

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-
art features:

8-core 2.4GHz Intel® Atom™ processor •	
Up to 16TB of storage capacity•	
16GB of ECC memory (with the option to upgrade •	
to 32GB)
2 x 1 Gigabit network controllers•	
Remote management port (IPMI)•	
Tool-less design; hot swappable drive trays•	
FreeNAS installed and configured•	

with over six million downloads,
Freenas is undisputedly the most
popular storage operating system
in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

Custom built and optimized for your use case »
Installed, configured, tested, and guaranteed to work out »
of the box
Supported by the Silicon Valley team that designed and »
built it
Backed by a 3 years parts and labor limited warranty »

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u
Intel® Xeon® Processor E3-1200v2 Family •	
Up to 16TB of storage capacity•	
16GB ECC memory (upgradable to 32GB)•	
2 x 10/100/1000 Gigabit Ethernet controllers•	
Redundant power supply•	

Freenas 2u
2x Intel® Xeon® Processors E5-2600v2 Family •	
Up to 48TB of storage capacity•	
32GB ECC memory (upgradable to 128GB) •	
4 x 1GbE Network interface (Onboard) - •	
(Upgradable to 2 x 10 Gigabit Interface)
Redundant Power Supply•	

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

http://www.iXsystems.com/mini

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-
art features:

8-core 2.4GHz Intel® Atom™ processor •	
Up to 16TB of storage capacity•	
16GB of ECC memory (with the option to upgrade •	
to 32GB)
2 x 1 Gigabit network controllers•	
Remote management port (IPMI)•	
Tool-less design; hot swappable drive trays•	
FreeNAS installed and configured•	

with over six million downloads,
Freenas is undisputedly the most
popular storage operating system
in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

Custom built and optimized for your use case »
Installed, configured, tested, and guaranteed to work out »
of the box
Supported by the Silicon Valley team that designed and »
built it
Backed by a 3 years parts and labor limited warranty »

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u
Intel® Xeon® Processor E3-1200v2 Family •	
Up to 16TB of storage capacity•	
16GB ECC memory (upgradable to 32GB)•	
2 x 10/100/1000 Gigabit Ethernet controllers•	
Redundant power supply•	

Freenas 2u
2x Intel® Xeon® Processors E5-2600v2 Family •	
Up to 48TB of storage capacity•	
32GB ECC memory (upgradable to 128GB) •	
4 x 1GbE Network interface (Onboard) - •	
(Upgradable to 2 x 10 Gigabit Interface)
Redundant Power Supply•	

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

http://www.iXsystems.com/storage/freenas-certified-storage/

04/20144

Editor’s Word

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Contributing:
Michael Shirk, Andrey Vedikhin, Petr Topiarz,
Charles Rapenne, Anton Borisov, Jeroen van

Nieuwenhuizen, José B. Alós, Luke Marsden, Salih Khan,
Arkadiusz Majewski, BEng, Toki Winter, Wesley Mouedine

Assaby

Top Betatesters & Proofreaders:
Annie Zhang, Denise Ebery, Eric Geissinger, Luca

Ferrari, Imad Soltani, Olaoluwa Omokanwaye, Radjis
Mahangoe, Mani Kanth, Ben Milman, Mark VonFange

Special Thanks:
Annie Zhang
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak

pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Publisher:
Hakin9 Media SK

02-676 Warsaw, Poland
Postepu 17D

Poland
worldwide publishing
editors@bsdmag.org

www.bsdmag.org

Hakin9 Media SK is looking for partners from all over the
world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org.

All trademarks presented in the magazine were used
only for informative purposes. All rights to trademarks

presented in the magazine are reserved by the
companies which own them.

Dear Readers,

Ihope you had a great time with your family during the Easter
holiday and now, you have renewed energy to work and to create
new projects. It is always hard to be creative when we are tired

and overwhelmed by our everyday duties. The most useful method
is to learn how to cope with our daily stresses and responsibilities.
I do not have the exact recipe for how to do that but I would like to
recommend the article: “Revision Control Systems and Configuration
Management. Part 1” written by Jose B. Alos, in which you will find
very useful tips for managing large software development projects.
Jose will show you what the RCS system is and how to cope with
this tool.

I hope that you find many practical and easy tips which will
lead you to overcome many obstacles and help you solve many
problematic issues in your work.

For those of you who have dealt with NetBSD, I would like
to invite you to read the article written by Diego Montalvo. In the
second part of his article, you will find details on how to install the
NetBSD Packages Collection (pkgsrc) which contains 3rd party
software such as: databases, programming languages, text editors,
and more. Then, you will discover how to install NGINX, PHP and
PHP-FPM (FastCGI Process Manager) on NetBSD.

In the April issue of BSD magazine, we would like to tell you more
about the Pascal programming language. Michael Van Canneyt will
try to rectify the image of Pascal as an outdated language. He will
show you how to write code on BSD that will run cross-platform.
I think that it may be a good lesson for all of you who are looking
for just such a solution which can be provided when you start
programming in Pascal. I will add this article to my must-read list.

It is time to play with Gimp. The 3rd part of the article by Rob
will demonstrate how to create a pastiche. Just read and use your
imagination. The topic is yours.

To round things off, I would like to encourage you to read our
column and conference report as it is always good to know what is
going on in the world and what others think.

At the end, I would like to thank you Authors, Reviewers,
Proofreaders, BSD fans, Friends, and Readers for your invaluable
support and contribution.

Best regards,
BSD Team

mailto:mailto:editors%40bsdmag.org?subject=

www.bsdmag.org 5

Contents

Object Pascal
Free Pascal on BSD
Michael Van Canneyt

Pascal was designed a long ago, around the same time as
C. C is, or has become, the language of choice for many
open source projects, especially for low-level routines
and system libraries. Object Pascal – to the surprise of
its supporters, is not. Michael, in his article, will attempt
to rectify the image of Pascal as an outdated language.
He will show you how to write code on BSD that will run
cross-platform.

RCS
Revision Control Systems and
Configuration Management. Part 1
Jose B. Alos

One of the most popular CVS tools was a system called
RCS, which is still distributed with many computers. Even
the well-known Mac OS X operating system includes the
RCS command when you install the Developers Tool. Jose
will show you, in his article, how to manage large software
development projects and how to use and administer
these RCS tools for Unix-based systems.

NetBSD
Deploying NetBSD on the Cloud using
AWS EC2: Part 2
Diego Montalvo

In the latest BSD issue, you can learn how to deploy a
NetBSD cloud server on Amazon EC2 Web Services.
In this tutorial, Diego will first cover the necessary steps
for installing the NetBSD Packages Collection (pkgsrc)
which contains 3rd party software such as: databases,
programming languages, text editors, and more. And
then, he will show you how to install NGINX, PHP and
PHP-FPM (FastCGI Process Manager) on NetBSD.

Graphic Design
Getting to Grips with the Gimp – Part 3
Rob Somerville

In the third in our series on the Gimp, Rob Somerville will
create a pastiche that depicts the current political crisis in
the Ukraine. You will learn in this series how to manipulate
images like a design pro.

Security
Credit Card Fraud is a Thing of The
Past
Mark Sitkowski

Mark, in his article, will show you how unsecure today’s
shopping is. He shops at Target – alongside a hundred
million other people, it would seem. The difference is,
that he’s never used a credit card there, which made him
sympathise with all of the people who had their card details
stolen. Read Mark’s article to learn about the dangers of
modern shopping.

Column
With the Recent Announcement of
the Widespread Heartbleed SSL
Vulnerability is it Time to Reconsider
who the Troublemakers Really are?
Rob Somerville

Report
AsiaBSDCon2014 Report
Jun Ebihara

06

38

42

44

28

14

24

04/20146

Object Pascal

Pascal was designed long ago, around the same
time as C. Since then, C is or has become the lan-
guage of choice for many open source projects,

especially for low-level routines and system libraries. Ob-
ject Pascal – to the surprise of its supporters, is not. In this
article we’ll attempt to rectify the image of Pascal as an
outdated language.

On the surface of it, the C language has not fundamen-
tally changed since it was originally developed (the intro-
duction of C++ being a notable exception). Pascal – or its
modern day version, Object Pascal – has run a more tur-
bulent course. Originally made popular on DOS/Windows
by Borland’s Turbo Pascal and Delphi product, Pascal has
evolved quite a lot and now possesses all the features
that C or C++ have combined, and more:

• 	 Procedural or Object Oriented programming.
• 	 Easy string handling.
• 	 Templates (called generics)
• 	 Operator overloading
• 	 Enumerators
• 	 Threading – thread local storage is part of the lan-

guage.
• 	 Exception handling.
• 	 Inline assembler
• 	 Conditional compilation
• 	 Built-in support for localization.
• 	 RTTI (known as Introspection in some other languages)

At the same time, it knows none of the drawbacks of C.
For example, the buffer overrun is a virtually unknown
problem in Pascal. The strong static typing is a help in
writing bug free code. The lack of macros can be seen as

an advantage, although C programmers will most likely
disagree with this sentiment. The Object Pascal Run-Time
Library – the equivalent of libc – comes with a rich set of
default routines, is highly configurable, and ensures Pas-
cal can be used in any environment, from small embed-
ded systems to web-based programs. On unix systems,
the Object Pascal run-time can run on top of libc, or can
avoid libc altogether and issue direct kernel calls.

