your SSL certificate.

Next, a client certificate needs to be generated and
signed by the Puppet master to authorize the addition of
each node to the orchestration topology. Issue the puppet
agent command with the --test option. --test includes
many options useful for testing, including --debug and
--no-daemonize and --show_diff.

puppet agent --test

Info: Creating a new SSL key for centosb.local

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for centosb.

local

www.bsdmag.org 25

Securing CentOS and Solaris 11 with Puppet

Info: Certificate Request fingerprint (SHA256): 5D:45:98:F1:

3C:49:3A:A7:04:76:4D:96:FB:97:38:BB:FB:42:EB:65:EF:24:8

4:AB:6C:FF:90:0C:29:C0:54:9F

Exiting; no certificate found and waitforcert is disabled

We didn’t use --waitforcert (another option to puppet
agent), so the agent will terminate after sending its CSR
to the Puppet master for signing.

On the Puppet master, sign the outstanding request:

puppet cert sign centosb.local

Notice: Signed certificate request for centosb.local

Notice: Removing file Puppet::SSL::CertificateRequest

centosb.local at ‘/var/lib/puppet/ssl/ca/requests/

centosb.local.pem’

And verify:

puppet cert list --all

+ “centosa.local” (SHA256) E8:7C:E0:DF:6E:19:24:A1:35:

09:9D:A4:93:60:BD:3A:CA:1C:B0:37:2C:32:3F:BF:5B:41:

19:CD:4F:38:51:D9 (alt names: “DNS:centosa.local”,

“DNS:puppet”, “DNS:puppet.local”)

+ “centosb.local” (SHA256) 3D:13:8B:9C:F7:25:73:77:61:DC:4

B:E1:10:04:B8:3A:C1:FD:21:F7:2F:B7:4C:AD:53:94:87:A4:E

8:FF:0E:94

Listing 2. Installation

root@sol11test:~# pkgadd -d http://get.opencsw.org/now

Downloading...

..............25%..............50%..............75%.....

.........100%

Download Complete

The following packages are available:

 1 CSWpkgutil pkgutil – Installs Solaris packages

easily

 (all) 2.6.6,REV=2013.11.12

Select package(s) you wish to process (or ‘all’ to

process

all packages). (default: all) [?,??,q]: all

Processing package instance <CSWpkgutil> from <http://

get.opencsw.org/now>

pkgutil – Installs Solaris packages easily(all)

2.6.6,REV=2013.11.12

Please see /opt/csw/share/doc/pkgutil/license for

license information.

Processing package information.

Processing system information.

Verifying package dependencies.

Verifying disk space requirements.

Checking for conflicts with packages already

installed.

Checking for setuid/setgid programs.

This package contains scripts which will be executed

with super-user

permission during the process of installing this

package.

Do you want to continue with the installation of

<CSWpkgutil> [y,n,?] y

Installing pkgutil – Installs Solaris packages easily as

<CSWpkgutil>

Installing part 1 of 1.

/etc/opt/csw/pkgutil.conf.CSW

/etc/opt/csw <implied directory>

/opt/csw/bin/pkgutil

/opt/csw <implied directory>

/opt/csw/bin <implied directory>

/opt/csw/etc/pkgutil.conf.CSW

/opt/csw/etc <implied directory>

/opt/csw/libexec/pkgutil/wget-i386

/opt/csw/libexec/pkgutil/wget-sparc

/opt/csw/share/doc/pkgutil/license

/opt/csw/share/doc/pkgutil/readme

/opt/csw/share/man/man1/pkgutil.1

/opt/csw/var/pkgutil/admin.CSW

[verifying class <none>]

Executing postinstall script.

Copying sample pkgutil.conf to /opt/csw/etc.

Copying sample pkgutil.conf to /etc/opt/csw.

Copying sample admin from /opt/csw/var/pkgutil to /var/

opt/csw/pkgutil.

NOTE!

NOTE! Make sure to check out any changes in /etc/opt/

csw/pkgutil.conf.CSW.

NOTE!

Installation of <CSWpkgutil> was successful.

02/201426

Unix

Note above that a signed certificate already exists for
centosa.local. It’s also noteworthy that the certificate has
alternate DNS names of puppet and puppet.local – so we
could reference centosa.local by a CNAME of puppet.
local, and update the server variable in puppet.conf ap-
propriately. Repeat the process for all nodes. You should
get a clean run once the certificate has been signed:

puppet agent --test

Info: Caching certificate for centosc.local

Info: Caching certificate_revocation_list for ca

Info: Retrieving plugin

Info: Caching catalog for centosc.local

Info: Applying configuration version ‘1386191583’

Info: Creating state file /var/lib/puppet/state/state.yaml

Notice: Finished catalog run in 0.04 seconds

Solaris Agent Installation
The easiest way to install Puppet on Solaris is to obtain
the packages from http://OpenCSW.org. OpenCSW uses
a tool called pkgutil on top of the existing Solaris toolset
to obtain, install and maintain OpenCSW packages. Start
by installing the latest version of CSWpkgutil: Listing 2.

The first step is to configure pkgutil to use PGP cryp-
tographic verification. Issue the following command to in-
stall the CSWpki package via pkgutil:

pkgutil -y -i cswpki

Next, import the keys with cswpki:

cswpki --import

Do you want to import the key used for: catalog signing

2011-09?

Yes/No: Yes

Importing the key used for: catalog signing 2011-09

gpg: keyring `/var/opt/csw/pki//secring.gpg’ created

gpg: keyring `/var/opt/csw/pki//pubring.gpg’ created

gpg: /var/opt/csw/pki//trustdb.gpg: trustdb created

gpg: key 9306CC77: public key “OpenCSW catalog signing

<board@opencsw.org>” imported

gpg: Total number processed: 1

gpg: imported: 1

gpg: no ultimately trusted keys found

Do you want to import the key used for: legacy catalog

verification?

Yes/No: Yes

Importing the key used for: legacy catalog verification

gpg: key E12E9D2F: public key “Distribution Manager <dm@

blastwave.org>” imported

gpg: Total number processed: 1

gpg: imported: 1

gpg: no ultimately trusted keys found

The current fingerprint is available at http://www.openc-
sw.org/manual/for-administrators/getting-started.html, and
currently looks like this:

gpg --homedir=/var/opt/csw/pki --fingerprint board@

opencsw.org

pub 1024D/9306CC77 2011-08-31

 Key fingerprint = 4DCE 3C80 AAB2 CAB1 E60C 9A3C 05F4

2D66 9306 CC77

uid OpenCSW catalog signing <board@

opencsw.org>

sub 2048g/971EDE93 2011-08-31

With the key imported, edit /etc/opt/csw/pkgutil.conf
and uncomment the following values, thus setting them
to true from their defaults of false:

use_gpg=true

use_md5=true

Now, run a pkgutil catalog update. You should see the
GPG verification taking place:

pkgutil -U

=> Fetching new catalog and descriptions (http://mirror.

opencsw.org/opencsw/testing/i386/5.11) if available ...

Checking integrity of /var/opt/csw/pkgutil/catalog.mirror.

opencsw.org_opencsw_testing_i386_5.11 with gpg.

gpg: Signature made Wed Dec 18 10:43:20 2013 EST using DSA

key ID 9306CC77

gpg: Good signature from “OpenCSW catalog signing <board@

opencsw.org>”

gpg: WARNING: This key is not certified with a trusted

signature!

gpg: There is no indication that the signature

belongs to the owner.

Primary key fingerprint: 4DCE 3C80 AAB2 CAB1 E60C 9A3C

05F4 2D66 9306 CC77

==> 3807 packages loaded from /var/opt/csw/pkgutil/

catalog.mirror.opencsw.org_opencsw_testing_i386_5.11

Now, we can search for the appropriate Puppet package
using pkgutil -a:

http://OpenCSW.org
http://www.opencsw.org/manual/for-administrators/getting-started.html
http://www.opencsw.org/manual/for-administrators/getting-started.html

www.bsdmag.org 27

Securing CentOS and Solaris 11 with Puppet

pkgutil -a puppet

common package catalog size

puppet CSWpuppet 2.7.21,REV=2013.03.15 709.8 KB

puppet3 CSWpuppet3 3.1.1,REV=2013.03.15 780.4 KB

puppetmaster CSWpuppetmaster 2.7.21,REV=2013.03.15 3.4 KB

puppetmaster3 CSWpuppetmaster3 3.1.1,REV=2013.03.15 2.2 KB

As this is only a client, we will need the puppet3 package,
and any dependencies. pkgutil takes care of dependen-
cy resolution for us with respect to other OpenCSW.org
packages. For the sake of convenience, at this point you
should update your $PATH accordingly to find binaries un-
der /opt/csw/bin:

vi ~/.profile

...

export PATH=$PATH:/opt/csw/bin

...

. .profile

which pkgutil

/opt/csw/bin/pkgutil

Install the puppet3 package and its dependencies:

pkgutil -i -y puppet3

By default, an SMF service is created to run the Puppet
agent daemonised. This is not something that we want –
the updates will be run out of cron for more control and
granularity (more on this later). For now, check the status
of the service:

svcs -xv cswpuppetd

svc:/network/cswpuppetd:default (?)

 State: online since November 26, 2013 08:44:35 AM EST

 See: /var/svc/log/network-cswpuppetd:default.log

Impact: None.

Disable it, thus stopping it also:

svcadm disable svc:/network/cswpuppetd

Copy the supplied sample puppet.conf into place:

cp /etc/puppet/puppet.conf.example-CSW /etc/puppet/puppet.conf

Update the puppet.conf server variable in the [agent]
section as appropriate:

vi /etc/puppet/puppet.conf

[agent]

...

 server = centosa.local

Try a test run; the certificate request will be sent to the
Puppet master, and can be signed as shown in the Cen-
tOS instructions above.

puppet agent --test

Info: Creating a new SSL key for sol11test.local

Info: Caching certificate for ca

Info: Creating a new SSL certificate request for sol11test.

local

Info: Certificate Request fingerprint (SHA256): 96:B2:AB:E8:

E7:6C:DE:98:DD:3F:AA:29:3C:B7:97:C4:FD:DB:41:0D:F7:04:B

F:3D:03:41:D9:76:95:84:76:23

Exiting; failed to retrieve certificate and waitforcert is

disabled

Once the certificate is signed, a clean run should
be observed:

puppet agent --test

Info: Caching certificate_revocation_list for ca

Info: Retrieving plugin

Notice: /File[/var/opt/csw/puppet/lib]/mode: mode changed

‘0750’ to ‘0755’

Info: Caching catalog for sol11test.local

Info: Applying configuration version ‘1386191583’

Info: Creating state file /var/opt/csw/puppet/state/state.

yaml

Notice: Finished catalog run in 0.05 seconds

A quick check of some of the facter variables on each
type of host confirms that things are ready to go:

root@sol11test:~# facter operatingsystem

Solaris

root@sol11test:~# facter operatingsystemrelease

5.11

[root@centosa ~]# facter operatingsystem

CentOS

[root@centosa ~]# facter operatingsystemrelease

6.4

You can run facter –p to get a listing of all facts known
to Puppet.

Puppet Configuration
The bulk of this article will now highlight some of the fea-
tures of the Puppet configuration language, and how Pup-
pet can be used to deploy security configuration to hosts.

02/201428

Unix

Within an article there is an obvious limit to what can be
covered, so the official Puppet documentation at http://
docs.puppetlabs.com/references/latest should be con-
sulted for authoritative information, as well as the appro-
priate security benchmarks for your operating system.

Before starting, it’s worth looking at the directory struc-
ture of the Puppet master installation. There are two sub-
directories under /etc/puppet of note – manifests which
contains Puppet manifests, and modules which contains
Puppet modules. Each module is within its own subdirec-
tory, e.g. /etc/puppet/modules/foomodule. Beneath the
module subdirectory are three more directories – files
(contains files you wish to serve to clients), manifests
(manifests that comprise the module) and templates (any
ERB templates your module uses). The entry point mani-
fest is, by default, /etc/puppet/manifests/site.pp. Other
subdirectories may exist under /etc/puppet if other fea-
tures are being used (for example, hiera). Start by config-
uring site.pp. In this file, include any site-wide defaults. /
etc/puppet/manifests/site.pp is shown in Listing 3.

A few things to notice about this example. Centralised
backups to the Puppet master are configured using the
filebucket type with name main and a server of centosa.
local – our Puppet master. A default File object is then
created causing all file modifications across all mani-
fests and modules to be backed up to the filebucket main.
.svn and .git files are ignored. We then go on to include
nodes.pp via an import statement. The node declarations
could go into site.pp, but we want to break things down
for manageability and maintainability. nodes.pp is shown
in Listing 4.

Using this format, you could import nodes-www.pp, nodes-
mysql.pp, nodes-oracle.pp and so on. Each of these files
will contain actual node definitions.

Listing 5 presents nodes-test.pp, the node definition file
for our test hosts.