Free Pascal
On Windows, the commercial product Delphi has always
known success as an RAD environment. An almost equally
old Open Source project exists which implements the same
language features: Free Pascal (or FPC).

Free Pascal aims to be a Delphi compatible compil-
er, that runs on as many OSes and CPUs as possible.
It succeeds very well in this goal: from the Intel 8080,
over m68000, all 32 and 64 intel CPUs, SPARC, Pow-
erPC (32/64 bit) and ARM: FPC supports all these CPUs.
It even outputs Java Bytecode. The range of supported
OSes is equally wide: DOS, OS/2, Windows, Gameboy,
Solaris, Atari, Linux, Mac OS, iOS and – obviously – the
various flavours of BSD.

Currently at version 2.6.4, Free Pascal binaries can be
downloaded for all supported systems, including several
versions of BSD (from the project’s website: http://www.
freepascal.org/). Free Pascal is present in the BSD ports
system; at least the fpc-base, fpc-units and fpc-utils pack-
ages must be installed.

The Free Pascal project contains many routines, orga-
nized in so-called packages, that give access to popular
C libraries and provide a unified database access system
that gives access to all popular SQL based databases:

Free Pascal on BSD
Pascal is not the moribund language many people make
it out to be. It is very much on par with modern languages
such as Java, Python or Ruby. It runs on a wide variety of
CPUs and OSes, including BSD.

What you will learn…
• 	 Why Pascal is not dead.
• 	 How to write code on BSD that will run cross-platform.

What you should know…
• 	 The basics of programming.

http://www.freepascal.org/
http://www.freepascal.org/

www.bsdmag.org 7

Free Pascal on BSD

Open source (Firebird, MySQL, PostGres, SQLite) or com-
mercial (Oracle, MS-SQL) alike. Installing from the ports sys-
tem will take care of all the necessary dependencies. During
the installation, you will be prompted to install various other
packages as well, mostly bindings to useful C libraries will
cause installation of these libraries. Free Pascal also comes
with full documentation of the language, and compiler usage
and RTL routines; all in all over 3000 printed pages.

When not using the ports system (not recommended un-
less you are comfortable setting up dependencies), instal-
lation can be done from the binary installer or from source.
Free Pascal is self-contained, meaning the compiler itself
is written in Pascal, making it hard to bootstrap if no prior
installation of FPC is available. Therefore, binary installa-
tion packages are provided for FreeBSD i386/x86_64, ver-
sions 8, 9 and 10. OpenBSD and NetBSD packages are
also provided for the same CPU architectures. The sources
for the released versions are available as tarballs, but the
daily version can be retrieved through subversion:

svn co http://svn.freepascal.org/svn/fpc/trunk fpc

will download the latest sources in an fpc directory. To
install from source, a working installation of Free Pascal
is needed, and GNU make. With these in place, a simple

gmake all

gmake install

in the fpc source directory will recompile and install Free
Pascal. The sources are always guaranteed to compile
with the latest officially released Free Pascal version
(2.6.2 or 2.6.4). You can check the current version with
the fpc -i command.

The behaviour of the compiler – search paths and so
on – is controlled through a configuration file, /usr/local/
etc/fpc.cfg. The ports installation will set up sensible de-
faults and, for most practical purposes, there should be no
need to edit this file, but the file format (in essence a copy
of the command-line options) is completely documented.

Lazarus
Pascal programs can be written using any editor; the Free
Pascal compiler is a regular command-line program. Ob-
ject Pascal – especially Delphi – programmers are used
to a bit more comfort.

Enter the Lazarus IDE, a natural companion to Free
Pascal. It is an IDE much like KDevelop, Eclipse or, on
Windows, Visual Studio and Delphi. In addition to being
a highly intelligent Object Pascal editor, it is also a Rapid
Application Development (RAD) tool specifically designed

for use with Free Pascal, and runs on almost all platforms
that Free Pascal supports. In contrast with the compiler,
it requires X-Windows to be present and will not run on a
console. It does offer a console build tool (lazbuild) that
can be used to automate builds.

Not only does Lazarus offer an extremely intelligent code
editor with syntax highlighting, code completion and ‘intel-
lisense’, but it also allows a user to visually design and de-
bug GUI programs or web-server programs: a true RAD
environment for those that prefer to code like that. A screen-
shot of Lazarus in action is in Figure 1.

Figure 1. The Lazarus IDE

Programs written in Free Pascal and Lazarus can be
compiled to run on Windows, Mac, Linux and obviously
BSD, unaltered. Indeed, one even has the choice of us-
ing Qt or GTK on Unix-based systems and not a single
line has to be altered, changing the widgetset to use for
the final program is just a setting in the IDE. Lazarus tries
to live up to its motto: “write once, compile everywhere”.
Cross-compilation is supported, but is not recommended
for the faint of heart.

All this is accomplished through the LCL – Lazarus
Class Library: a set of high-level classes that implements
all one needs to create a GUI program, or webserver pro-
grams. This library of classes is comparable to wxWidgets
or Qt and GTK themselves. Lazarus can be downloaded
from http://www.lazarus.freepascal.org/.

Lazarus has already 2 spin-offs, and even some compe-
tition: X++ coder, MSE-IDE, CodeTyphon.

The installation of Lazarus is slightly more complicated
than Free Pascal itself. The default widget set is GTK2,
meaning that a complete development environment for
GTK2 (and hence X11) must be installed. The same holds
true for the Qt version. If all dependencies are satisfied,
a simple

http://svn.freepascal.org/svn/fpc/trunk
http://www.lazarus.freepascal.org/

04/20148

Object Pascal

gmake all

or

gmake bigide

will compile the IDE; the second command adds some
extra functionalities to the IDE. The various dependen-
cies make using the ports system a safer option. To
function properly, the Lazarus IDE needs its own sourc-
es and the Free Pascal sources. This will let the code
editor do all its magic such as identifier completion, code
completion and much more. It will also function without
the sources, but functionality will be restricted to that of a
simple editor with syntax highlighting. It is therefore rec-
ommended to leave the extracted sources available on
the system, and the Lazarus IDE will ask you where the
sources are located on startup: just point to the directory
where the sources are, and the IDE will do the rest.

Pascal programming
Pascal was designed for teaching, so it is rather verbose,
but easy to understand. The smallest possible Pascal pro-

gram is shown in Listing 1. This is a valid program, which
will run, but it is not very useful, so we’ll change it to the
“hello world” program. Hello, world! in its Pascal version is
shown in Listing 2. Compiling this is a matter of (assuming
you saved the sources as hello.pp)

fpc hello.pp

this will result in a ready-to-go program. When executed,
it will produce the familiar greeting on the console.

Pascal has all the usual constructs such as loops, if
then, case (switch) and subroutines, as shown in Listing
3. This is not what makes Pascal different from C.

Listing 2 shows one of the aspects where Pascal does
differ from C: Pascal is a case insensitive language. This
is largely a matter of habit. The only thing where this really
matters is when creating identifiers: there can be no 2 iden-
tifiers that differ in name in the same scope. Pascal pro-
grammers solve this using some conventions: for example,
type names are usually prefixed with a T, and the majority
of Pascal programmers use CamelCase for identifiers.

Another aspect where Pascal differs from C is the use
of := to assign values.

Listing 1. The Pascal program

begin

end.

Listing 2. Hello World

begin

 writeln(‘Hello world’);

end.

Listing 3. The usual constructs of Pascal

Procedure WriteHello;

begin

 writeln(‘Hello world’);

end;

Begin

 if (ParamCount>0) then

 writehello;

End.

Listing 3a.

Var

 a : Integer = 0;

Begin

 A:=Random(5);

 if (A=2) then

 Writeln(‘Got 2’);

End.

Listing 3b.

if (a=2) {

 printf(“Got 2\n”);

}

Listing 4. The Unit Keyword

Unit myunit;

interface

Procedure DoSomething;

implementation

Procedure DoSomething;

begin

 writeln(‘Doing something’);

end;

end.

www.bsdmag.org 9

Free Pascal on BSD

There probably isn’t a Pascal programmer that wrote
supposedly equivalent C code as Listing 3a and didn’t sub-
sequently curse the C compiler for not giving him an error...

Units and Namespaces
Pascal has a concept of software modules at the lan-
guage level, called units. A unit is a collection of routines,
grouped together in a single source file which form a logi-
cal whole. Listing 4 shows such a unit. A unit (indicated by
the Unit keyword) contains 2 parts:

• 	 The interface (started by the interface keyword),
which contains the public declarations of the module.
It can be compared to a C .h header file.

• 	 The implementation (starting with the implementa-
tion keyword) contains – the name gives it away – the
implementation of the publicly declared routines and
structures. It can contain routines which are not de-
clared in the interface section.

When compiling a unit, the Free Pascal compiler will cre-
ate 2 files: an object file (.o) and a .ppu file. The ppu file
can be compared to a pre-compiled C header file. It is a
binary file which describes to the compiler what the unit
interface contained. Without the associated .ppu file, the
object file is useless to the compiler. This system is the
reason why the Free Pascal compiler typically compiles
much faster than C compilers: it doesn’t need to parse
the header files over and over again.

Units are also much like libraries: a Pascal programmer
can simply distribute the .ppu and .o files to another pas-
cal programmer, and that one will be able to use them in
his program without needing the original sources (if they
were compiled using the same version of the compiler).

To use a unit, a uses statement (comparable to “import”
in java, or “using” in C#) is added to a program, as shown
in Listing 5. Units can use each other, making it possible
to construct a complex hierarchy of routines.

Units also form a namespace: In C, all identifiers of a
program and all used libraries are put together, so it is
possible that there are name clashes between public sym-
bols of different libraries or object files. In Pascal, each
unit automatically forms a namespace. It is therefore pos-
sible to have and use identifiers with the same symbol but
declared in separate units. To differentiate between the 2
symbols, it suffices to prepend the symbol name with the
unit name in source code referencing the symbol.

Pascal and OOP: Classes
Pascal has evolved over the years: in the 80s OOP features
were added to the language; the most used variant of this

was probably the then popular Turbo Pascal dialect by Bor-
land. The Free Pascal compiler has supported this style of
programming (using the object keyword) up to today: the
objects were allocated by default on the stack, but could al-
so be allocated on the heap, using specialized constructors.
In the early 90s, Borland unveiled the Delphi RAD environ-
ment, and it used a somewhat upgraded version of OOP
features, this time using the Class keyword. This is the Pas-
cal OOP style that is still used today although various fea-
tures have been added since the first version. Free Pascal
allows you to create units in one or another of the various
dialects – but only 1 dialect can be used for a unit. For this,
it defines a directive which can be added to the sources:

{$mode XYZ}

The XYZ must be replaced by one of the following values:

• 	 fpc (for strictly procedural programming)
• 	 tp (for Turbo Pascal programming)
• 	 objfpc (for classes programming)
• 	 delphi (for classes programming, with some less strict

checking, compatible to Delphi)
• 	 macpas (for compatibility with the Mac OS variant of

pascal)

The directive can be specified only once in a source file,
best before the unit keyword. Upon encountering this

Listing 5. How to use unit

uses myunit;

begin

 DoSomething;

end.

Listing 6. A sample class declaration

TMyClass = Class(TObject)

Private

 Function GetProperty : Integer;

Protected

 Procedure AnAbstractMethod; virtual; abstract;

Public

 Constructor Create;

 Destructor destroy; override;

 Procedure SomeMethod:

 Property MyProperty : Integer Read GetProperty;

end;

04/201410

Object Pascal

directive, the parser of the compiler will put in a modus
that recognizes only the language structures relevant to
the chosen dialect. This feature allows use of the Free
Pascal compiler to compile sources that are 30 years
old. The run-time libraries contain the necessary units
mimicking the units that were delivered with the origi-
nal Borland Turbo Pascal products, as well as units that
mimic the units delivered with Delphi.

In effect, it should be possible to compile code written a
year ago, as well as code that was written 30 years ago.

To create a class that is straightforward, a sample class
declaration is shown in Listing 6.

The example shows several key aspects of the OOP
model implemented in Object Pascal:

• 	 The existence of a constructor and destructor. They
are marked with the special keywords constructor and
destructor. Other than that they behave like normal
methods. The constructor name can be chosen; the
destructor name must be Destroy, and must be virtual.

• 	 Polymorphism: methods must explicitly be marked
virtual, otherwise they are static, and cannot be over-
ridden in descendant classes. To override a virtual
method, a keyword (override) must be used.

• 	 Classes can contain abstract methods. These are
methods for which no implementation is present in
the class, but for which an implementation is expect-
ed to be provided by descendant classes. The com-
piler will warn if you construct a class that contains
abstract, not implemented, methods.

• 	 Object Pascal does not allow multiple inheritance, as
found in C++. It does allow the use of interfaces: an
interface is a well-defined set of methods grouped to-
gether, without implementation. Classes can imple-
ment multiple interfaces. This simply means that it
implements all methods defined in these interfaces.

• 	 Visibility of identifiers can be specified.
• 	 Properties are used like fields, but optionally allow to

specify a getter and a setter routine. The compiler will
transform access to a property in a call to the getter
or setter routine. That means that A:=MyProperty; will
be (behind the scenes) transformed to a call to the
private GetProperty routine.

Roughly, Object Pascal offers 4 visibilities:

• 	 Private (identifiers only visible in the class itself).
• 	 Protected (visible in the class and its descendants).
• 	 Public (visible everywhere).
• 	 Published (equal to published, but has RTTI associat-

ed with it, usable for introspection).

The above class could be used as in Listing 7.

GUI programming
The Lazarus IDE makes use of this style of object Pascal.
It features a large class library (dubbed LCL), suitable for
any GUI task. The classes are spread over lots of units: in
fact, the names of the units and classes are based on the
ones used in Delphi, so that code written for Delphi usu-
ally compiles seamlessly in Lazarus. This approach has
made Lazarus a popular alternative for Delphi in the Pas-
cal community.

Listing 7. The class usage

Var A : TMyClass;

begin

 A:=TMyClass.Create;

 A.SomeMethod;

 Writeln(A.MyProperty);

 A.Destroy;

Listing 8. The Lazarus class library

program helloworld;

uses

 Classes, Interfaces, Forms, controls, stdctrls;

Type

 TMyForm = class(TForm)

 Constructor Create(AOwner : TComponent);override;

 end;

Constructor TMyForm.Create(AOwner: TComponent);

begin

 inherited Create(AOwner);

 Caption:=’Hello World’;

 With TLabel.Create(Self) do

 begin

 Parent:=Self;

 Caption:=’Hello World’;

 end;

end;

begin

 Application.Initialize;

 With TMyForm.Create(Application) do

 Show;

 Application.Run;

end.

www.bsdmag.org 11

Free Pascal on BSD

The manual way to create a ‘Hello world’ program us-
ing the Lazarus class library is relatively short, and is pre-
sented in Listing 8. The standard TForm class represents
a top-level window in an application. In the constructor,
we set the form’s caption – which will be displayed by the
window manager – and construct an instance of TLabel (a
simple text displaying widget). The widget is instructed to
place itself on the form by setting the Parent property and
by setting its Caption to “Hello World”, we tell it to display
the hello-world caption.

Compiling and running the application in Lazarus will
display the friendly greeting in an X11 window.

The Application instance is of class TApplication. In its
Run method, it takes care of all the gory details like running
an event loop to handle X11 events.

The ‘Owner’ parameter to the constructor call is used to
introduce an owner-owned relationship between instances:
the application instance owns the form instance. When the
application instance is removed from memory, it will also re-
move the forms it owns from memory. That makes memory
management – normally a manual affair – easier to do. The
result of this code can be seen in Figure 2.

Figure 2. A visual “Hello, World”

While this is easy to do and code, the real power of
Lazarus is not there. The real magic starts when this form
is designed visually: Lazarus is a true RAD environment.
No coding is required in order to produce a working hello-
world example. Using a simple point-and-click paradigm,
the Hello-World example can be created without writing a
single line of code: the Lazarus IDE will create and main-
tain all code for you.

When creating a new GUI project in Lazarus, the IDE
will automatically create an empty form (a window) for you
in the designer. Each form in the project is a descendent
of the Tform class, and Lazarus creates 1 unit per form (or
window). The properties of the form can be manipulated
with the mouse and keyboard. New controls (the pascal
name for a widget) can be dropped on it from the com-
ponent palette. Figure 3 shows the process: the left area
is the Object Inspector, a key component of the IDE. The
top window is the main IDE window, it contains the com-
ponent palette: this is the list of visual (and non-visual)
controls that can be used when designing a form. In the
middle, a ‘Hello world’ form is displayed.

Figure 3. Visually designing a form

The Object Inspector plays a central role in the design-
ing of windows. As one drops controls on the form, their
properties are displayed in the object inspector, and these
can be manipulated at will.

This is achieved through the use of RTTI, already hinted
at in a paragraph above. Run-Time Type Information is
extra information included in the binary, allowing inspec-
tion of the contents of published properties and fields of
classes: a technique known as introspection in C# or Ja-
va. This allows the Lazarus IDE to generate and maintain
a textual description of a form definition (stored in a so-
called .lfm file). This textual description is loaded at run
time, and is used to re-create the form.

GUI programming is mainly event-driven: clicks, typ-
ing, mouse movement. To react on these, Lazarus pro-
vides callback functions, called Event Handlers. These
are achieved through a kind of delegation. Figure 4 shows
how this functions: the ‘Events’ page of the object inspec-
tor shows the possible events for the selected control.
There are 2 ways to attach a callback (event handler) to
a control: selecting an existing callback from the list, or
pressing the ellipsis button to create a new one.