As you can see, three node definitions are present. With-
in these statements are included which will call the class-
es of configuration that will be applied. The first match-
es hostname centosa.local and includes two classes
– the security base class (/etc/puppet/modules/security/
manifests/init.pp – which we will meet again later), and
the security::logging::server class. The second defi-
nition matches two CentOS nodes – centosb.local and
centosc.local. We could also have used a regular ex-
pression to match these. The third declaration is for the
Solaris 11 node. Both of these definitions include the base
security class and the security::logging::client class.

The various classes that comprise the configuration of the
nodes is defined in a Puppet module called security. Pup-
pet looks for modules in /etc/puppet/modules by default.

Listing 3. /etc/puppet/manifests/site.pp

site.pp – puppetmaster base configuration

configure centralised backups on the puppetmaster

filebucket { main:

 path => false,

 server => ‘centosa.local’

}

File {

 backup => ‘main’,

 ignore => [‘.svn’, ‘.git’]

}

import “nodes.pp”

Listing 4. /etc/puppet/manifests/nodes.pp

nodes.pp – base node configuration

This file accomplishes two things. First, it

forces the definition of nodes, and secondly

it imports separate node files for each environment

node default {

 fail(“You must add a node definition for this host,

not use the default”)

}

node functionality broken out into separate files

import “nodes-test.pp”

Listing 5. /etc/puppet/manifests/nodes-test.pp

nodes-test.pp

Node definition file for test nodes

Puppetmaster

node “centosa.local” {

	 include security

	 include security::logging::server

}

CentOS nodes

node “centosb.local”, “centosc.local” {

	 include security

	 include security::logging::client

}

Solaris nodes

node “sol11test.local” {

	 include security

	 include security::logging::client

}

http://docs.puppetlabs.com/references/latest
http://docs.puppetlabs.com/references/latest

www.bsdmag.org 29

Securing CentOS and Solaris 11 with Puppet

Listing 6. /etc/puppet/modules/security/manifests/init.pp

class: security

This is the base security class and acts as a

wrapper around the various sub-classes.

class security {

 include security::base::files

 include security::services

 include security::tcpwrappers

 include security::kerneltuning

 include security::networktuning

 include security::sshd

 # Operating system specific

 case $::operatingsystem {

 ‘CentOS’ : {

 security::base::filesystem { ‘/home’ : fs => ‘/

home’ }

 security::base::filesystem { ‘/tmp’ : fs => ‘/tmp’

}

 security::base::filesystem { ‘/var/tmp’ : fs => ‘/

var/tmp’ }

 security::base::filesystem { ‘/dev/shm’ : fs => ‘/

dev/shm’ }

 include security::selinux

 }

 ‘Solaris’ : {

 include security::coreadm

 include security::strong_iss

 include security::routeadm

 }

 default : { fail(‘OS is unsupported by security

class’) }

 }

}

Listing 7. /etc/puppet/modules/security/manifests/base/files.pp

class security::base::files

Copy several base files to each node – current

– /etc/issue

– /etc/motd (created from template)

– /etc/cron.* or /etc/cron.d/* depending on OS

class security::base::files {

 case $::operatingsystem {

 ‘CentOS’ : {

 file { ‘/etc/motd’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 content => template(‘security/motd.erb’)

 }

 file { ‘/etc/issue’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/issue’

 }

 file { ‘/etc/cron.allow’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/cron.

allow’

 }

 file { ‘/etc/cron.deny’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/cron.

deny’

 }

 file { ‘/etc/at.allow’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

at.allow’

 }

 file { ‘/etc/at.deny’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

at.deny’

 }

 }

 ‘Solaris’ : {

 file { ‘/etc/motd’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

02/201430

Unix

Creating a module first requires the appropriate directory
structure to be in place.

mkdir -p /etc/puppet/modules/security/

{files,manifests,templates}

When the bare module name is included, as is the case
in our example above (include security), there should
be an init.pp file at /etc/puppet/modules/<modulename>/
manifests/init.pp containing the corresponding class (in
our case, this would be a definition of the security class).

Let’s take a look at init.pp for the security module in
Listing 6. There is a lot going on here. init.pp is mere-
ly a wrapper class in this case, farming off the work
to various worker classes. The first six calls (include
security::base::files through to include security::sshd)
are applied to all hosts. Then, a case statement evaluates
the operatingsystem facter variable. Facter is installed
as a Puppet prerequisite and enables Puppet to query the
host for “facts” about its configuration. One such variable
is operatingsystem, and this and other top-level variables
can be accessed via the $::<variable_name> syntax.

Depending on whether $::operatingsystem evaluates to
CentOS or Solaris will dictate what further action is taken. You
can see that in the CentOS case, there are four calls to the
defined type security::base::filesystem, and the inclusion
of the security::selinux class. For Solaris, three additional
classes are included. The default case would be evaluated
should the $::operatingsystem variable contain some oth-
er value. The first included class is security::base::files.
Let’s take a look at the class in Listing 7. It can be found at
/etc/puppet/modules/security/manifests/base/files.pp.
Note that the subdirectory base has been created and this
matches the class name (using :: as a path separator).

Again, the content of the $::operatingsystem variable
is evaluated and the appropriate file types are defined.
Let’s break down a couple of the entries. First, /etc/issue.
On a CentOS host, the configuration applied is as follows:

 file { ‘/etc/issue’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/issue’

 }

Here, the file /etc/issue will be created if it doesn’t ex-
ist (we ensure that it’s present), and the owner will be
set to root, the group to root, and the permissions to
0644. The source of the file is on the Puppet master

 content => template(‘security/motd.erb’)

 }

 file { ‘/etc/issue’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0640’,

 source => ‘puppet:///modules/security/etc/

issue’

 }

 file { ‘/etc/cron.d/cron.allow’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

cron.d/cron.allow’

 }

 file { ‘/etc/cron.d/cron.deny’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

cron.d/cron.deny’

 }

 file { ‘/etc/cron.d/at.allow’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

cron.d/at.allow’

 }

 file { ‘/etc/cron.d/at.deny’ :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

cron.d/at.deny’

 }

 }

 default : { fail(‘OS not supported by the

security::base::files class’) }

 }

}

www.bsdmag.org 31

Securing CentOS and Solaris 11 with Puppet

at puppet:///modules/security/etc/issue (which corre-
sponds to a physical file path of /etc/puppet/modules/
security/files/etc/issue). There are many more config-
uration attributes for the file type; consult the type refer-
ence (http://docs.puppetlabs.com/references/latest/type.
html) for further detail.

Another type of entry is shown below, making use of
ERB templates, here for Solaris hosts:

 file { ‘/etc/motd’ :

 ensure => ‘present’,

 owner => ‘root’,

Listing 8. /etc/puppet/modules/security/manifests/services.pp

class: security::services

Takes care of ensuring unneeded services are

not running and are disabled

class security::services {

 case $::operatingsystem {

 ‘CentOS’ : {

 # services netconsole, rdisc and saslauthd are

shipped

 # disabled with CentOS 6.x minimal, let’s keep

them that

 # way

 service { ‘netconsole’ :

 enable => false,

 ensure => stopped

 }

 service { ‘rdisc’ :

 enable => false,

 ensure => stopped

 }

 service { ‘saslauthd’ :

 enable => false,

 ensure => stopped

 }

 }

 ‘Solaris’ : {

 # GDM not fully installed on a text-mode

installation of

 # Solaris 11, so we can comment it here to save

puppet

 # complaining about an unmanageable service state

 # service { ‘svc:/application/graphical-login/gdm’

:

 # enable => false,

 # ensure => stopped

 # }

 service { ‘svc:/network/rpc/keyserv’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/nis/server’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/nis/domain’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/nis/client’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/security/ktkt_warn’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/rpc/gss’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/system/filesystem/rmvolmgr’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/rpc/smserver’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/http:apache22’ :

 enable => false,

 ensure => stopped

 }

 service { ‘svc:/network/telnet’ :

 enable => false,

 ensure => stopped

 }

 }

 default : {

 fail(‘OS unsupported by security::services class’

)

 }

 }

}

http://docs.puppetlabs.com/references/latest/type.html
http://docs.puppetlabs.com/references/latest/type.html

02/201432

Unix

 group => ‘sys’,

 mode => ‘0644’,

 content => template(‘security/motd.erb’)

 }

As you can see, the security/motd.erb template is be-
ing used to populate the file (the content attribute). The
physical path to the file is /etc/puppet/modules/security/
templates/motd.erb. Here is the ERB file:

Welcome to <%= fqdn %>.

Authorised users only. All activity may be monitored and

reported.

fqdn is a facter variable, but we could equally reference
any variable that’s defined in the appropriate scope, for
example in the calling class.

A more complete example using ERB templates to con-
figure Apache VirtualHosts can be found on my website

(http://www.tokiwinter.com/puppet-module-apache2-virtu-
alhost-templates). We can now look at the next class –
security::services – in Listing 8.

This class takes care of stopping any unnecessary ser-
vices, and disabling them via whatever OS-specific mech-
anism is required (which Puppet hides from us, whether
the provider is init.d scripts or SMF, we have a consis-
tent interface via the service type).

The next class, security::tcpwrappers, is quite com-
plex. It uses Hiera to look up variable values in a hierar-
chical database, in our case stored as plain text in YAML
format. Hiera used to be an additional tool, but has been
integrated fully with Puppet since version 3.0. Let’s start
with the class definition – take note of the positional pa-
rameters $hostsallow and $hostsdeny. These two vari-
ables will be populated via a Hiera lookup. Since ver-
sion 3.x, automatic parameter lookup in Hiera is enabled
by default (see http://docs.puppetlabs.com/hiera/1/pup-
pet.html#automatic-parameter-lookup for more details).

Listing 9. /etc/puppet/modules/security/manifests/tcpwrappers.pp

class security::tcpwrappers

Set up tcpwrappers on Solaris and CentOS hosts

class security::tcpwrappers ($hostsallow = “”,

$hostsdeny = “”) {

 file { ‘/etc/hosts.allow’ :

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => $hostsallow

 }

 file { ‘/etc/hosts.deny’ :

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => $hostsdeny

 }

 case $::operatingsystem {

 ‘CentOS’ : {

 # nothing else to do, files are in place

 }

 ‘Solaris’ : {

 # set up inetd-controlled services for tcp_

wrappers

 exec { ‘/usr/sbin/inetadm -M tcp_wrappers=TRUE’ :

 unless => ‘/usr/sbin/inetadm -p | /bin/grep tcp_

wrappers=TRUE’

 }

 # enable TCP wrappers for RPC portmapping service

 exec { ‘/usr/sbin/svccfg -s svc:/network/rpc/bind

setprop config/enable_tcpwrappers=true’ :

 unless => ‘/usr/sbin/svccfg -s svc:/network/rpc/

bind listprop config/enable_tcpwrappers | /bin/grep

true’,

 notify => Service[‘svc:/network/rpc/bind’]

 }

 # need the service defined here so we can notify it

 service { ‘svc:/network/rpc/bind’ :

 ensure => running,

 enable => true

 }

 }

 default : { fail(‘OS unsupported by security::tcp_

wrappers class’) }

 }

}

Listing 10. /etc/puppet/hiera.yaml

:backends:

 – yaml

:yaml:

 :datadir: /etc/puppet/hieradata

:hierarchy:

 – %{::clientcert}

 – %{::operatingsystem}

 – common

http://www.tokiwinter.com/puppet-module-apache2-virtualhost-templates
http://www.tokiwinter.com/puppet-module-apache2-virtualhost-templates

www.bsdmag.org

Therefore, the values of security::tcpwrappers::hostsal
low and security::tcpwrappers::hostsdeny will be looked
up in Hiera.

The Hiera configuration is defined on the Puppet master
at /etc/puppet/hiera.yaml as a plain text YAML file. Its
contents are shown in Listing 10.

So that the hiera command-line utility works as expect-
ed, remove the installed /etc/hiera.yaml and symlink:

rm -f /etc/hiera.yaml

ln -s /etc/puppet/hiera.yaml /etc

The Hiera configuration above does several impor-
tant things. Firstly, it defines the available :backends:
– here we use the yaml backend. The :datadir: of /
etc/puppet/hieradata for the :yaml: files is defined
next, followed by the :hierarchy: we wish to use. Our
:hierarchy: is as follows:

:hierarchy:

 – %{::clientcert}

 – %{::operatingsystem}

 – common

First, the clientcert facter variable is checked,
which will return the common name of the client certifi-
cate – generally the fully-qualified domain name of the
host. If the file /etc/puppet/hieradata/%{::clientcert}.
yaml exists, the security::tcpwrappers::hostsall

ow and security::tcpwrappers::hostsdeny variables
looked up within them. If that file doesn’t exist, the
operatingsystem variable is checked. If /etc/puppet/

hieradata/%{::operatingsystem}.yaml exists, the vari-
ables are looked up there, and finally the catch all – if
the granular tests fail, common.yaml will be used.

The contents of the YAML files are as follows:

cat centosa.local.yaml

security::tcpwrappers::hostsallow: “puppet:///modules/

security/etc/hosts.allow-centosa.local”

security::tcpwrappers::hostsdeny: “puppet:///modules/

security/etc/hosts.deny-centosa.local”

cat common.yaml

security::tcpwrappers::hostsallow: “puppet:///modules/

security/etc/hosts.allow-common”

security::tcpwrappers::hostsdeny: “puppet:///modules/

security/etc/hosts.deny-common”

cat Solaris.yaml

02/201434

Unix

security::tcpwrappers::hostsallow: “puppet:///modules/

security/etc/hosts.allow-solaris”

security::tcpwrappers::hostsdeny: “puppet:///modules/

security/etc/hosts.deny-solaris”

Host centosa.local would use centosa.local.yaml (due
to %{::clientcert} in the hierarchy) and pull the values
in for security::tcpwrappers::hostsallow and security
::tcpwrappers::hostsdeny from that file. Host centosb.
local would fall through to common.yaml (unless there
was a %{::clientcert}.yaml or CentOS.yaml), and a So-
laris host would use Solaris.yaml. Looking back at the
security::tcpwrappers class, you can see that this

substitution occurs during class instantiation as posi-
tional parameters:

class security::tcpwrappers ($hostsallow = “”, $hostsdeny

= “”) {

...

These variables are then referenced in the file type definitions:

 source => $hostsallow

These variables will contain the output of the hiera look-
up and thus the source attribute will reference the correct

Listing 11. /etc/puppet/modules/security/manifests/ipadm.pp

defined type: security::ipadm

Use ipadm to check the value of an ipadm-controlled

variable

and update it if required.

#

Parameters:

– $variable => the ipadm variable we want to check/

change

– $co => should be set to “current”

– $protocol => the protocol (ip, tcp, etc.)

– $value => the value to check and/or set

define security::ipadm($variable = ‘’, $co = ‘’,

$protocol = ‘’, $value = ‘’) {

 exec { “/usr/sbin/ipadm set-prop -p

${variable}=${value} ${protocol}” :

 unless => “/usr/sbin/ipadm show-prop -p ${variable}

-co ${co} ${protocol} | /bin/grep ‘^${value}$’”

 }

}

Listing 12. /etc/puppet/modules/security/manifests/kerneltuning.pp

class: security::kerneltuning

Updates the following files:

CentOS

– /etc/security/limits.conf

– /etc/sysctl.conf (and calls sysctl -p if required)

Solaris

– /etc/system

class security::kerneltuning {

 case $::operatingsystem {

 ‘CentOS’ : {

 file { “/etc/security/limits.conf” :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

security/limits.conf’

 }

 file { “/etc/sysctl.conf” :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

sysctl.conf’

 }

 exec { “/sbin/sysctl -e -p” :

 refreshonly => ‘true’,

 subscribe => File[“/etc/sysctl.conf”]

 }

 }

 ‘Solaris’ : {

 file { “/etc/system” :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

system’

 }

 }

 default : { fail(‘OS unsupported by

security::kerneltuning class’) }

 }

}

www.bsdmag.org 35

Securing CentOS and Solaris 11 with Puppet

version of the file for the node we are deploying to. After the
files are deployed as appropriate, Solaris has some addi-
tional checks and/or configuration performed. First, inetadm
-p is checked for tcp_wrappers=TRUE to verify whether
inetd-controlled services are configured to use TCP Wrap-
pers. If not set to TRUE, inetadm -M is used to update the
configuration. Next, TCP Wrappers is enabled for the RPC
portmapping service if it isn’t already via a call to svccfg.
The service type definition is required to give us some-
thing to notify from the exec. Defined types are pieces of
code you want to call repeatedly with different parame-

ters, akin to functions. security::ipadm is a defined type
to check and set properties on Solaris hosts with ipadm.
Its contents are shown in Listing 11.

This can then be called from classes. The commented
documentation in the listing explains each of the param-
eters. They default to empty, which would cause the com-
mands to syntax error. You should add checks that sani-
tise input via conditionals. We will call this a defined type
in later manifests.

Next, we deploy kernel tuning changes – again the file
is well commented. On Solaris, a change to /etc/system

Listing 13. /etc/puppet/modules/security/manifests/networktuning.pp
class: security::networktuning

Configure Solaris IP stack via ipadm

Requires the security::ipadm defined type.

class security::networktuning {

 case $::operatingsystem {

 ‘CentOS’ : {

 # On CentOS, this is all taken care of in

kerneltuning.pp

 }

 ‘Solaris’ : {

 security::ipadm{ ‘_respond_to_timestamp’ :

 variable => ‘_respond_to_timestamp’, co =>

‘current’, protocol => ‘ip’, value => ‘0’ }

 security::ipadm{ ‘_forward_directed_broadcasts’ :

 variable => ‘_forward_directed_broadcasts’, co

=> ‘current’, protocol => ‘ip’, value => ‘0’ }

 security::ipadm{ ‘_respond_to_timestamp_broadcast’

:

 variable => ‘_respond_to_timestamp_broadcast’,

co => ‘current’, protocol => ‘ip’, value => ‘0’ }

 security::ipadm{ ‘_respond_to_address_mask_

broadcast’ :

 variable => ‘_respond_to_address_mask_broadcast’,

co => ‘current’, protocol => ‘ip’, value => ‘0’ }

 security::ipadm{ ‘_respond_to_echo_broadcast’ :

 variable => ‘_respond_to_echo_broadcast’, co =>

‘current’, protocol => ‘ip’, value => ‘0’ }

 }

 default : { fail(‘OS unsupported by

security::kerneltuning class’) }

 }

}

Listing 14. /etc/puppet/modules/security/manifests/sshd.pp

class security::sshd {

 case $::operatingsystem {

 ‘CentOS’ : {

 package { [‘openssh’, ‘openssh-clients’,

‘openssh-server’] :

 ensure => ‘latest’

 }

 file { ‘/etc/ssh/sshd_config’ :

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0600’,

 source => ‘puppet:///modules/security/etc/ssh/

sshd_config-centos’,

 require => Package[“openssh-server”],

 notify => Service[“sshd”]

 }

 service { ‘sshd’ :

 require => File[“/etc/ssh/sshd_config”],

 ensure => ‘running’,

 enable => ‘true’

 }

 }

 ‘Solaris’ : {

 file { ‘/etc/ssh/sshd_config’ :

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/ssh/

sshd_config-solaris’,

 notify => Service[“svc:/network/ssh”]

 }

 service { ‘svc:/network/ssh’ :

 enable => ‘true’,

 ensure => ‘running’

 }

 }

 }

}

02/201436

Unix

requires a reboot – obviously we don’t orchestrate that ...
For suggested values for these files, see my previous
articles published in PenTest Magazine on Securing the
Linux and Solaris 11 Operating Systems.

All is very straightforward in the above class. Files are
copied for both hosts, and on CentOS, the sysctl -p

command is run only if the /etc/sysctl.conf file changes
(refreshonly=true makes the exec respond to events,
and for that we use a file subscription to /etc/sysctl.
conf). security::networktuning is the next class, and
it shows how the security::ipadm defined type can be
called: Listing 12 and Listing 13.

Listing 15. /etc/puppet/modules/security/manifests/base/
filesystem.pp

Defined type: security::base::filesystem

Parameters

– $fs => Filesystem to check/modify

define security::base::filesystem ($fs = ‘’) {

 case $::operatingsystem {

 ‘CentOS’ : { }

 default : { fail(‘OS not supported by the

security::base::filesystem class’) }

 }

 if $fs == ‘’ {

 fail(‘No FS passed’)

 } else {

 case $fs {

 ‘/tmp’, ‘/var/tmp’, ‘/dev/shm’ : {

 case $fs {

 ‘/tmp’ : { $lv = “\/dev\/mapper\/vg_sys-lv_

tmp” }

 ‘/var/tmp’ : { $lv = “\/dev\/mapper\/vg_

sys-lv_var_tmp” }

 ‘/dev/shm’ : { $lv = “tmpfs” }

 default : { fail(“$fs not implemented in

security::base::filesystem”) }

 }

 $mountopts = “noexec,nosuid,nodev”

 exec { “/bin/sed -i ‘/^$lv/ s/defaults/

defaults,$mountopts/’ /etc/fstab” :

 unless => “/bin/grep ‘^$lv[[:space:]].*default

s,$mountopts’ /etc/fstab”

 }

 $mountcommand = “/bin/mount -o

remount,$mountopts $fs”

 exec { “$mountcommand” :

 unless => “/bin/grep

‘^$lv[[:space:]].*$mountopts’ /etc/mtab”

 }

 }

 ‘/home’ : {

 $mountopts = “nodev”

 $lv = ‘\/dev\/mapper\/vg_sys-lv_home’

 exec { “/bin/sed -i ‘/^$lv/ s/defaults/

defaults,$mountopts/’ /etc/fstab” :

 unless => “/bin/grep ‘^$lv[[:space:]].*default

s,$mountopts’ /etc/fstab”

 }

 $mountcommand = “/bin/mount -o remount,$mountopts

$fs”

 exec { “$mountcommand” :

 unless => “/bin/grep

‘^$lv[[:space:]].*$mountopts’ /etc/mtab”

 }

 }

 default : {

 fail(‘FS not supported by security::base::filesystem’)

 }

 }

 }

}

Listing 16. /etc/puppet/modules/security/manifests/selinux.pp

class: security::selinux

Ensure SELinux is configured and enforcing

class security::selinux {

 case $::operatingsystem {

 ‘CentOS’ : {

 file { ‘/etc/selinux/config’ :

 owner => ‘root’,

 group => ‘root’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

selinux/config’

 }

 exec { ‘/usr/sbin/setenforce Enforcing’ :

 unless =>’/usr/sbin/getenforce | /bin/grep

Enforcing’

 }

 }

 default : { fail(‘OS unsupported by

security::selinux class’) }

 }

}

www.bsdmag.org 37

Securing CentOS and Solaris 11 with Puppet

Listing 17. /etc/puppet/modules/security/manifests/coreadm.pp

class: security::coreadm

Ensure core dumps are disabled on Solaris hosts

class security::coreadm {

 case $::operatingsystem {

 ‘Solaris’ : {

 exec { ‘/usr/bin/coreadm -d global -d process -d

global-setid -d proc-setid -d log’ :

 onlyif => ‘/usr/bin/coreadm | /bin/grep enabled’

 }

 }

 default : { fail(‘OS unsupported by

security::coreadm class’) }

 }

}

Listing 18. /etc/puppet/modules/security/manifests/coreadm.pp

class: security::routeadm

Ensure routing is disabled on our Solaris hosts – we

don’t use them for routing

class security::routeadm {

 case $::operatingsystem {

 ‘Solaris’ : {

 exec { ‘/usr/sbin/routeadm -d ipv4-routing -d

ipv6-routing -d ipv4-forwarding -d ipv6-forwarding; /

usr/sbin/routeadm -u’ :

 onlyif => ‘/usr/sbin/routeadm -p | /bin/grep

enabled’

 }

 }

 default : { fail(‘OS unsupported by

security::coreadm class’) }

 }

}

Listing 19. /etc/puppet/modules/security/manifests/strong_iss.pp

class: security::strong_iss

Enforce strong TCP initial sequence number generation

class security::strong_iss {

 case $::operatingsystem {

 ‘Solaris’ : {

 file { “/etc/default/inetinit” :

 ensure => ‘present’,

 owner => ‘root’,

 group => ‘sys’,

 mode => ‘0644’,

 source => ‘puppet:///modules/security/etc/

default/inetinit’

 }

 security::ipadm{ “strong_iss” : variable => ‘_

strong_iss’, co => ‘current’, protocol => ‘tcp’,

value => ‘2’ }

 }

 default : { fail(‘OS unsupported by

security::coreadm class’) }

 }

}

Listing 20. Running the Puppet Agent

puppet agent --test

Info: Retrieving plugin

Info: Caching catalog for centosa.local

Info: Applying configuration version ‘1387232042’

Notice: /File[/etc/ssh/sshd_config]/content:

--- /etc/ssh/sshd_config	 2013-12-05 21:29:51.886986435

+1100

+++ /tmp/puppet-file20131217-48343-1hbek4h-0	 2013-

12-17 09:15:08.874975252 +1100

@@ -128,7 +128,7 @@

 #ChrootDirectory none

 # no default banner path

-#Banner none

+Banner /etc/issue

 # override default of no subsystems

 Subsystem	 sftp	 /usr/libexec/openssh/sftp-server

Info: /File[/etc/ssh/sshd_config]: Filebucketed /

etc/ssh/sshd_config to main with sum

226c398f540ca2322ffa01e4cf2c3646

Notice: /File[/etc/ssh/sshd_config]/content: content

changed ‘{md5}226c398f540ca2322ffa01e4cf2c3646’ to

‘{md5}29a87b64a0f815035a8bde658bc01504’