When this is done, the IDE will create a new method in
the form’s class definition, creates an empty method in the
implementation section, and the code for the event handler
can be typed at once. The name of the method can be cho-
sen at will (obviously it must be a valid Pascal identifier), but
the IDE will construct a default name based on the name
of the event and the control to which the event is attached.
The same event handler can be attached to multiple con-
trols: at run time, the control from which the event originated
is passed to the event handler in the Sender parameter.

04/201412

Object Pascal

Figure 4. Creating an event handler

The IDE maintains all the code required to make this
work: except for the content of the event handler, no code
has been written by the programmer. This makes RAD
and designing GUI programs easy: the programmer is re-
lieved from the boilerplate code that is needed to make a
responsive GUI.

Database access
No programming language can be complete without rou-
tines for database access. Free Pascal and Lazarus are
no exception. They provide a unified access mechanism
to most popular SQL databases, commercial or open
source. This support is present in the db and sqldb units.

The small command-line program in Listing 9 will dump
the contents of a table to standard output:

The same code can be used to connect to any other
SQL supported database: the only difference would be the
used connection class: the code in Listing 8 uses TPQ-
Connection, which connects to PostGres, but changing
this class to e.g. TIBConnection would connect to a fire-
bird database instead.

Listing 9 demonstrates several other aspects of Object
Pascal, such as exception handling: the use of Try finally
(and try except) is part of the language. Throwing an ex-
ception (called Raising an exception in Pascal) for error
conditions is used in all standard provided classes. Also
shown is the use of enumerators. The statement:

 For F in Q.Fields do

will enumerate the fields in the query result; the field
class is returned in the variable F.

The Lazarus IDE and Free Pascal classes take these
concepts further: the database classes can also be dropped

on a form and manipulated in the Object Inspector, they are
non-visual components. A nice upshot of this is that the re-
sult of an SQL query on a database can be viewed ‘live’ in
the Lazarus designer, and the content is shown in the very
controls that you have created for it. Those that prefer a
pure object oriented approach (not RAD) can also choose
from several persistence frameworks that implement an
object/relational mapping.

Web programming
Operating systems such as BSD and Linux are often
used as webservers. Pascal is suitable in this domain
too: the HTTP protocol, HTML and such are largely text
based. Easy string manipulation has always been a
strong point of Pascal and, because of this, traditional

Listing 9. The Object Pascal aspects

uses db,sqldb,pqconnection;

Var C : TSQLConnection;

 Q : TSQLQuery;

 F : TField;

begin

 C:=TPQConnection.Create(nil);

 try

 // Set up connection

 C.UserName:=’myuser’;

 C.Password:=’mypassword’;

 C.DatabaseName:=’mydatabase’;

 // Set up transaction

 C.Transaction:=TSQLTransaction.Create(C);

 // Set up SQL statement.

 Q:=TSQLQuery.Create(C);

 Q.Database:=C;

 Q.SQL.Text:=’SELECT * FROM MyTable’;

 // Fetch the data

 Q.Open;

 // Dump the data

 While not Q.EOF do

 begin

 For F in Q.Fields do

 Writeln(F.FieldName,’ : ‘,F.AsString);

 Q.Next;

 end;

 finally

 // Always free the connection

 C.Free;

 end;

end.

www.bsdmag.org 13

Free Pascal on BSD

problems such as buffer overruns are not something that
easily occurs in Pascal.

Free Pascal and Lazarus come with the necessary
classes to make web programming really easy.

CGI, FastCGI, Apache loadable modules or running
your own webserver: it is all possible. Moreover, the busi-
ness logic of the application does not need to be changed
for this: the same code can be used in all 4 environments.

Listing 10 shows the ‘Hello-world’ program for the web.
The basis of the request handling logic is that the web

support classes will examine the URL, and based on the
path of the URL will call the correct handler for the request.
A request handler can be associated with each path.

The code shown in Listing 10 will register a handler
(a descendent class of TCustomHTTPModule) for the URL
path ‘HelloWorld’ in a CGI program. Since in this exam-
ple there is only one registered handler, any URL (even

an empty one) will invoke the ‘HelloWorld’ handler: it acts
as a fallback. After compiling, all that needs to be done is
to copy the CGI binary to a location in the DocumentRoot
directory of an Apache server that accepts CGI programs,
pointing the browser to it, and the greeting should appear
as in Figure 5.

The statements that call the various methods of an ap-
plication class (initialize, run etc.), resemble the ones
found in the GUI program source code: this is not a coin-
cidence. The various application types are all descendent
classes of a common TCustomApplication class. What
this class does depends obviously on the type of applica-
tion. In general, this is running some kind of event loop.

Changing this code to work with FastCGI, an apache
module, or embedding it in a binary that acts as a web-
server is simply a matter of changing the uses state-
ment at the top of the file: for instance, changing it to uses
fpFastCgi will turn it into a fastcgi application. That’s all
there is to it.

Listing 10 was the manual way to code a Hello World
application. In the visual environment of Lazarus, with its
easy handling of events when programming GUIs, han-
dling web requests comes just as natural. Several frame-
works have been developed in Free Pascal for use in web
backends; some of them focus on the visual aspect of the
DOM tree in the browser, others focus more on providing
support for AJAX or JSON-RPC techniques.

Conclusion
It is not possible to give a complete overview of the pos-
sibilities of Object Pascal or to explain all language fea-
tures. Therefore, this article has attempted to show that
Object Pascal is suitable for any programming task by giv-
ing some examples of what can be done. A wide range of
possibilities is at the disposal of the Pascal programmer:
whether one prefers to program as one would in plain C,
using the traditional POSIX interfaces, or one prefers to
use powerful OOP classes, Object Pascal has it.

Michael Van Canneyt
The author has been involved in Free Pascal since the early start, mak-
ing the first unix (well, linux) port of the compiler. He has written al-
most all documentation singlehandedly and is responsible for main-
taining a large part of the Free Pascal classes as well as some of the
tools provided with Free Pascal.

Listing 10. How to register a handler

uses

 fpCGI, httpdefs, fpHTTP;

Type

 THelloWorld = class(TCustomHTTPModule)

 Procedure HandleRequest(ARequest : TRequest;

AResponse : TResponse); override;

 end;

Procedure THelloWorld.HandleRequest(ARequest:

TRequest; AResponse: TResponse);

begin

 AResponse.Content:=’<HTML><TITLE>Hello, world!</

TITLE>’+

 ‘<BODY>Hello, world!</BODY></HTML>’;

 AResponse.SendResponse;

end;

begin

 RegisterHTTPModule(‘HelloWorld’, THelloWorld,True);

 Application.Title:=’Hello world!’;

 Application.Initialize;

 Application.Run;

end.

Figure 5. The web-based hello-world program

On the Web
• 	 Free Pascal: http://www.freepascal.org/
• 	 Lazarus: http://www.lazarus.freepascal.org/

http://www.freepascal.org/
http://www.lazarus.freepascal.org/

04/201414

RCS

One of the more popular CVS tools was a system
called RCS, which is still distributed with many
computers today. Even the popular Mac OS X

operating system includes the rcs command when you
install the Developer Tools. This tool basically works by
keeping patch sets (that is, the differences between files)
from one revision to another in a special format on disk; it
can then recreate what any file looked like at any point in
time by adding up all the patches.

Notice that there are other Open Source systems for
RCS not using a changeset approach but snapshots like
Git, originally developed in C and Perl, which use SHA-
1 digests instead of numbers to control the different ver-
sions stored in the distributed repositories.

Repository Models. Centralized vs. Distributed
The next major issue that people encounter is that they
need to collaborate with developers on other systems.
To deal with this problem, Centralized Version Control
Systems (CVCSs) were developed. These systems,
such as CVS and Subversion, have a single server that
contains all the versioned files, and a number of clients
that check out files from that central place. For many
years, this has been the standard for version control
(see Figure 1-2).

This setup offers many advantages, especially over lo-
cal VCSs. For example, everyone knows to a certain de-
gree what everyone else on the project is doing. Admin-
istrators have fine-grained control over who can do what;

Revision Control Systems
and Configuration
Management. Part 1
Software Configuration Management has been a
traditional concern since the beginnings of the IT era. BSD
development teams have traditionally used CVS as the main
version control system for all their projects, including kernel
development. However, CVS has some major drawbacks
that can be superseded using more modern tools that
outclass CVS in order to achieve the same goal.

What you will learn…
• 	 How to manage large software development projects using RCS

tools
• 	 Make the right choice depending on the nature of your

programming project
• 	 Understand the weaknesses and strengths of the different RCS

paradigms in use
• 	 How to use and administer these RCS tools for BSD-Unix systems

What you should know…
• 	 Intermediate UNIX OS background as end-user and administrator
• 	 Some experience with CVS environment for version control
• 	 Experience with Ports system package
• 	 Software development experience

www.bsdmag.org 15

Revision Control Systems and Configuration Management. Part 1

and it’s far easier to administer a CVCS than it is to deal
with local databases on every client.