Info: /File[/etc/ssh/sshd_config]: Scheduling refresh of

Service[sshd]

Notice: /Stage[main]/Security::Sshd/Service[sshd]:

Triggered ‘refresh’ from 1 events

Notice: /File[/var/syslog]/seltype: seltype changed

‘var_log_t’ to ‘var_t’

Notice: /Stage[main]/Security::Logging::Server/Exec[/

usr/bin/chcon --reference=/var/log /var/syslog]/

returns: executed successfully

Notice: Finished catalog run in 41.36 seconds

02/201438

Unix

security::sshd is shown in Listing 14. On CentOS hosts,
it checks that the appropriate packages are installed and
up-to-date. For both OSes, it then copies an appropriate
sshd_config into place, before enabling and starting the
service. If the configuration file is changed, the service is
notified and refreshed. Going back to init.pp, we have
now discussed all of the OS-generic classes. Next, the
OS-specific classes are considered:

 case $::operatingsystem {

 ‘CentOS’ : {

 security::base::filesystem { ‘/home’ : fs => ‘/home’ }

 security::base::filesystem { ‘/tmp’ : fs => ‘/tmp’ }

 security::base::filesystem { ‘/var/tmp’ : fs => ‘/

var/tmp’ }

 security::base::filesystem { ‘/dev/shm’ : fs => ‘/

dev/shm’ }

 include security::selinux

 }

 ‘Solaris’ : {

 include security::coreadm

 include security::strong_iss

 include security::routeadm

 }

You’ll note another defined type – security:

:base::filesystem. It is shown in Listing 15. This code
will ensure that appropriate secure mount options
are used in both /etc/fstab, and for any current live
mounts via a call to mount -o remount where necessary.
The final CentOS specific class is security::selinux,
which checks that SELinux is configured and enforcing.
It is shown in Listing 16. There are three final classes
to discuss – the Solaris-specific classes. The first two,
security::coreadm (Listing 17) and security::routeadm
(Listing 18) are very straightforward. They check wheth-
er core dumps and routing are enabled, respective-
ly, and disable the functionality if it is. You may need to
adjust this to suit your purposes and site policy. The fi-
nal class, security::strong_tss is shown in Listing 19.
You’ll note it calls the security::ipadm defined type.
This has only scratched the surface of what Puppet can
achieve and I encourage you to read the documentation
as it really is very good.

Running the Puppet Agent
Now that all the configuration is in place, the Puppet agent
can be run:

puppet agent --test

You’ll see a lot of changes take place. For the sake of
brevity, here is a brief excerpt from a run: Listing 20.

Run again and you should have a clean run as the con-
figuration is up-to-date. You can daemonise the Puppet
agent, however I prefer to run out of cron. You can provide
granular timing via cron, and control which hosts fetch their
configuration at which times to balance load. I prefer to run
puppet agent --test and have that output to a log file which
is then managed by logrotate so that we have logs of ver-
bose agent output. You may need to adjust this to suit your
needs. Add a cron job for root such as the following:

06,36 * * * * /path/to/puppet agent --test >>/var/log/

puppet.log 2>&1

This would run the agent at 06 and 36 past the hour, out-
putting both STDOUT and STDERR to /var/log/puppet.
log. You can then manage this log via logrotate. Read
the manual page for logrotate.conf for details.

As a final noteworthy point, you can view a log file of
all HTTP requests made to the server by checking the
masterhttp log, which is located at /var/log/puppet/
masterhttp.log by default.

Conclusion
This has only scratched the surface of what Puppet can
do. There are further examples of Puppet modules and
configuration on my website, as well as articles on add-
ing robustness to your Puppet master (replacing the built-
in webserver with Apache and Passenger), and integrating
Puppet with a git workflow. This article does not cover all
security aspects of hardening CentOS and Solaris hosts. It
serves as a guide to show you the power of Puppet, and set
you writing your own modules and custom defined types.

Toki Winter
Toki Winter is an experienced UNIX/Linux System
Administrator with over a decade of experience
managing large enterprises and running many
thousands of services. His website, http://www.
tokiwinter.com, contains many useful articles,
HOWTOs and tips for the advanced UNIX admin-
istrator.

http://www.tokiwinter.com/
http://www.tokiwinter.com/

02/201440

Unix

Knowing how to manage users effectively and se-
curely is a requirement of financial standards such
as PCI-DSS, and information security manage-

ment systems such as ISO 27001.
In this article, I will consider local users and groups –

coverage of naming services such as NIS and LDAP is
beyond its scope but may be covered in a future article.
This article also presumes some prior basic system ad-
ministration exposure with a UNIX-like operating system.

Users and Groups
Users and groups make up a fundamental part of any
multi-user operating system. On UNIX and Linux systems,
every user has a UID (User ID) and a primary GID (Group
ID). Users can own files, use resources and execute pro-
cesses. The System Administrator can grant access to
resources and data based upon the UID of the user, as
well as the groups a user is a member of. Some addi-
tional features such as RBAC in Solaris take things a step
further and allow very fine-grained control of what a user

can and cannot do/access. The OS takes care of mapping
usernames and group names to UIDs and GIDs and vice
versa by using a naming service, such as file-based (de-
scribed next), LDAP or NIS.

Using the standard file-based naming service, the main
user database is /etc/passwd. The group database is at
/etc/group, and the shadow password file at /etc/shadow.
Linux systems also have a group shadow database at
/etc/gshadow.

ls -l /etc/passwd /etc/shadow

-rw-r--r--. 1 root root 958 Dec 3 01:29 /etc/passwd

----------. 1 root root 736 Dec 3 01:29 /etc/shadow

ls -l /etc/group /etc/gshadow

-rw-r--r--. 1 root root 471 Dec 3 01:29 /etc/group

----------. 1 root root 383 Dec 3 01:29 /etc/gshadow

Why do we need a shadow password file? /etc/passwd
needs to be readable by every user on the system, as
some applications depend on being able to map UIDs to

User, Group and
Password Management
on Linux and Solaris
This article will cover the user, group and password
management tools available on the Linux and Solaris
Operating Systems. The specific versions covered here are
CentOS 6.4 and Solaris 11.1, though the commands will
transfer to many other distributions without modifications
(especially RHEL and its clones), or with slight alterations to
command options. Check your system documentation and
manual pages for further information.

What you will learn…
• 	 How to manage users effectively and securely

What you should know…
• 	 Basic Unix knowledge.

www.bsdmag.org 41

User, Group and Password Management on Linux and Solaris

usernames (ls, for example) and thus need to be able
to read the password database. Therefore, the encod-
ed password is moved to the /etc/shadow file, which
need only be readable by root. Commands such as
/usr/bin/passwd are SUID (Set UID) root so they can be
executed by normal users with root privileges, thus be-
ing able to update the shadow file.

ls -l /usr/bin/passwd

-rwsr-xr-x. 1 root root 30768 Feb 22 2012 /usr/bin/passwd

UIDs and GIDs can be duplicated, but it is bad practice,
as it makes auditing harder and could lead to data being
revealed inadvertently.

Let’s start by taking a look at the format of the various
password database files.

/etc/passwd

The format of this file is:

username:x:uid:gid:GECOS:home:shell

The first field contains the user’s username. The second
field contains an “x” which indicates that the shadow pass-
word suite is in use. The third is the UID, which, as dis-
cussed, should be unique. The fourth is the users’ prima-
ry group’s GID. The fifth field is known as the GECOS field,
after the GE operating system of the same name, and typi-
cally contains the user’s full name, and perhaps other iden-
tifying information; this is the only field in the file that may
contain a space. The sixth field is the user’s home directo-
ry – an absolute path. The final field is the absolute path to
the user’s login shell – which should be specified in /etc/
shells on a Linux system. Solaris doesn’t use /etc/shells.

cat /etc/redhat-release

CentOS release 6.4 (Final)

cat /etc/shells

/bin/sh

/bin/bash

/sbin/nologin

/bin/dash

cat /etc/release

 Oracle Solaris 11.1 X86

 Copyright (c) 1983, 2012, Oracle and/or its affiliates.

All rights reserved.

 Assembled 19 September 2012

cat /etc/shells

cat: cannot open /etc/shells: No such file or directory

Let’s look at a sample entry from /etc/passwd:

fgrep “toki” /etc/passwd

toki:x:333:333:Toki Winter:/home/toki:/bin/bash

Here, we can see that my username is toki, shadow
password is in use, UID is 333, GID is 333, my GECOS
information is my full name, my home directory is /home/
toki and my login shell is /bin/bash.

/etc/shadow

The format of this file is:

username:encoded_password:last_changed:mindays:maxdays:war

n:inactive:expire:reserved

The first field is the username and should correspond to
an entry in /etc/passwd. The encoded password comes
next. last _ changed is the number of days after Jan 1,
1970 that the password was last changed – set to 0 it
will force a user to change their password upon next log-
in. mindays is the minimum password age, which is the
number of days the user will have to wait before they
will be allowed to change their password again. maxdays
is the maximum password age, which is the number of
days after which the user will have to change their pass-
word. warn is the password warning period, which is the
number of days before a password is going to expire
during which the user should be warned. inactive is the
password inactivity period – the number of days after a
password has expired during which the password will
still be accepted. expire is the account expiration date
– the date of expiration of the account, expressed as the
number of days since Jan 1, 1970. The final field is re-
served for future use. On an out-of-the-box CentOS in-
stall, many fields are empty when users are added via
useradd without additional password ageing options:

fgrep toki /etc/shadow

toki:encoded_password_here:16041:0:99999:7:::

The minimum password age above is 0, which means
there are no restrictions in place. On a Solaris system,
even more fields are empty:

fgrep toki /etc/shadow

toki:encoded_password_here:::::::

Again, this is default behaviour that we will learn to con-
figure over the course of this article.

02/201442

Unix

/etc/group

The format of the file is:

group_name:passwd:GID:user_list

group _ name is the name of the group. passwd is the en-
coded group password. The Solaris manual page for
group(4) states “Group passwords are antiquated and not
often used.” The GID is the numerical group ID, and the
user _ list is a comma-separated list of group members.
There could also be users having this group as their pri-
mary GID (i.e. the GID specified in /etc/passwd), in which
case they wouldn’t need to appear in user _ list. Here
are two entries from /etc/group on a CentOS machine:

fgrep “toki” /etc/group

wheel:x:10:toki

toki:x:333:

and here are two from a Solaris 11 machine:

fgrep “sys” /etc/group

sys::3:root,bin,adm

sysadmin::14:

On a Solaris machine, the passwd field is empty for all
groups out-of-the-box. On a Linux machine, it contains
an “x” indicating that the group shadow file is in use. See
man 5 gshadow for more information on the group shadow
file (/etc/gshadow), but its format is:

username:encoded_password:administrators:members

As you can see, I’m a member of the wheel group on this
machine:

fgrep toki /etc/gshadow

wheel:::toki

toki:!::

The user administration tools and group administration
tools will take care of updating these files for us, and
keeping /etc/shadow in sync with /etc/passwd, and /etc/
gshadow with /etc/group.

Adding Users
Let’s start by taking a look at how the two OSes create
users using all default and no additional arguments other
than the required username. On CentOS:

useradd testuser1

fgrep testuser1: /etc/passwd

testuser1:x:334:334::/home/testuser1:/bin/bash

fgrep testuser1: /etc/group

testuser1:x:334:

It took the next available UID on my system, and ap-
plied sensible defaults to the other parameters (a home
of /home/<username>, shell of /bin/bash). It also creat-
ed a group, and set it to be the primary group of the
new user. This new-group-per-user policy can be found
on all RHEL-derivatives. On Solaris, the behaviour is
slightly different:

useradd tstusr01

fgrep tstusr01 /etc/passwd

tstusr01:x:102:10::/export/home/tstusr01:/usr/bin/bash

fgrep tstusr01 /etc/group

As you can see, the home directories and shell path are
different (and are appropriate for this OS) but the ac-
count is just added to a group called staff:

awk -F: ‘$3 == 10 { print $0 }’ /etc/group

staff::10:

On CentOS, you will note that the user’s home directo-
ry has been created, the contents of /etc/skel copied in,
and then appropriate ownership and permissions con-
figured. /etc/skel is a good way to push site-wide con-
figuration files out to all new accounts. As an example,
here are the contents of /etc/skel on a CentOS system.
A mail spool file has also been created:

ls -lA /etc/skel

total 12

-rw-r--r--. 1 root root 18 Feb 22 2013 .bash_logout

-rw-r--r--. 1 root root 176 Feb 22 2013 .bash_profile

-rw-r--r--. 1 root root 124 Feb 22 2013 .bashrc

ls -lA /home/testuser1

total 12

-rw-r--r--. 1 testuser1 testuser1 18 Feb 22 2013 .bash_logout

-rw-r--r--. 1 testuser1 testuser1 176 Feb 22 2013 .bash_profile

-rw-r--r--. 1 testuser1 testuser1 124 Feb 22 2013 .bashrc

ls -ld /home/testuser1

drwx------. 2 testuser1 testuser1 4096 Dec 4 05:39 /home/

testuser1

ls -l /var/spool/mail/testuser1

-rw-rw----. 1 testuser1 mail 0 Dec 4 05:39 /var/spool/

mail/testuser1

www.bsdmag.org 43

User, Group and Password Management on Linux and Solaris

On Solaris, by default, the user’s home directory is not
created, and the contents of /etc/skel are not, therefore,
copied in. We can either do this manually after running
useradd, or instead use options available to the useradd
command to create the user. We can use the -m option
to cause the home directory to be created, and the -d
option to explicitly define the home directory location.
We then observe the files being copied in from /etc/skel:

useradd -m -d /export/home/tstusr02 tstusr02

80 blocks

ls -lA /export/home/tstusr02

total 11

-r--r--r-- 1 tstusr02 staff 159 Nov 25 11:09 .bashrc

-rw-r--r-- 1 tstusr02 staff 568 Nov 25 11:09 .profile

-rw-r--r-- 1 tstusr02 staff 166 Nov 25 11:09 local.cshrc

-rw-r--r-- 1 tstusr02 staff 170 Nov 25 11:09 local.login

-rw-r--r-- 1 tstusr02 staff 131 Nov 25 11:09 local.profile

ls -lA /etc/skel

total 11

-r--r--r-- 1 root bin 159 Sep 20 2012 .bashrc

-rw-r--r-- 1 root other 568 Sep 20 2012 .profile

-rw-r--r-- 1 root sys 166 Sep 20 2012 local.cshrc

-rw-r--r-- 1 root sys 170 Sep 20 2012 local.login

-rw-r--r-- 1 root sys 131 Sep 20 2012 local.profile

The useradd command is very rich in terms of options
and customisation. The following command adds a user
jsmith with UID 450, a primary group of wheel, a home
directory of /users/jsmith, and a login shell of zsh:

useradd -m -d /users/jsmith -u 450 \

> -g wheel -c “John Smith” -s /bin/zsh jsmith

These options can be used to override defaults. All user
additions should be logged, and whether that is by using
the auditing features available with your operating system,
or some other logging process, will depend on your needs.

Defaults
When configuring new user accounts with useradd, there are
some defaults that are used. On a CentOS system, these are
by default read from /etc/login.defs. Here are the variables
in use on a default CentOS 6.4 installation, which will need to
be tuned according to the needs of your site or organisation,
and any security policies in effect. There are other variables
in the file, and the manual page should be consulted for fur-
ther information. The file itself is also very well commented.

grep ‘^[^#]’ /etc/login.defs

MAIL_DIR	 /var/spool/mail

PASS_MAX_DAYS	99999

PASS_MIN_DAYS	0

PASS_MIN_LEN	5

PASS_WARN_AGE	7

UID_MIN			 500

UID_MAX			 60000

GID_MIN			 500

GID_MAX			 60000

CREATE_HOME	 yes

UMASK 077

USERGROUPS_ENAB yes

ENCRYPT_METHOD SHA512

The defined variables are as follows:

• 	 MAIL _ DIR – The directory where mailboxes reside.
• 	 PASS _ MAX _ DAYS – Maximum number of days a pass-

word may be used.
• 	 PASS _ MIN _ DAYS – Minimum number of days allowed

between password changes (0 to disable).
• 	 PASS _ MIN _ LEN – Minimum acceptable password length.
• 	 PASS _ WARN _ AGE – Number of days warning given be-

fore a password expires.
• 	 UID _ MIN/MAX – Min/max values for automatic UID se-

lection in useradd.
• 	 GID _ MIN/MAX – Min/max values for automatic GID se-

lection in groupadd.
• 	 USERDEL _ CMD – Commented by default. Can be used

to set up a customised local userdel, to remove at/
cron/print jobs, etc.

• 	 CREATE _ HOME – Set to yes if useradd should create
home directories for users by default.

• 	 UMASK – Permission mask to be used.
• 	 USERGROUPS _ ENAB – This enables userdel to remove

user groups if no members exist.
• 	 ENCRYPT _ METHOD – Encryption method used to en-

crypt passwords – we use SHA512.

User Modification
The usermod command is used to modify user accounts.
The options are similar to those supplied by the useradd
command.

For example, to move the home directory for user
tstusr02 from /export/home/tstusr02 to /users/tstusr02,
we could issue the following command:

usermod -m -d /users/tstusr02 tstusr02

To change the UID for the sometest user to 1234 we’d issue:

usermod -u 1234 sometest

02/201444

Unix

Add the user toki to an additional secondary group (-a
for “append” – not available on Solaris):

usermod -a -G sysadmin toki

User Deletion
Users can be deleted using the userdel command. There
is an -r option that will remove the user’s home directo-
ry. It is advised that accounts are not deleted, rather just
locked (see the Locking Accounts section of this article).
This provides auditing capabilities, and stops UID reuse
(and inadvertently giving access to an old user’s files to a
new user). To delete user toki from the system, including
removal of the user’s home directory:

userdel -r toki

Group Administration
Groups are administered with the groupadd, groupmod and
groupdel commands. To add a new group tstgrp to the
system, with GID 250, issue:

groupadd -g 250 tstgrp

To change the name of tstgrp to testgrp:

groupmod -n testgrp tstgrp

To remove a group:

groupdel testgrp

Password Management
Passwords are managed with the passwd command. An
initial password can be set for a user (or a password re-
set) via:

passwd <username>

A user may reset his own password with a simple:

$ passwd

which will then prompt them for the old password, fol-
lowed by the new password, followed by the new pass-
word again to verify. root can change passwords without
being prompted for the old password.

The passwd command can also be used to lock accounts
(see the Locking Accounts section below).

Password Defaults
On Solaris, /etc/default/passwd can be used to config-
ure password-complexity enforcement. Out of the box,
the /etc/default/passwd file contains the following de-
fined variables:

grep ‘^[^#]’ /etc/default/passwd

MAXWEEKS=

MINWEEKS=

PASSLENGTH=6

And the following commented variables:

grep ‘^#[A-Z]’ /etc/default/passwd

#NAMECHECK=NO

#HISTORY=0

#MINDIFF=3

#MINALPHA=2

#MINNONALPHA=1

#MINUPPER=0

#MINLOWER=0

#MAXREPEATS=0

#MINSPECIAL=0

#MINDIGIT=0

#WHITESPACE=YES

#DICTIONLIST=

#DICTIONDBDIR=/var/passwd

These values can be modified according to your site’s
security policy and affect the way that the passwd com-
mand works, and how it enforces password complexi-
ty and reuse. Again, the /etc/default/passwd file is well
commented and the variable names themselves are
self-explanatory.

Locking Accounts
The passwd command is used to lock accounts on both
Linux and Solaris. To lock the password for tstusr01 on
Solaris:

passwd -l tstusr01

Password information changed for tstusr01

Looking at /etc/shadow, you’ll see that the string *LK*
has been prepended to the encrypted password field in
the second field:

fgrep tstusr01 /etc/shadow

tstusr01:*LK*<encrypted password>:16034::::::4320

Doing the same on CentOS 6.4 for user testuser1:

www.bsdmag.org 45

User, Group and Password Management on Linux and Solaris

passwd -l testuser1

Locking password for user testuser1.

passwd: Success

fgrep testuser1 /etc/shadow

testuser1:!!<encrypted password>:16043:0:99999:7:::

You can see that !! has been prepended. To unlock the
account on Solaris, use passwd -u:

passwd -u tstusr01

passwd: password information changed for tstusr01

fgrep tstusr01 /etc/shadow

tstusr01:<encrypted password>:16034::::::4768

The same applies to Linux:

passwd -u testuser1

Unlocking password for user testuser1.

passwd: Success

fgrep testuser1 /etc/shadow

testuser1:<encrypted password>:16043:0:99999:7:::

Configuring Password Ageing
In the following example, I’ll bring everything together. A
group called testusrs with members test01 and test02
will be created, and various operations performed with re-
spect to password configuration.

We’ll start with Solaris. Create the group, followed by
the two users:

groupadd -g 1010 testgrp

useradd -m -d /export/home/test01 -s /bin/bash \

> -c “Test User 01” -u 1010 -g testgrp test01

80 blocks

useradd -m -d /export/home/test02 -s /bin/bash \

> -c “Test User 02” -u 1011 -g testgrp test02

80 blocks

Set an initial password on the two accounts:

passwd test01

New Password:

Re-enter new Password:

passwd: password successfully changed for test01

passwd test02

New Password:

Re-enter new Password:

passwd: password successfully changed for test02

Next, use passwd -f to force the users to change their
passwords at login time:

passwd -f test01

passwd -f test02

Let’s implement some password ageing controls. Sup-
pose the site-wide password policy is as follows:

• 	 The minimum number of days required between
password changes is 7

• 	 The maximum number of days the password is valid
for is 28

• 	 The user will receive warnings 7 days before expiry
• 	 Passwords will be 8 characters or more long
• 	 A history of 5 passwords will be kept and prevented

from reuse

To do this, edit /etc/default/password and update the fol-
lowing variables:

vi /etc/default/password

grep ‘^[^#]’ /etc/default/passwd

MAXWEEKS=1

MINWEEKS=4

PASSLENGTH=8

HISTORY=5

And update any already existing user accounts:

passwd -n 7 -x 28 -w 7 test01

passwd: password information changed for test01

passwd -n 7 -x 28 -w 7 test02

passwd: password information changed for test02

Looking at /etc/shadow we can see the password ageing
fields updated:

grep ‘^test0[12]:’ /etc/shadow

test01:<encrypted password>:16034:7:28:7:::4976

test02:<encrypted password>:16034:7:28:7:::4976

Let’s perform the same steps on a CentOS system. Start
with the group and user creation:

groupadd -g 1010 testgrp

useradd -m -d /home/test01 -s /bin/bash \

> -c “Test User 01” -u 1010 -g testgrp test01

useradd -m -d /home/test02 -s /bin/bash \

> -c “Test User 02” -u 1011 -g testgrp test02

Set the initial passwords:

passwd test01

02/201446

Unix

Changing password for user test01.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

passwd test02

Changing password for user test02.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

On Linux, password ageing is the domain of the chage
command. Setting the number of days since January
1st, 1970 when the password was last changed to 0 has
the same effect as passwd -f on Solaris.

chage -d 0 test01

chage -d 0 test02

To configure the same password ageing policy as the
Solaris example, use chage as follows:

chage -m 7 -M 28 -W 7 test01

chage -m 7 -M 28 -W 7 test02

grep ‘^test0[12]:’ /etc/shadow

test01:<encrypted password>:0:7:28:7:::

test02:<encrypted password>:0:7:28:7:::

The defaults for new user accounts can be changed in
/etc/login.defs:

PASS_MAX_DAYS 28

PASS_MIN_DAYS 7

PASS_MIN_LEN 8

PASS_WARN_AGE 7

Here we also see the PASS _ MIN _ LEN option, which has
been increased to 8 as per the Solaris example.

To implement the equivalent of HISTORY=5 on Solaris,
PAM (Pluggable Authentication Module) configuration
must take place.

Edit /etc/pam.d/system-auth-ac and update the follow-
ing line:

password sufficient pam_unix.so sha512 shadow nullok

try_first_pass use_authtok

Append remember=5 to the line:

password sufficient pam_unix.so sha512 shadow nullok

try_first_pass use_authtok remember=5

Now, if a user attempts to reuse a recent password,
they’ll see a message such as the following:

$ passwd

Changing password for user toki.

Changing password for toki.

(current) UNIX password:

New password:

Retype new password:

Password has been already used. Choose another.

passwd: Authentication token manipulation error

This will create the file /etc/security/opasswd to track the
password history of all system users.

Further configuration akin to /etc/default/passwd on
Solaris can be configured via pam_cracklib.

fgrep pam_cracklib /etc/pam.d/system-auth-ac

password requisite pam_cracklib.so try_first_pass

retry=3 type=

man 8 pam_cracklib

You can read more via the section 8 manual page on
pam _ cracklib.