However, this setup also has some serious downsides.
The most obvious is the single point of failure that the cen-
tralized server represents. If that server goes down for an
hour, then during that hour nobody can collaborate at all
or save versioned changes to anything they’re working on.
If the hard disk the central database is on becomes cor-
rupted, and proper backups haven’t been kept, you lose
absolutely everything – the entire history of the project ex-
cept whatever single snapshots people happen to have
on their local machines. Local VCS systems suffer from
this same problem – whenever you have the entire history
of the project in a single place, you risk losing everything.

This is where Distributed Version Control Systems
(DVCSs) come in. In a DVCS (such as Git, Mercurial, Ba-
zaar or Darcs), clients don’t just check out the latest snap-
shot of the files: they fully mirror the repository. Thus if any
server dies, and these systems were collaborating via it,
any of the client repositories can be copied back up to the
server to restore it. Every checkout is really a full backup

Figure 2. Central VCS server Figure 3. Server computer

Figure 1. Repository Model for common Revision Control Systems in use

04/201416

RCS

of all the data (see Figure 1-3). For this reason, one of the
most important drawbacks for distributed repositories is
the poor performance for initial repository loads. This is
the price to be paid for higher availability and failure pro-
tection using this redundant approach.

Client-Server SCM Applications. Subversion
Before starting with this section, we assume the reader
has a certain knowledge about CVS client-server system,
as the main aim of these paragraphs are to explain by
comparison the different approaches and strategies fol-
lowed by both SCM systems. Since 80s CVS is the “de
facto” revision control system used for most development
projects, for instance BSD OS flavors.

Subversion explained
Subversion is an Open-Source client-server based ver-
sion control system released by the Apache Software
Foundation and it has become the “de facto” standard
for Software Development version control after CVS. It is
used to maintain current and historical versions of files
such as source code and documentation. That is, Sub-
version manages files and directories, and the changes
made to them, over time.

This allows you to recover older versions of your data or
examine the history of how your data changed. Subver-
sion can operate across networks, which allows it to be
used by people on different computers.

Subversion platform architecture consists of a client-
server architecture. The clients request files and modifica-
tions to a central Subversion repository. In this document
we will focus on a specific subversion deployment, which
is summarized in the following Figure 5.

Current deployment of Subversion consists of a central re-
pository located on a development server named ECD11461
and the access to the repository is done by HTTP protocol.
All repositories are accessible on the URL: Table 1

http://ecd11461//svn/<name_of_repository>

To be able to see a browseable list all projects hosted in
ecd11461 refer to:

http://ecd11461/svn

ECD11461 provides a special repository named sandbox.
The use of this repository is just for testing purposes;
anyone can commit in the sandbox repository. This re-
pository will be erased periodically.

Figure 4. Subversion workflow

Figure 5. Subversion client-server architecture

Table 1. Subversion Access protocols

URL Schema Access Method
file:///srv/svn Direct Access provided by local disk

http://ecd11461/svn Remote Access by WebDAV protocol provided by Apache HTTP

https://ecd1146/svn Remote Access by WebDAV+SSL cypher

svn://ecd11461:/srv/svn Remote Access to a svnserve server

svn+ssh://ecd11461:/srv/svn Remote Access through SSH tunnel to a svnserve server

http://ecd11461/svn
file:///D:/S_O_F_T_W_A_R_E/BSD_04_2014/Article_SCM_Part_I/../../../srv/svn
file:///D:/S_O_F_T_W_A_R_E/BSD_04_2014/Article_SCM_Part_I/../../../srv/svn
http://ecd11461/svn

www.bsdmag.org 17

Revision Control Systems and Configuration Management. Part 1

Clients to use with Subversion
In this document, we propose two different Subversion clients
to be used in current deployment. One is a graphical client
and the other is a command line client. A graphical client has
the advantage of being “visual” but lacks some of the SVN
client features, but it is suitable for regular use. The com-
mand line client will support the graphical one when needed.

Graphical SVN Clients
Despite the ease of use of plain SVN commands, to pro-
vide an ease-to-use interface for the end-user community
using MS Windows platforms requires counting on graphi-
cal SVN clients to perform all activities related to the revi-
sion control system for source code and configured items
by means of SVN. Currently, several alternatives are
available within the FOSS community:

• 	 RapidSVN. This is a multiplatform SVN client still in
the development phase and attached to an SVN ver-
sion, available at http://rapidsvn.tigris.org.

• 	 SubclipseSVN is an Eclipse plugin that allows direct
access to the SVN repository for Eclipse users.

• 	 KDEsvn. This is the KDE client for Subversion, avail-
able for a wide variety of Unix-like platforms.

Whatever the client to be used, the use of the com-
mand-line svn(1) tool is highly recommended for devel-
opment tasks.

Most relevant features for these SVN clients are:

• 	 Shell integration: TortoiseSVN integrates seamlessly
into the Windows shell (i.e. the explorer). This means
you can keep working with the tools you’re already fa-
miliar with, and you do not have to change into a dif-
ferent application each time you need functions of the
version control.

• 	 Icon overlays: The status of every versioned file and
folder is indicated by small overlay icons. That way
you can see right away what the status of your work-
ing copy is.

• 	 Easy access to Subversion commands: All Subver-
sion commands are available from the explorer con-
text menu. TortoiseSVN adds its own submenu there.

• 	 Graphical implementation of some Subversion com-
mands: Such as diff or conflicts resolution.

Most relevant features for these SVN clients are:

• 	 Shell integration: TortoiseSVN integrates seamlessly
into the Windows shell (i.e. the explorer). This means

you can keep working with the tools you’re already fa-
miliar with, and you do not have to change into a dif-
ferent application each time you need functions of the
version control.

• 	 Icon overlays: The status of every versioned file and
folder is indicated by small overlay icons. That way
you can see right away what the status of your work-
ing copy is.

• 	 Easy access to Subversion commands: All Subver-
sion commands are available from the explorer con-
text menu. TortoiseSVN adds its own submenu there.

• 	 Graphical implementation of some Subversion com-
mands: Such as diff or conflicts resolution.

Command-Line client
SVN Command line client provides non-dependent plat-
form access to SVN server repositories granting the whole
power of SVN features and options to the user. Given the
proper client version (according to the server) a user can
deal with all the server features. Compatible clients for
the current Subversion server can be found in http://www.
sourceforge.net. Most of them have been released under
the General Public License (GPL).

Available subcommands are:

• 	 add
• 	 blame (praise, annotate, ann)
• 	 cat
• 	 changelist (cl)
• 	 checkout (co)
• 	 cleanup
• 	 commit (ci)
• 	 copy (cp)
• 	 delete (del, remove, rm)
• 	 diff (di)
• 	 export
• 	 help (?, h)
• 	 import
• 	 info
• 	 list (ls)
• 	 lock
• 	 log
• 	 merge
• 	 mergeinfo
• 	 mkdir
• 	 move (mv, rename, ren)
• 	 propdel (pdel, pd)
• 	 propedit (pedit, pe)
• 	 propget (pget, pg)
• 	 proplist (plist, pl)
• 	 propset (pset, ps)

http://rapidsvn.tigris.org/
http://www.sourceforge.net/
http://www.sourceforge.net/

04/201418

RCS

• 	 resolve
• 	 resolved
• 	 revert
• 	 status (stat, st)
• 	 switch (sw)
• 	 unlock
• 	 update (up)

Basic Work Cycle
Subversion has numerous features, options, bells, and
whistles, but on a day-to-day basis, odds are that you will
use only a few of them. In this section, we’ll enumerate
the most common things that you might find yourself do-
ing with Subversion in the course of a day’s work.

The typical work cycle looks like this:

• 	 Update your working copy. svn update: Bring chang-
es from the repository into the working copy

• 	 Make the changes. svn add: Put files and directories un-
der version control, scheduling them for addition to the
repository. They will be added in the next commit. svn
delete: Remove files and directories from version control.
svn copy: Duplicate something in the working copy or re-
pository, remembering history. svn move: Move and/or
rename something in the working copy or repository.

• 	 Examine your changes. svn status: Print the status
of working copy files and directories. svn diff: Display
the differences between two revisions or paths.

• 	 Possibly undo some changes. svn revert: Restore
pristine working copy file (undo most local edits).

• 	 Resolve conflicts (merge others’ changes). svn resolve:
Resolve conflicts on working copy files or directories.

• 	 Commit your changes. svn commit: Send changes
from your working copy to the repository.

Strategies of Subversion Usage
Usage for Cooperative development
A usual tactic widely used in OpenSource projects that
might be followed here, is based upon the use of a CVS/
SVN repository to provide updated working copies for
developers. These copies can be modified later on and
these modifications will be sent to the SVN/CVS reposito-
ry administrators in order to make the decision on includ-
ing these updated in further versions.

To achieve this goal, the process to be executed can be
summarized in the following steps, that can be extrapo-
lated for SVN/CVS usage.