Logging
Linux does a very good job at logging via the authpriv
syslog facility – for example, there will be messages in
/var/log/secure such as:

Dec 4 16:13:39 centosb groupadd[8177]: group added to /

etc/group: name=testgrp, GID=1010

Dec 4 16:13:39 centosb groupadd[8177]: group added to /

etc/gshadow: name=testgrp

Dec 4 16:13:39 centosb groupadd[8177]: new group:

name=testgrp, GID=1010

Dec 4 16:13:55 centosb useradd[8183]: new user:

name=test01, UID=1010, GID=1010, home=/h

ome/test01, shell=/bin/bash

Dec 4 16:14:05 centosb useradd[8189]: new user:

name=test02, UID=1011, GID=1010, home=/h

ome/test02, shell=/bin/bash

Dec 4 16:14:42 centosb passwd: pam_

unix(passwd:chauthtok): password changed for test01

Dec 4 16:14:49 centosb passwd: pam_

unix(passwd:chauthtok): password changed for test02

Dec 4 16:17:50 centosb chage[8255]: changed password

expiry for test01

Dec 4 16:17:51 centosb chage[8258]: changed password

expiry for test02

Dec 4 16:30:38 centosb chage[8282]: changed password

www.bsdmag.org 47

User, Group and Password Management on Linux and Solaris

expiry for test01

Dec 4 16:30:39 centosb chage[8285]: changed password

expiry for test02

This makes for an excellent audit trail (as long as logs
are regularly rotated and backed up, of course).

The Solaris audit tool does not currently log these ac-
tions (even via the audit daemon, but it will log password
changes), but simple wrapper scripts could be written
around the existing tools to perform appropriate logging.

Other Tools
Solaris provides the logins command which displays a
variety of information on currently configured user ac-
counts. An example:

logins -xo

root:0:root:0:Super-User:/root:/usr/bin/

bash:PS:112413:-1:-1:-1

daemon:1:other:1::/:/usr/sbin/sh:NL:082587:-1:-1:-1

bin:2:bin:2::/usr/bin:/usr/sbin/sh:NL:082587:-1:-1:-1

sys:3:sys:3::/:/usr/sbin/sh:NL:082587:-1:-1:-1

adm:4:adm:4:Admin:/var/adm:/usr/sbin/sh:NL:082587:-1:-1:-1

uucp:5:uucp:5:uucp Admin:/usr/lib/uucp:/usr/sbin/

sh:NL:082587:-1:-1:-1

nuucp:9:nuucp:9:uucp Admin:/var/spool/uucppublic:/usr/lib/

uucp/uucico:NL:082587:-1:-1:-1

dladm:15:netadm:65:Datalink Admin:/:/usr/sbin/

sh:LK:000000:-1:-1:-1

netadm:16:netadm:65:Network Admin:/:/usr/sbin/

sh:LK:000000:-1:-1:-1

More information (including password expiration fields)
can be added with -a. Other reports can also be gener-
ated, such as logins with duplicate UIDs (the -d option).
Another very useful option is the -m option which acts
like the groups command and displays all groups that the
user (specified with the -l option) is a member of:

logins -m -l root

root 0 root 0 Super-User

 other 1

 bin 2

 sys 3

 adm 4

 uucp 5

 mail 6

 tty 7

 lp 8

 nuucp 9

 daemon 12

Security Considerations
User access should also be limited with regards to sys-
tem access and service availability. For example, we
can limit access to cron and at by using /etc/{cron,at}.
{allow,deny} files. By default, all users have access to
cron and at. This may or may not be what you want. From
a security standpoint, all users should be denied access
by default. Therefore, have an empty /etc/cron.deny and
/etc/at.deny, and a single line in /etc/cron.allow and
/etc/at.allow of root. Then, grant access as necessary
by appending usernames to the files. For example, if you
enable system profiling via sa1 and sa2 on Solaris, you’ll
need to add sys to the *.allow files.

Remote SSH access to the system can be managed via
the AllowUsers parameter, amongst others. From sshd_
config(5):

 AllowUsers

 This keyword can be followed by a list of

user name patterns, sepa-

 rated by spaces. If specified, login is

allowed only for user names

 that match one of the patterns. Only user

names are valid; a numer-

 ical user ID is not recognized. By default,

login is allowed for

 all users. If the pattern takes the form

USER@HOST then USER and

 HOST are separately checked, restricting

logins to particular users

 from particular hosts. The allow/deny

directives are processed in

 the following order: DenyUsers, AllowUsers,

DenyGroups, and finally

 AllowGroups.

/etc/security/access.conf is another access control
mechanism on RHEL-derivatives and other distributions.
An excerpt from the well-commented example:

User “john” should get access from ipv6 net/mask

#+ : john : 2001:4ca0:0:101::/64

#

All other users should be denied to get access from all

sources.

#- : ALL : ALL

Simple <flag>:<username or groupname>:<ip _ address>
ACLs can be defined in this way, although it could be-
come cumbersome to manage for large sites. Remem-
ber that you’ll need to ensure that pam _ access.so is

02/201448

Unix

required in any files under /etc/pam.d as appropriate if
you do decide to use pam _ access.

On CentOS, we can also configure /etc/security/
limits.conf, and limit the following resources to specific
users or groups:

– core – limits the core file size (KB)

– data – max data size (KB)

– fsize – maximum filesize (KB)

– memlock – max locked-in-memory address space (KB)

– nofile – max number of open files

– rss – max resident set size (KB)

– stack – max stack size (KB)

– cpu – max CPU time (MIN)

– nproc – max number of processes

– as – address space limit (KB)

– maxlogins – max number of logins for this user

– maxsyslogins – max number of logins on the

system

– priority – the priority to run user process

with

– locks – max number of file locks the user can

hold

– sigpending – max number of pending signals

– msgqueue – max memory used by POSIX message

queues (bytes)

– nice – max nice priority allowed to raise to

values: [-20, 19]

– rtprio – max realtime priority

The format of entries in this file are:

#<domain> <type> <item> <value>

#

#* soft core 0

#* hard rss 10000

#@student hard nproc 20

#@faculty soft nproc 20

#@faculty hard nproc 50

#ftp hard nproc 0

#@student – maxlogins 4

These restrictions will also affect what users can do with
invocations of ulimit, when hard limits are imposed.
For example, to limit test01 to having a soft limit of 20
processes, and a hard limit of 30, we can add the fol-
lowing to limits.conf (or a separate file under /etc/
security/limits.d):

test01		 soft	 nproc		 20

test01		 hard	 nproc		 30

As test01, we can see the new restrictions in place:

[test01@centoshost ~]$ ulimit -Su

20

[test01@centoshost ~]$ ulimit -Hu

30

pam _ tally2.so can be used to keep a tally of failed log-
ins per-account, and deny access once the number
reaches a certain value. Add the following to /etc/pam.d/
login and /etc/pam.d/sshd

auth required pam_tally2.so deny=4 unlock_

time=1200

This would deny access to an account after 4 bad at-
tempts, but will allow access again after 1200 seconds.
The tally information is written to /var/log/tallylog. The
pam _ tally2 command is used to administer the tallied
accounts. For example, suppose user toki was denied
access. First, check the tally:

pam_tally2 --user toki

Login Failures Latest failure From

toki 7 12/04/13 18:25:36 localhost

Once verified that these failures are not caused by ma-
licious means, unlock the account by resetting the tally:

pam_tally2 --user toki --reset

Login Failures Latest failure From

toki 7 12/04/13 18:25:36 localhost

pam_tally2 --user toki

Login Failures Latest failure From

toki 0

pam _ faillock.so also provides similar functionality.

Privileges
Rather than giving everyone the root password, which is
obviously an extremely poor security practice, if elevat-
ed privileges are required, sudo should be configured.
Sudo is installed by default on both CentOS 6.4 and So-
laris 11.1 and provides a mechanism to define ACLs as
to which users and groups can perform privileged ac-
tions on a server, with or without passwords. Again, the
default file is very well commented, for example from
/etc/sudoers:

Allows people in group wheel to run all commands

# %wheel	 ALL=(ALL)	ALL

www.bsdmag.org

Same thing without a password

# %wheel	 ALL=(ALL)	NOPASSWD: ALL

Allows members of the users group to mount and unmount

the

cdrom as root

%users ALL=/sbin/mount /mnt/cdrom, /sbin/umount /mnt/

cdrom

Allows members of the users group to shutdown this

system

%users localhost=/sbin/shutdown -h now

You should use the visudo command to edit the /etc/
sudoers file, as it performs sanity checks before sav-
ing the file and possibly corrupting the live sudoers file if
there are errors in your syntax.

If there is an insistence on sharing a root password,
then the number of people knowing that password should
be limited. All access to the root account should be made
via su and not via direct root login, which should be limited
to the system console only. This will provide logging and
an audit trail.

Conclusion
This article has described some of the major aspects of
user, group and password management on the CentOS 6.4
and Solaris 11.1 Operating Systems. User account man-
agement is a complex subject, so only the core aspects
have been covered. The manual pages and system docu-
mentation should be consulted for further information.

About the Author
Toki Winter is an experienced UNIX/Linux System
Administrator with over a decade of experience
managing large enterprises and running many
thousands of services. His website, http://www.
tokiwinter.com, contains many useful articles,
HOWTOs and tips for the advanced UNIX admin-
istrator.

http://www.tokiwinter.com/
http://www.tokiwinter.com/
http://www.cybergates.org/en/home/

02/201450

interview

How did you get your start in the information
security field?
Peter N.M. Hansteen: I’ll risk sounding a little blunt here,
and say that it was really a matter of a series of accidents
that led to, well, a known result. Early on I had what you
might call a rather meandering career path before I finally
started pointing myself in a generally IT-ish direction. For-
tunately while I was taking night classes in IT subjects and
working a day job in a very junior clerical position at the
Norwegian School of Economics here in Bergen, I got an
early introduction to the Internet as it was then in the mid
to late 1980s. I remember distinctly that a fair number of
the machines we encountered at the other side of telnet,
archie, ftp and other services ran something slightly exotic
called BSD Unix.

A few job changes later and I found myself in a posi-
tion where I was the person in charge of information se-
curity and everything IT-ish for myself and about a dozen
colleagues. As the inevitable Internet commercialization
came around I had a slight edge after some early expo-
sure and hanging around BBSes in the meantime. But
then again we had some wonderful security failures too,
as far as I can tell not too dangerous and never really
breaking anything important, but well, the stories are out
there in some form if you poke around USENET archives.
Enterprising readers will know where to look.

Interview with
Peter N. M. Hansteen
Peter N. M. Hansteen is a consultant, writer and sysadmin
from Bergen, Norway. A longtime freenix advocate and
during recent years a frequent lecturer and tutor with
emphasis on FreeBSD and OpenBSD, author of several
articles and The Book of PF (No Starch Press 2007, 2nd
edition November 2010). He writes a frequently slashdotted
blog at http://bsdly.blogspot.com/.

http://bsdly.blogspot.com/

www.bsdmag.org 51

Interview with
Peter N. M. Hansteen

What drove you to pursue information
security?
PNMH: Information security, again, is part of the bigger
picture. You want to provide a convenient working envi-
ronment as well as making sure you keep your colleagues
safe from harm, all the while doing your best to implement
a regime that protects whatever the organization’s assets
are. For my own part it all grew out of that motivation. The
process was quite gradual. And of course gradually you
build up a toolchest. There are invariably applications or
entire environments that you would dearly like to take out
of the equation that also happens to be something your
client can not be moved to do without. For my own part I
ended up with a preference for open source tools in gen-
eral and OpenBSD in particular. That position evolved in
part from various less pleasant experiences with the vari-
ous proprietary systems, and partly from the rather obvi-
ous insight that with open source tools, you actually can
check what the tools do and change or enhance any part
of the toolchain if you want to.

Then again, whatever you do and how ever you choose
to run your security efforts, the security bits have to be
integrated into your environment. Basically the tools and
procedures need to be part of the normal, ordinary way of
going about your business. If your strictly enforced secu-
rity regime with tools and procedures gets in the way of
how the organization needs to run its business, your us-
ers will find ways to subvert your goals and you may find
yourself exposed. It’s the you made the thing foolproof, so
they went ahead and created a bigger fool problem com-
ing back at you.

What do you see as the biggest challenge to
information security five years down the road?
PNMH: Well, to start with there are four things we can
be absolutely sure will be as problematic five years from
now as they are today: Bad design decisions, needlessly
growing complexity, implementation bugs, and your trust-
ed users’ actions, including your own. For the first three
the constant, ongoing code audit of the type the Open-
BSD project practices and preaches will give you a head
start. But apart from stating the obvious, there are a few
other worrying developments that have been happening
for a while and have only recently started to come to the
general public’s at\tention.

One such development is the growing tendency of
governments, even Western ones, to demand the right
to peek ever more closely into people’s private informa-
tion, with little or no accountability. The European Union’s
Data Retention Directive is one such piece of legislation,
which mandates that any traffic logs you may be generat-

ing for your own needs have to be kept around for longer
than any sane techie would think of, just in case law en-
forcement wants to take a peek. You could of course say
that the original intentions were good and point to the so-
called war on terror. But we have already seen the moti-
vation morph into the need to catch child molesters, then
it got tweaked a little more to be included as a weapon in
the decades-old war on drugs and recently it’s been found
to be vital in the struggle to catch traffic offenders, beaten
to the punch only by a very misguided chunk of the media
publishing industry, which for good measure seems to be
intent on running its own little branch of law enforcement
in their very own style.

The same ugly picture includes various national laws
that codify warrantless wiretapping and other forms of fine
grained surveillance, and there is even legislation on the
way that mandates various forms of censorship that may
lead to serious technical issues in the name of copyright
enforcement. All taken together it looks like a fairly thorny
path ahead, and it’s worth keeping in mind that all of those
things that sound scary enough for individuals pose a re-
al risk for companies too. To some extent we’ve always
had industrial espionage, but to West Europeans at least
the idea that your own government could realistically be
the ones trying to pry into your confidential information is
somewhat new and quite unpleasant.

At the end of the day, bugs of any kind and social en-
gineering will return to bite us, and we won’t be rid of ei-
ther any time soon. Our adversaries will continue to rely on
those techniques. Well designed tools and good code, vali-
dated and audited in full public view will help, as will educat-
ing your users. Keep in mind too that in this context you, the
security professional, are very much a user yourself, with
access to elevated privileges that may mean when you do
screw up, the situation could escalate into something far
more dangerous than run of the mill user’s goofs.

Does the OpenBSD version numbering
approach confuse people?
PNMH: I suppose it does confuse people that in Open-
BSD, the version number is just another identifier, and it
gets incremented by exactly 0.1 every six months.

The reason OpenBSD does it that way is that the project
has chosen to live by a strict six month development cy-
cle. The development cycle is itself split into roughly four
months of introducing new or improved features followed
by two months of stabilization leading up to cutting a re-
lease and sending it off to production at some never-pre-
announced date. For the development team this means
that large reworks of code will have to be split into chunks
that will realistically fit within that timeframe.

02/201452

interview

The much-ballyhooed and very useful syntax changes
that appeared in PF over the OpenBSD 4.6 and 4.7 re-
leases had in fact been works in progress for some years
when they hit the tree for general use. For last Novem-
ber’s release, 5.0 just happened to be the next increment
in line. The release did have some major new features, for
PF the prio keyword is the first part of a new traffic shap-
ing engine that will eventually replace the venerable ALTQ
when the time comes.

There is kind of a roadmap in place, but the develop-
ers have not officially committed to a timetable or spe-
cific release when ALTQ is supposed to be replaced. It
will happen when the new code is ready and clearly bet-
ter than the older one. When something new and exciting
is committed, I hope to be one of the first to write a blog
post about it. My PF tutorials tend to include at least some
mention of recent developments, too.

Do you believe all the regulations set forth
regarding information security have helped or
hindered information security growth?
PNMH: First of all, there is more legislation that’s relevant
to information security today than there was earlier, and
security professionals need to be aware of what rules ap-
ply to them. Some legislation may have been beneficial,
if for example it was needed in order to codify clear stan-
dards of ethical conduct. Basically you need a working
knowledge of what rules apply. So the various rules and
regulations have made life anything from slightly more
complicated to somewhat painful in recent years, depend-
ing on where you are and what you do.

If you work in several jurisdictions, you may need to get
a lawyer or even a judge to affirm which set of rules apply
in each case, and if the precendence of rules is unclear or
worse the rules are even slightly incompatible or unclear,
your legal fees could become substantial.

Again it’s important to be aware that recent legisla-
tion in the US and elsewhere written with the intention of
short-circuiting the normal due process rules in certain
types of criminal cases, notably those labeled ‘terrorist’
by the prosecution. Unless those rules are found uncon-
stitutional in a hurry, we should expect to see information
security professionals behind bars for indefinite periods
soon enough.

Is there a better way to allow root access for
remote admins?
PNMH: Heh. There has been a lot of discussion on just
what level of immediate access is appropriate for admins
when they are in a hurry, but realistically the question
boils down to this: What level of exposure to the various

threats, including the risk of your own mistakes, is appro-
priate in your context?

I don’t believe there is an easy one size fits all option
available. Your analysis of the specific context, with its
own set of risks and probabilities and anticipated threat
factors dictates what is appropriate.

But reeling back a bit, your question is really about the
basic conflict or tradeoff that admins see between conve-
nience on the one hand and security on the other when
they need to access critical devices. It’s so very conve-
nient to go directly to the maximally permissive settings
so you can do anything you like without getting caught up
in red tape.

When it comes to what constitutes acceptable risk, it
really is up to you. If you, after appropriate risk analysis,
are confident that logging in to a remote device with the
highest possible privilege is appropriate, if you are equally
confident that you can effortlessly recover from any mis-
takes you make while running with maximum privilege
and you consider the risk that anyone not formally autho-
rized to reach that level will manage to do so is negligible
to non-existent, you are at liberty to go directly to root.

I tend to advocate disallowing direct login to any priv-
ileged account, to encourage use of encryption of the
strongest practical kind and when appropriate and avail-
able, key based authentication or some sort of two fac-
tor authentication system. Mainly because I know that I
am not infallible, and in some contexts I need a reason-
able assurance that anyone attempting unauthorized ac-
cess would need to expend enough effort that my systems
would detect the attempt.

I dislike running with elevated privileges whenever it
isn’t strictly necessary, mainly because I know that I’m
human and will make mistakes, and that configurations
can break in unexpected ways. There are, for example,
failure modes on some Unix-ish systems that would land
you with / as your home directory and no warning that’s
where you are other than – if you’re lucky – a command
line prompt that looks subtly different from what you are
used to seeing. In those contexts, it’s essential to do the
right things, and your confidence that you will have grace
under pressure will be sorely tested.

A large part of the problem is to ensure that any task in
the system runs with an appropriate level of privilege. In
the OpenBSD project, a lot of work has gone into prop-
erly implementing privilege separation in the various dae-
mons. In effect, making sure only those parts of the system
that need elevated privilege ever achieve that privilege,
and in most cases the program gives up the privilege once
the task such as binding to a port below 1024 has been
achieved. The most immediately user-visible consequence

www.bsdmag.org 53

Interview with
Peter N. M. Hansteen

is that you will find the OpenBSD password database pre-
populated with a number of special-purpose users (most of
them with names that start with an underscore character
‘_’), defined specifically to run services at their appropriate
privilege levels.

The privilege separated OpenBSD system is out there
and available for daily use, and I would encourage your
readers to try it out. There are interesting efforts going on
in other projects as well, with the main keywords being
RBAC or Role Based Access Control – essentially a de-
construction of the user authentication and authorization
(implemented among other places in the most recent So-
laris releases), and from the opposite end of the table, fine
grained capabilities models for process privilege separa-
tion, with the FreeBSD project’s Capsicum project (if I un-
derstand correctly to hit mainstream in FreeBSD 9) on my
short list of things to look into in the near future.

But the increased complexity that grows naturally from
these approaches also means the code and configura-
tion needed to fit the code to your purposes is harder
to do correctly, and so we are almost certainly enter-
ing dangerous territory for that reason alone. It will take
significant development effort to rein in those concepts
into something manageable for the average sysadmin,
assuming we’re also able to squash enough bugs in the
process to make the effort worthwhile.

What new concepts or applications are
available, or coming available soon, for
firewalls?
PNMH: The firewalls concept in its simplest form – and
that’s what people get hung up on – is rather simplistic.
The main decision is to block or pass. Modern firewalls do
a lot more of course, including but not restricted to failover
and redundancy with CARP and pfsync or VRRP, network
address translation and even IPv4 to IPv6 conversion, re-
directions, load balancing and traffic shaping. The good
ones even adapt to network conditions via adaptive state
timeouts or can be configured with state tracking tricks
that fend off excessive traffic of specific kinds.

And of course there is more, but there is a tendency for
news about interesting technical development to drown in
marketing hype, so I may be ignoring important work that’s
going on out there. Personally I think the authpf system –
OpenBSD’s and PF’s non-interactive shell that loads rules
on a per user basis – is one type of feature that I think will
see a lot more attention and wider use in the future. It’s so
obviously a good thing to tie what the network lets you do to
your user or group identity or to a set of role based criteria.

Come to think of it, most of these advanced firewall fea-
tures are seriously under-used and not as well understood

in the community at large as we would have liked. But per-
haps the identity or role centric setups are the ones with the
most scope for interesting development over the next few
years, if the added complexity can be managed somehow.

How does BSD pf compare to iptables, ipfw,
ipfilter or other firewalls? What is its strength
or weakness?
PNMH: The short answer, coming as it would from the
author of The Book of PF, is obvously that the other ones
suck. But seriously, since I kind of abandoned the other
ones in favor of PF at some point, I think it’s better to at
least start answering the question by describing some of
the features that attracted me to PF over the other ones.
Then we’ll get around to any weak points if we can still re-
member them after a while.

It’s important to remember that PF is developed as an
integrated part of OpenBSD, and one of the important de-
sign goals has always been that it should be very usable
for OpenBSD users. This means that all the features I’ve
touched on earlier are within easy reach directly from your
pf.conf configuration file or somewhere equally accessible.

One usability feature I appreciate a lot is called atom-
ic ruleset load. It’s perhaps easier to explain why this is
important if we look at the other ones: iptables and ipfw
configurations are actually shell scripts, where each rule
is loaded as a separate command. This means that if you
press [Ctrl-C] while the script is executing, you have very
little control over what rules are actually enabled. More
likely than not, some lines of your script were never ex-
ecuted, meaning that your configuration did not load com-
pletely, with unpredictable results. IPfilter’s developer ap-
parently did not trust the software to keep track of loaded
rules by itself and recommended flushing previous rules
before loading a new configuration.

None of this is necessary with PF – if your rule set is syn-
tactically valid, it will load, completely replacing the previous
one. There is no need to flush existing rules, unless you
want to make sure you have a a period of ‘pass all’ to give
miscreants a break until you load the next valid rule set, and
running a real risk of disrupting valid traffic (think timeouts
due to disappearing redirections) that would have seen no
trouble on a clean ruleset load.

If you think this means that PF configurations are totally
static, you’re wrong. If you need to adjust the contents of
your rule set on the fly, your best bet is to create what PF
calls an anchor – essentially a named sub-ruleset, and yes,
you can have several – where you or applications you write
can insert and manipulate rules dynamically, something Ap-
ple appears to have used to great effect in their port to Ma-
cOS. Apple even wrote some enhancements to the anchor

02/201454

interview

loading code, but unfortunately they wrapped their new bits
in #ifdefs with a separate license, so the extended func-
tionality will not easily make it back into the mainstream PF
code. You can look up my Call for testing article (see the
references at the end) for more details.

And of course for simpler operations like singling out
hosts that need special treatment, you can manipulate
tables of IP addresses even outside anchors, or you can
use state tracking options magic to move IP addresses
into tables, and use the tables in your filtering criteria.

From my experience, PF and related tools on Open-
BSD provide you with the sanest working environment
available for interacting with the TCP/IP stack so you can
make your equipment perform the way it’s supposed to.
None of the other tools come even close, in my opinion, in
either admin friendliness or performance.

Will the next intrusion platform be mobile
devices?
PNMH: To some extent, or possibly even to a large extent,
I think the shift has already happened, in the sense that
the focus of would-be intruders is changing more or less
in step with the mainstream user and the perceived high-
value targets. I’m not suggesting that the installed base
of PCs will be going away anytime soon, most of those
are well past their use by date anyway, but rather that the
Windows PCs that today still make up the largest part of
the installed base are destined to become less important
over time if current trends continue more or less as we
see them today.

Mobile devices are getting a lot of attention these days,
and malware targeted at them is of course getting some
too. The situation for mobile devices designers today is
somewhat parallel to the situation when PCs were intro-
duced to the Internet, but there are important differences.

One such difference between back then and now is
that a large part of the PC related business is still aimed
squarely at patching or working around security bugs in
the most common desktop operating environment. That,
and the fact that there are more network-savvy develop-
ers out there today than at any time earlier makes me a
little hopeful that at least some of the grosser mistakes of
PC networking history will not be repeated by mobile de-
vice developers. Also, so far we have avoided the mono-
culture that helped make PCs on the Internet such easy
marks. Mobile devices vendors have a real choice in soft-
ware stacks, and at least the two dominant operating en-
vironments in the smartphone space (Apple and Android)
are both vaguely Unix-based and use open source com-
ponents to some degree, which seems to me like their de-
signers are capable of making intelligent decisions.

That said, I’m fairly sure that even in those environ-
ments, users and miscreants will find ways to exploit
bugs, and some subset of users will always be willing
to do things that are simply not smart things to do. One
example comes to mind – users of Apple phones de-
cided that their phones ran a system that was unix-like
enough that it should be able to accommodate a Secure
Shell (ssh) server, and somebody managed to port the
software. Only that developer decided to provide a setup
with a default password, and there were several reports of
phones that were taken over via ssh, thanks to the known
default password that the user never bothered to change.

Now I’m geek enough to appreciate the attraction of hav-
ing a shell login to the phone you carry in your pocket,
but (as I noted in a slashdotted blog post at the time) the
point here is not that sshd is an insecure piece of software.
It isn’t. The lack of security comes from not bothering to
change your password from a well-known default value.