Get a working copy of the repository. In the case of us-
ing CVS, it is required to indicate the authentication pro-
cess defined on this repository.

$ cvs –d $CVSROOT login

$ cvs -d $CVSROOT checkout my_project

For those developers using an Apache-based SVN in-
terface, it is enough to perform a checkout. The HTTP
server will be in charge of managing the authentication
and authorisation processes:

$ svn checkout http://svn.remote.org/my_project

Update if it is required, the changes performed on a
working copy. Notice that these operations are similar for
both CVS and SVN servers.

$ cvs update –d

$ svn update

Perform the required changes on the different files and di-
rectories present in the working copy. Send the changes
based on the previous version to the CVS/SVN repository.

$ cvs update –d

$ svn update

And eventually, generate the patch to be applied contain-
ing the different lines between both versions.

$ cvs diff –u > myproj.patch

$ svn diff tag1 tag2 > myproj.patch

Keep in mind that they shall only contain the changes re-
lated to the previously approved change.

Verify the contents of this patch generated in the previ-
ous step, coming back to the previous version of our work-
ing copy.

$ cvs update –C

and apply the patch:

$ patch –p0 < myproj.patch

Once these changes have been executed, it is possible
to deliver the patch to the repository administrators or,
alternatively to the project managers by electronic mail.

If, on the contrary, in the case of persisting the use of
CVS, we wish to keep a copy of the repository, but keep-
ing a backup copy of all modified files, the easiest way to
achieve it is by means of the command:

$ cvs update –d –C

http://svn.remote.org/my_project

www.bsdmag.org 19

Revision Control Systems and Configuration Management. Part 1

This process may be extended to every development
project involving a large community of developers and
it is only applied to all operations related to the support
and management of source code.

Usage for branching development
The common structure underlying the SVN top-level re-
pository is depicted in Figure 6 and shall be applied to
all projects managed by Subversion. This structure allows
fulfilment of the three main requirements for complex-proj-
ect development:

• 	 Multiple project allocation
• 	 Mainline versioning control supported
• 	 Branching and variant development supported

This structure allows project isolation so that only autho-
rized users can access their respective projects under
SVN control.

The use of the branching feature requires svnmerge to
be installed before proceeding with the remaining instruc-
tions in this section.

• 	 Create a new SVN branch – A new branch can be
mainly created from the mainline of development
by copying a given version to a branch named my _

branch:

$ svn copy svn://ecd11461/svn/<project>/trunk \ svn://

ecd11461/svn/<project>/branches/my_branch –m “Creating

MY_BRANCH”

• 	 Check-out a branch – The contents of the new
branch can be downloaded for further amendment by
checking-out the contents to a local directory:

$ svn checkout svn://ecd11461/svn/<project>/branches/

my_branch

	 Also externals must be modified to point to the new
A-T branch by issuing the following command:

$ svn propedit svn:externals .

• 	 Initialise svnmerge tracking in the branch. If you plan
to pull trunk into the branch for a project, this step
shall be performed.

my_branch/ $> svnmerge init

property ‘svnmerge-integrated’ set on ‘.’

my_branch/ $> svn ci –F svnmerge-commit-message.txt

• 	 Initialise svnmerge tracking on the trunk.

trunk/ $> svnmerge init svn://ecd11461/svn/<project>/

branches/my_branch

property ‘svnmerge-integrated’ set on ‘.’

trunk/ $> svn ci –F svnmerge-commit-message.txt

	 Eventually it is perfectly possible to merge chang-
es from one branch to another by following the steps
written down below:

• 	 Work from a clean checkout of the branch you want
to merge TO and check the availability of changes to
merge.

$> svnmerge avail –b -l

--

r584362 | gozer | 2007-10-12 21:00:47 -0700 (Fri, 12 Oct

2007) | 1 line

Changed paths:

 A /perl/modperl/branches/mybranch (from /perl/modperl/

trunk:584361)

creating mybranch

--

r584363 | gozer | 2007-10-12 21:05:32 -0700 (Fri, 12 Oct

2007) | 3 lines

Changed paths:

 M /perl/modperl/branches/mybranch

Initialize merge tracking via svnmerge with revi-
sions 1-584361 from svn://ecd11461/<project>trunk. Figure 6. Recommended SVN Repository Structure

04/201420

RCS

Then, merge the ones you wish to merge. For instance,
if you want to merge changes from 584362 to 585363,
issue the command:

$> svnmerge –r 584362-584363

Once the conflicts arisen as a result of changes made
have been fixed, check in the merged version:

$> svn ci –F svnmerge-commit-message.txt

The process concludes at this point with merging chang-
es generated in the development branch my _ branch to
the mainline or trunk for the selected project.

Basic Operations
This section will introduce the use of Subversion in a nor-
mal day's work. How to get a working copy of the reposi-
tory, deal with modifications and put all the new stuff back
into the repository. In order to provide a better understand-
ing, let us assume we use a MS Windows client platform
to operate with SVN server.

Browsing SVN Repository
There are two main ways to browse the contents of a giv-
en SVN repository. The first possibility, widely used by MS
Windows-lovers, is the use of SVN Tortoise client (Repo-
Browser option), which requires previous authentication
to access: Figure 7.

The common structure for controlling changes and their
time evolution is given in Figure 8.

The second one is to use HTTP+DAV support as shown
in Figure 9. This is platform-independent and does not
require an external tool, just a compliant HTTP browser
such as MSIE or Mozilla among others.

Getting a working copy from SVN repository
To start with Subversion, the first step is to get a copy of
an empty repository to be populated with the desired di-
rectories structure for our development project.

$ cd $HOME

$ svn checkout http://ecd11461/repository

The process of creating new files and directories with-
in our empty repository in our local computer is simple.
Firstly, three directories (trunk, branches, and tags) are
used to allocate the main branch of development, the sec-
ondary one and the labels folder, respectively. The way to
proceed is as shown below:

$ cd svn_repository && mkdir trunk branches tags

$ svn add trunk branches tags

$ svn commit –message “Estructura inicial repositorio SVN”

These three directories will be used for all projects cre-
ated and managed under the SVN repository, and allow
simplication of both branching and tagging operations
pertaining to its predecessor CVS.

Figure 7. SVN Repository simple authentication

Figure 8. SVN Browse Repository Example

Figure 9. SVN Repository Browse using WebDAV Protocol

http://ecd11461/repository

www.bsdmag.org 21

Revision Control Systems and Configuration Management. Part 1

Committing changes to SVN server
Let’s assume a development project included in the di-
rectory $HOME/myprog. The incorporation of this project into
our SVN repository requires the following commands:

$ cp –r myprog $HOME/svn_repository/trunk

$ cd $HOME/svn_repository/trunk

$ svn add myprog

$ svn commit –message “Added myprog project to the repository”

A granted member of a development team in an SVN re-
pository may get a copy of the project from this reposito-
ry by means of a checkout:

$ svn checkout http://ecd11461/svn_repository/trunk/myprog

In the same way as occurred with CVS, Subversion does
not allow individual checkout of files to be performed.
Checkout operations are only allowed with directories.

End-users Interaction. Cooperative work
The incorporation of further changes, performed in a
working copy by a team member onto SVN repository
use, is as dangerous as it is necessary. For this reason, it
is encouraged to have a depth of understanding about all
involved operations in order to identify which differences
are to be merged.

$ svn status –u

M * 12 Makefile

M 12 program.c

 * 12 program.h

Head revision: 13

Hence, the status of changes performed in an SVN serv-
er is illustrated by the svn status command. Looking at the
first column, the letter M indicates that a file has been modi-
fied in a working copy and the symbol * in the second col-
umn, reflects the fact that another developer has also been
modified and performed a commit between the period from
which the copy is obtained and the current moment in time.
The third column shows the revision number of the file. That
means that the fact of performing a commit on program.c
will not be a source of problems for this file, but it will not be
the case for the last two remaining files.

$ svn update

M * 12 Makefile

M 12 program.c

 * 12 program.h

Head revision: 13

In this case, the letter U indicates that the update of this
file has been done successfully while the letter C gives
evidence of a conflict.

By listing the files in this directory, it can be realized
that SVN has been much more than filling up the original
Makefile with lines containing the consecutive differences
by means of the command diff(1):

$ ls

Makefile Makefile.r12 program.c

Makefile.mine Makefile.r13 program.h

Now, there are four different versions of Makefile, the first
one, without any extension is filled up as it would hap-
pen if we had used CVS. However, the three remaining
versions are copies of different versions. Thus Makefile.
mine is nothing else than the current copy available at a
working copy prior to update; Makefile.r12 is the previous
update of this working copy and Makefile.r13 is the copy
of a new file in the SVN repository. That allows the us-
er to choose the code required according to their needs
in a manual way. Once this conflict has been fixed for our
Makefile, simply type:

$ svn resolved Makefile

The latter command allows SVN to enable a commit op-
eration on this file.