Something similar is bound to happen again, where a us-
er makes a stupid mistake that has security implications. If
we’re lucky the damage will be limited to the users’s own
equipment, but if that user is also a developer and by design
or accident inserts exploitable code in other users’s mobile
devices, the damage could become more widespread.

It’s also worth keeping in mind that even if mobile de-
vices seem relatively boring by modern PC standards and
may or may not contain useful data, they may still be use-
ful to botnet herders. A typical smartphone today has gen-
eral processing power at least on par with a run of the mill
PC at the time the network dependent malware started
turning up on the Microsoft platform, and it’s almost cer-
tainly on a better network connection than most PCs were
back then. If your smartphone doubles as your wallet, all
the more reason to pay attention.

How can these mobile devices be protected?
PNMH: If the mobile devices industry indeed manages to
avoid making the same mistakes as the PC industry before
it, I think we have something of a head start. Over the years
what passes for IT security has focused on enumerating
badness (do read Marcus Ranum’s essay linked to in the
references for more on that) and in the process diverting at-
tention from the root cause issue that a certain software mar-
keter was, for quite some time, reluctant to even acknowl-
edge that there were bugs to be found in their software.

It may not have been obvious at the time Marcus was
writing that essay, but history has taught us that the ap-
proach the PC industry took to security at the time – heap-
ing another level of complexity on top of buggy software in
the name of security – is not necessarily an improvement
in real terms, even if the new layer somehow provides a

www.bsdmag.org 55

Interview with
Peter N. M. Hansteen

workaround for the nasties you know about in the original
code. The added complexity most likely means that your
debugging gets harder for the next round of problems.

In a way it would be nice if mobile device designers start-
ed basing their systems on OpenBSD, which is probably
the general purpose system that has been developed and
maintained with the most attention to security. I want a
phone I can trust, and preferably one that’s open enough
for qualified developers to hack on. And the same applies
to tablets and other devices too, of course.

Regardless of what technology the devices are based
on, I think a combination of user education and opera-
tors paying attention to end user equipment is the way
forward. If operators are able to take some of the system
administration workload off their end users’ hands for a
nominal fee, it could turn into a profit center.

It really boils down to a sane system administration re-
gime – don’t run any services that are not required for
your use case, log properly and pay attention to what your
logs say, update your systems at intervals and definitely
when security relevant bugs have been fixed.

On the other hand, in addition to user education and the
offer of handholding we may need a measure of nega-
tive reinforcement – one approach is to mimic the way we
treat pets or livestock and their owners. Dogs and comput-
ers both are capable of autonomous actions to some ex-
tent, so it might be a useful parallel. Dog owners are used
to cleaning up the messes their pets make on sidewalks,
and if the animal bites somebody, the owner is usually re-
sponsible for paying for the damage. Sufficiently stupid
behavior with regard to your pet can sometimes earn you
a charge of reckless endangerment. I think you can validly
argue that a similar regime should apply to owners of fairly
damage-capable computing devices.

How can these mobile devices be firewalled?
PNMH: On a technical level, I think that problem is very
close to being solved. The existing tools could be adapted

fairly easily to fit a roving user scenario (some people are
already paying attention), and some of the anticipated de-
velopments I mentioned earlier may make the devices even
easier to use. But once again, operators and service pro-
viders could play a significant role if they manage to come
up with useful ways to interact with users’ devices. And of
course we need to stomp out the snake oil salesmen, if we
can’t scare them off right away by building sanely construct-
ed devices with trustworthy software.

How do you even know if someone is
attempting to access your mobile device or
using it to run ssh login attempts against
remote systems?
PNMH: On the current crop of devices, I think you’d be
blissfully ignorant of any such attempts until either your
phone starts doing something unexpected or your next bill
turns up with a lot more traffic to pay for than you had ex-
pected.

With any of the devices that are vaguely unix-based it
shouldn’t be very hard to log properly, and once again I think
operators should be looking seriously into offering their users
some kind of log monitoring and other admin services in or-
der to help run mobile devices sanely. Intelligently designed
mobile device management services could become the real
differentiator in the telecom operator market. I hope the op-
erators are paying attention.

And finally, for penetration testers out there, there will
always be bugs out there to hunt for and exploit, and if
you have a hard time finding those, you can always go for
layer 8 or 9 techniques :)

Happy hacking!

By BSD Team

References
The references are listed in roughly the order they’re mentioned in the text, read them for further treatment of some of the issues I
mentioned here.

•	 The OpenBSD project http://www.openbsd.org/
•	 The FreeSBD project http://www.freebsd.org/
•	 PF tutorial home page http://home.nuug.no/~peter/pf/
•	 The Capsicum Project at Cambridge University, http://www.cl.cam.ac.uk/research/security/capsicum/
•	 How Apple Treats The Gift Of Open Source: The OpenBSD PF Example http://callfortesting.org/macpf/
•	 The Book of PF (second edition) http://nostarch.com/pf2.htm or from good bookstores everywhere
•	 Rickrolled? Get Ready for the Hail Mary Cloud! http://bsdly.blogspot.com/2009/11/rickrolled-get-ready-for-hail-mary.html (slashdotted

as The Hail Mary Cloud is Growing, Nov 15 2009, http://linux.slashdot.org/story/09/11/15/1653228/the-hail-mary-cloud-is-growing)
•	 Marcus Ranum: The Six Dumbest Ideas in Computer Security, http://www.ranum.com/security/computer_security/editorials/dumb/

index.html

http://www.openbsd.org/
http://www.freebsd.org/

http://home.nuug.no/~peter/pf/

http://www.cl.cam.ac.uk/research/security/capsicum/

http://callfortesting.org/macpf/
http://nostarch.com/pf2.htm
http://bsdly.blogspot.com/2009/11/rickrolled-get-ready-for-hail-mary.html
http://linux.slashdot.org/story/09/11/15/1653228/the-hail-mary-cloud-is-growing
http://www.ranum.com/security/computer_security/editorials/dumb/index.html
http://www.ranum.com/security/computer_security/editorials/dumb/index.html

02/201456

Column

With the Collapse of Red Flag Software (the
World’s Second-largest Linux Distributor)
is the Dream of Linux on the Desktop Even
Further out of Reach?

When Red Flag Linux was launched in 2007,
there was much fanfare in the Open Source
community. The most populated country in the

world had embraced the vision, backed by government,
and even a grudging olive branch had been thrown to-
wards Microsoft in developing a Windows XP like inter-
face. What could possibly go wrong? At time of writing
it is unclear exactly why the project collapsed so spec-
tacularly; some cite the Chinese Academy of Sciences’
removal of funding due to the competition from Red Hat
and SUSE Linux. What is clear however, is that another
large government backed computer project has fallen by
the wayside.

This is a sad day for the Open Source movement. While
the cynical amongst us may suspect back doors and all
sorts of underhanded compromises that go hand in hand
with government surveillance and not shed a tear over
the demise of Red Flag from an ethical perspective, the
fact remains that domination of the world’s largest market-
place is back in the hands of commercial interests, other
than the enlightened few stalwarts that decide to down-
load their own software – that is, of course, if it is available
via government controlled firewalls or via a DVD from a
friend. Under the circumstances it would be hard to accept
a score other than Communism 0 – Capitalism 1.

Anyone with a scintilla of commercial reality under-
stands that the desktop is dominated by Microsoft, as the
majority of corporations have adopted MSC solutions.
This popularity has spread across to the consumer mar-
ketplace but with one exception – mobile and tablet de-
vices. In the early age of the motor car, the market was
dominated by Ford with their innovative vision of mass
production. Everyone else then followed suit and, to this
day, very few independent motor manufacturers remain.
But where does Ford rank today? Well behind General
Motors, Volkswagen and Toyota in terms of production.

So the cyclical curse of the capitalist marketplace once
again claims another scalp – the innovator, the creative
– once on top doesn’t always finish first. So maybe MSC
isn’t in such a strong position after all.

MSC is at a critical juncture in its history. There is a
serious move away from the classic in-house desktop /
server relationship with the success of tablets and mobile
phones. Organisations are thinking more and more along
the lines of remote desktops, virtualisation and bring your
own device. Maybe the question isn’t what Operating Sys-
tem will dominate the desktop, but what method will be
used to deliver applications? If the move towards thin-cli-
ent takes off, MSC will need to morph away from its tradi-
tional model for the corporates – Servers, Desktops, Ap-
plications, and Developer tools.

There is another issue at stake here, apart from the
ethical issues of moving applications and data off to
some server farm somewhere. Windows 8, like Ubuntu
Unity, has caused consternation amongst the old school
by radically re-designing the user interface in an attempt
to bring cohesion across devices. It has been a Marmite
moment – you either love it or hate it. At the moment, the
corporates hate it, and those who are not committed to
the change from a Start button or classic menu anchored
to the top or bottom of the screen struggle. I recently
had to explain to a friend, who had purchased a new
consumer-grade laptop with Windows 8 installed, that he
was basically stuck with it unless he forked out for a Win-
dows 7 licence – a discussion that involved much swear-
ing and slapping of the forehead. Friends come and go,
but enemies accumulate and MSC is building a dedicat-
ed following of the latter with its short-sighted “Our way
or the highway” mentality.

Microsoft’s nemesis on the other hand has it all wrapped
up as far as the user interface is concerned. The humble
hyper-link is clicked on 1 x 10X per day where X is greater

www.bsdmag.org 57

With the Collapse of Red Flag Software...

than 10. When it comes to vox populi, or the voice of the
people, any computer interface is going to fail on the

basis of these statistics. No focus group, design
team or engineer on the planet can overcome

the intimacy that billions of people have devel-
oped with clicking on an HTML link. I would

guess that Bob Bemer didn’t
have a focus group on

hand to test effica-
cy. So Google,

the future is
yours in

terms of
statistical domi-
nance.

Yet we still have the problem of the UI
bling factor – the pretty, touchy feely effect
that Apple has embraced and made almost
a religion out of. While the hyper-link is cold
and efficient, exploding windows, cute ani-
mal sounds and great font rendering bring
élan to an emotionally sterile environment.
MSC has never quite penetrated this US
West Coast paradox, yet we see the same
trends with those who love their Android
O/S and the touch screen. It is the “wow”
factor.

At the end of the day, software inter-
faces need to be just that – an interface.

The same rules apply to the design of a car,
a cheese grater or a garlic crusher. Some will

be utilitarian, some revolutionary. What goes on under-
neath the bonnet will be hidden to the majority of users,
but first impressions really matter. We all intuitively un-
derstand good design – it has that feel about it, an aura,
a quality you just cannot put into words. It pulls you in-
to itself, re-enforcing your understanding of the universe
yet at the same time challenging you to explore further. It

is greater than the sum of its parts. So maybe the
demise of Red Flag Software is a

mercy killing rather than
an assassina-

tion. If the move to the cloud and thin client is the next rev-
olution, it matters little what that thin client will be, as the
forces of mass adoption will dictate how people interact in
cyberspace. The O/S will become less and less important,
and the user experience and interface will become more
so. And that is where the trojan horse of Open Source will
dominate – the power behind the throne.

Rob Somerville
Rob Somerville has been passionate about technology since his early
teens. A keen advocate of open systems since the mid-eighties, he has
worked in many corporate sectors including finance, automotive, air-
lines, government and media in a variety of roles from technical sup-
port, system administrator, developer, systems integrator and IT man-
ager. He has moved on from CP/M and nixie tubes but keeps a solder-
ing iron handy just in case.

Register Early
and SAVE!

A BZ Media Event

June 23-25, 2014
San Francisco
Hyatt Regency Burlingame

Amazon Web Services and AWS are trademarks of Amazon.com, Inc.

CloudDevCon

Attend Cloud DevCon to get
practical training in AWS technologies

Develop and deploy applications to Amazon’s cloud

Master AWS services such as Management Console,
Elastic Beanstalk, OpsWorks, CloudFormation and more!

Learn how to integrate technologies and languages
to leverage the cost savings of cloud computing with the
systems you already have

Take your AWS knowledge to the next level – choose from
more than 55 tutorials and classes, and put together your
own custom program!

Improve your own skills and your marketability
as an AWS expert

Discover HOW to better leverage AWS to help your
organization today

www.CloudDevCon.net

Developing for Amazon Web Services?
Attend Cloud DevCon!

	Cover
	Dear BSD Readers
	Contents
	Configure OpenBSD 5.4 Basic Services
	How Secure can Secure Shell (SSH) be? (OpenSSH VPN tunnelling)
	Getting to Grips with the Gimp - Part 1
	Securing CentOS and Solaris 11 with Puppet
	User, Group and Password Management on Linux and Solaris
	Interview with Peter N. M. Hansteen
	With the Collapse of Red Flag Software (the World’s Second-largest Linux Distributor) is the Dream o

	http://www:
	ixsystems:
	com/ 2: Off
	com/ 4:

	ixsystems:
	com/ 2: Off
	com/ 4:

	uat:
	edu 7: Off