Branching and merging in SVN
According to the directories structure, the creation of a
new branch for a specific Project in SVN is as simple as
copying the whole Project within the branch directory. This
can be done by issuing the command:

$ svn cp trunk/my_projectbranches/myproject_branch_1

For those people unfamiliar with the terminology, the
process of joining this branch with the main develop-
ment branch is termed merging. This process con-
sists of incorporating the contents of the directory svn _

repository/trunk/myprog into the new branch svn _

repository/branches/myprog-branch created:

$ cd svn_repository/branches/myprog-branch

$ svn merge –r 12:HEAD http://ecd11461/

The last command joins (merges) the differences be-
tween version 12, which was previously used when the
branch was created and the current revision in the main
development branch for the Project myprog.

http://ecd11461/svn_repository/trunk/myprog
http://ecd11461/

04/201422

RCS

Getting the software or part of it
In order to get a working copy of the full repository or part
of it, a checkout has to be performed. This is performed
selecting “SVN Checkout...” in the TortoiseSVN explorer
context menu. In the checkout window, you can specify
some checkout options:

• 	 URL of repository: The apache URL where the repos-
itory is accessible.

• 	 Checkout directory: Local directory for working copy.
• 	 Checkout Depth: Always set to Fully Recursive since

this option grabs the whole repository from the URL.
• 	 Revision: Specify the specific revision you would like

to work with (HEAD is a special label that always
points to the latest version). If you need help selecting
some revision, a “show log” button is provided.

The process of selection for a module and/or version stored
in the SVN repository is quite simple by using SVN Tortoise
and is depicted in Figure 10, Figure 11 and Figure 12.

Once you have your local copy checked out, you can
start working on it as if they were regular files. You can
edit and change it, move it around, even delete the entire
working copy and forget about it.

The Subversion repository will be composed of a basic
layout of three root directories on each repository:

• 	 branches: This directory will be used to store the dif-
ferent project branches.

• 	 tags: Will store all the different tags created from
trunk or from branches.

• 	 trunk: Will store the developmental day-to-day work. It
is the main project code and documentation storage.
Speaking in version control language, this directory will
be the HEAD of the repository where work gets done.

Getting your data into the repository
Once you have made changes into a local copy as shown
in Figure 13, you will need to store them in the reposito-
ry. This operation is performed by the commit command.
This command tells the repository what has changed and
sends modifications to the repository.

In order to commit your changes, you will have to right
click into your local working copy directory (or file) con-
taining your changes and select “SVN Commit...” in the
TortoiseSVN explorer context menu.

In the commit window given by Figure 14, you can se-
lect a proper message identifying the commit and select
the modified files to be committed (all modified by default).

Figure 13. Local changes in SVN checked-out files

Figure 12. SVN Checking-out a module (III). Output log

Figure 11. SVN Checking-out a module (II). Select check-out details

Figure 10. SVN Checking out a module (I). Select module

www.bsdmag.org 23

Revision Control Systems and Configuration Management. Part 1

If the log message is not properly formatted, the com-
mit is not allowed and an error window will appear. Proper
log messages must contain between square brackets the
ECR/DR/PR that triggered the change. If not applicable
you can use [NA] (Not Applicable) or [II] (Initial Issue).

References and abbreviations
This section lists the specifications, standards, manuals, and oth-
er documents, including policy directives, referenced or used as
source material for this plan.

• 	 IEEE Trans. on Soft. Eng. 1975 SE 1-4 – The Source Code Control
System (SCCC)

• 	 http://scm.tigris.org – Introducción a los sistemas SCM.

Specific Documents
• 	 http://subversion.tigris.org – Subversion Open Source Software

Engineering Tools

• 	 http://www.webdav.org/neon/ – Project Specific Configuration
Management Plan

• 	 http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf – Open
Source Development with CVS. M. Bar y K Fogel

• 	 http://svnbook.red-bean.com – Version Control with Subversion.
Ben Collins-Sussman, Brian W. Fitzpatrick, C. M. Pilato

• 	 DP-SIS-001 – Software Quality System Management Plan
• 	 http://subclipse.tigris.org – Subclipse. SVN Plugin for Eclipse
• 	 http://tortoisesvn.net – The Coolest Interface to Subversion Ver-

sion Control

Acronyms and abbreviations
SVN – Subversion
CVS – Control Version System
RCS – Revision Control System
HTTP – Hypertext Transfer Protocol
SSL – Secure Sockets Layer
DAV – Distributed Authoring and Versioning
COTS – Commercial Off-The-Shelf.
CSCI – Computer Software Configured Item
DAL – Development Assurance Level

José B. Alós
José B. Alós has developed an important part of his professional career
since 1999 as an EDS employee, as a UNIX System Administrator, main-
ly focused on SunOS/Solaris, BSD and GNU/Linux. Five years ago he
joined EADS Defense and Security, nowadays CASSIDIAN as the person
responsible for providing support for end-users in aircraft engineer-
ing departments for long-term projects. That is the main reason un-
derneath this article as VAX/VMS systems still play a paramount role in
today’s aerospace industry for a wide variety of embedded RT systems
conceived for mission and flight operations. He was also Assistant Pro-
fessor in the Universidad de Zaragoza (Spain), specialized in the design
of High Availability solutions, and his academic background includes a
PhD in Nuclear Engineering and three MsC in Electrical and Mechani-
cal Engineering, Theoretical Physics and Applied Mathematics.

Figure 14. SVN Commit local changes

http://scm.tigris.org/
http://scm.tigris.org/
http://subversion.tigris.org/
http://www.webdav.org/neon/
http://cvsbook.red-bean.com/OSDevWithCVS_3E.pdf
http://svnbook.red-bean.com/
http://subclipse.tigris.org/
http://tortoisesvn.net/

04/201424

NetBSD

I am assuming you have read the previous article and
have already setup your NetBSD EC2 server, so I will
move on to installing packages on your server.

1) Login into your VPS using terminal or PuTTY (Figure 1)

ssh -i your_aws.pem root@ec2-123-12-123-123.compute-1.

amazonaws.com

2) Once you are logged into your server you will begin
downloading and updating pkgsrc. I recommend you
download “current” software packages which are auto-
generated daily. (Figure 2)

ftp ftp://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc.tar.gz

Once the pkgsrc.tar.gz file is downloaded, extract it us-
ing the command below, which will create /pkgsrc inside

Deploying NetBSD on
the Cloud using AWS
EC2: Part 2
In the last article, I took you through the steps for deploying
a NetBSD cloud server on Amazon EC2 Web Services. In this
tutorial, I will first cover the necessary steps for installing the
NetBSD Packages Collection (pkgsrc) which contains 3rd
party software such as: databases, programming languages,
text editors and more. After the packages collection has been
properly installed, I will show you how to install NGINX, PHP
and PHP-FPM (FastCGI Process Manager) on NetBSD.

What you will learn…
• 	 NetBSD Basics
• 	 How to install and configure NGINX
• 	 How to run PHP scripts on NGINX

You need...
• 	 Amazon AWS account
• 	 Terminal
• 	 OpenSSL

Figure 1. Login into your VPS using terminal or PuTTY

www.bsdmag.org 25

Deploying NetBSD on the Cloud using AWS EC2

the /usr directory. All the package sources will be stored
under /usr/pkgsrc/

tar -xzf pkgsrc.tar.gz -C /usr

It is very important to keep pkgsrc up to date for both sta-
bility and security reasons. Next you will be updating via
the CVS method.

cd /usr/pkgsrc && cvs update -dP

If you get a No CVSROOT specified error use the com-
mand below.

cd /usr/pkgsrc && env CVS_RSH=ssh cvs up -dP

Once pkgsrc has finished updating, you can begin in-
stalling packages.

Installing Packages
Installing NGINX

pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/

amd64/6.1.3/All/nginx-1.5.12nb3.tgz

Installing PHP

pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/

amd64/6.1.3/All/php-5.5.10nb2.tgz

Installing PHP-FPM

pkg_add ftp://ftp.netbsd.org/pub/pkgsrc/packages/NetBSD/

amd64/6.1.3/All/php-5.5.10nb2.tgz

Creating a Web User and Public Web Directory
Create a user using the following command

useradd -m webdude

Next, create a public web directory in the webdude home
directory.

cd ~webdude

mkdir public_html

chown webdude public_html

In the next step, you will be changing the default
NGINX root directory to your webuser path and config-
uring PHP-FPM in the nginx.conf file using your favor-
ite editor.

vi /usr/pkg/etc/nginx/nginx.conf

Inside nginx.conf, change the root line to the following:

root /home/webdude/public_html

Next uncomment the following location block:

Figure 2. Software packages

04/201426

NetBSD

location ~ \.php$ {

 #root html;

 fastcgi_pass 127.0.0.1:9000;

 fastcgi_index index.php;

 fastcgi_param SCRIPT_FILENAME /home/webdude/

public_html$fastcgi_script_name;

 include /usr/pkg/etc/nginx/fastcgi_

params;

 }

Note
You will have to copy web files from /usr/pkg/share/examples/
html into your /home/webdude/public_html directory.

You are now ready to start-up NGINX and PHP-FPM

php-fpm

nginx

Note
If you would like to start PHP-FPM and NGINX on boot,
you will have to append the following lines to /etc/
rc.local.

vi /etc/rc.local

 /usr/pkg/sbin/php-fpm

 /usr/pkg/sbin/nginx

Successful Setup
On a successful setup you will be prompted with the “Wel-
come to NGINX” screen (Figure 3).

Having read through this article, you should have a ba-
sic understanding of the NetBSD Packages Collection,
NGINX and how to run PHP scripts on your newly installed
web server. If you have any questions or comments, feel
free to drop me a line at diego@pozr.in. Keep it Moving!

Diego Montalvo
Diego is the chief architect at #pozr. When he is not coding or building
web technologies, Diego is ranching and skateboarding. He currently re-
sides in both Hebbronville, Texas and San Diego, California. If you have
any questions or comments you can contact him at diego@pozr.in.

Figure 3. Welcome to NGINX” screen

Resources
Amazon Web Services – http://aws.amazon.com
AWS Free Tier Program – http://aws.amazon.com/free/
The NetBSD Project – http://www.netbsd.org/
NGINX – http://nginx.org/
#Pozr Dead Simple Cloud Servers – https://www.pozr.in

mailto:mailto:diego%40pozr.in?subject=
mailto:mailto:diego%40pozr.in?subject=
http://aws.amazon.com
http://aws.amazon.com/free/
http://www.netbsd.org/
http://nginx.org/
https://www.pozr.in

04/201428

Graphic Design

Getting to Grips with
the Gimp – Part 3
In the third in our series on the Gimp, we will create
a pastiche that depicts the current political crisis in
the Ukraine.

What you will learn…
• 	 How to manipulate images like a design pro

What you should know…
• 	 General PC administration skills

www.bsdmag.org 29

Getting to Grips with the Gimp – Part 3

There is nothing new under the sun. Inspired by a pastiche in today’s Sun-
day newspaper, we will create a graphic that portrays the current crisis in
the Ukraine.

Step 1
Download the images listed in Table 1.
Table 1. Details and credits

Image URL Details and credits
EU Flag http://www.freeimages.com/photo/1367887 European flag in the wind Uploaded by Ayla87

President Putin http://www.fotopedia.com/items/flickr-3488093359 photo by World Economic Forum on Flickr

President Obama http://www.fotopedia.com/items/flickr-6763303437 photo by Intel Photos on Flickr

US dollar http://www.fotopedia.com/items/flickr-2630539049 photo by iChaz on Flickr

Ukraine flag http://www.fotopedia.com/items/flickr-493523361 photo by LancerenoK on Flickr

Nuclear explosion http://www.fotopedia.com/items/flickr-4926596880 photo by The Official CTBTO Photostream on Flickr

Vote now http://www.fotopedia.com/items/flickr-2999130055 photo by Theresa Thompson on Flickr

Step 2

Let’s start with the “Vote Now” image.
As we will use this on the right hand
side of the picture, we will have to re-
move the US stars from the sneaker.
Open the file in the Gimp and resize
to a width of 640px [Figure 1 and 2].

http://www.freeimages.com/photo/1367887
http://www.fotopedia.com/items/flickr-3488093359
http://www.fotopedia.com/items/flickr-6763303437
http://www.fotopedia.com/items/flickr-2630539049
http://www.fotopedia.com/items/flickr-493523361
http://www.fotopedia.com/items/flickr-4926596880
http://www.fotopedia.com/items/flickr-2999130055

04/201430

Graphic Design

Step 3
Zoom in and, using the freehand se-
lect tool, select the blue / stars area
from the sneaker. Paint the area white
with the paintbrush tool or press. De-
select the area, and using the smudge
tool, blend the greyer area of the top
of the sneaker into the area you just
painted. Repeat with the other foot.
As the marching worms is not clear,
I have turned on the mask to highlight
the area that will not be affected by
our paint process. Save the image as
shoes.xcf [Figure 3].

Step 4
Open the image of the European flag.
Using the Scissors select tool, click
around the flag and the flagpole and
join the nodes up at the bottom once
you have gone round the flag. Click on
the middle of the flag to finish the se-
lection, copy the area, create a new
transparent and paste and anchor the
selection. Delete the original layer.
Using the fuzzy select tool, select and
delete the sky areas between the flag
and the flagpole. Crop, and save as
flag.xcf [Figure 4].

www.bsdmag.org 31

Getting to Grips with the Gimp – Part 3

Step 5
Repeat step 4 with the Ukrainian flag,
but omit the flagpole. Save as ukraini-
anflag.xcf [Figure 5].

Step 6
Open the image of the Russian Pres-
ident, and repeat step 4 so that you
have just the leader’s face. Crop and
save as putin.xcf [Figure 6].

04/201432

Graphic Design

Step 7
Open the image of the US President,
and repeat step 4 so that you have
just the leaders face. Crop and save
as obama.xcf [Figure 7].

Step 8
Open the nuclear explosion image
and crop the area of the mushroom
cloud in the middle. Resize to width
1024px, and adjust the canvas size to
1024 x 768. Ensure the chain is un-
clicked, as we only want to increase
the height. Adjust the layer to image
size, and fill the bottom of the image
with red picked from the bottom edge
of the explosion. Using the smudge
tool, blend the bottom and top of the
image so that the hard line is erased.
Save as image_001.xcf [Figure 8].

www.bsdmag.org 33

Getting to Grips with the Gimp – Part 3

Step 9
Desaturate the luminosity of the im-
age and add a new transparent layer.
Fill this layer with colour 8e221d and
alter the layer mode to saturation [Fig-
ure 9 – 10].

Step 10
Create a new transparent layer. Open
the image of the US dollar, and scale
to 150px. Select all, copy, and click
back onto the nuclear background
tab. Ensure you are on the new layer
you created and paste the resized im-
age of the dollar near the top left hand
side of the image. When you are hap-
py with the position of the layer, an-
chor it. Duplicate the layer, and using
the rotate and move tool, reposition
another copy of the dollar. Repeat un-
til you have 3 dollars. When you are
happy with the positioning, right click
each dollar layer and merge down.
Rename the single layer “Dollars”,
and scale and reposition until the lay-
er dominates the top left hand corner
of the image [Figure 11].

04/201434

Graphic Design

Step 11
Open obama.xcf and select all, copy.
Create a new layer and paste the pic-
ture of the US president into the mid-
dle. Using the scale tool and pressing
the Ctrl key, constrain the scale until
you are happy with the dimensions.
Locate the president at the bottom
right hand side on the image. Use the
smudge tool to remove any ragged
blue edges. Rename the layer Obama
[Figure 12].

Step 12
Repeat step 11 with the picture of the
Russian leader and place at the bot-
tom right hand side of the image. Ro-
tate the layer so that the eyes are hori-
zontal [Figure 13].

www.bsdmag.org 35

Getting to Grips with the Gimp – Part 3

Step 13
Repeat with shoes.xcf but instead of
constraining the scale tool, increase
the height. Smudge and erase the
legs to get a fade effect. Change the
layer mode to hard light and delete
any speckles that show through [Fig-
ure 14].

Step 14
Open flag.xcf, and copy and paste
into a new layer on our pastiche. Du-
plicate the layer, flip it vertically, and
line up the flagpole so it lines up per-
fectly over the other layer. Add a new
transparent layer, open the Ukraini-
an flag and paste and scale over the
right hand side of the flagpole. Use
the smudge tool to align the edge of
the flag against the curved part of the
flagpole. Merge down the three lay-
ers, move the bottom of the pastiche,
and layer to image size [Figure 15].

04/201436

Graphic Design

Step 15
Move the flag layer just above the red
layer. Desaturate the Obama, Putin,
Vote and Dollar layers in turn. Create
a new transparent layer at the top of
the layers stack, and fill with c9c26e.
Change the layer mode to multiply
[Figure 16].

Step 16
With the exception of the vote layer,
apply filter → render → pattern →
jigsaw to Putin, Obama, and Dollars
[Figure 17 – 18].

Getting to Grips with the Gimp – Part 3

Step 17
Using the select tool or erase tool on
the layers in step 11, delete parts of
the jigsaw pieces. Tidy up the rough
edges of the jigsaw with the blur tool.

Step 18
Select the last layer and increase the
scale width and position so that the
mushroom cloud is in the centre. Realign
the flag layer as required [Figure 19].

Rob Somerville
Rob Somerville has been passionate about
technology since his early teens. A keen advo-
cate of open systems since the mid-eighties, he
has worked in many corporate sectors includ-
ing finance, automotive, airlines, government
and media in a variety of roles from techni-
cal support, system administrator, develop-
er, systems integrator and IT manager. He
has moved on from CP/M and nixie tubes but
keeps a soldering iron handy just in case.

04/201438

Security

This made me think about how easy it would be, to
make sure that, if anyone stole all the credit card
details from a retailer, those details would be to-

tally useless.
First, I thought about the dangers of modern shopping.
When you fill in your card details at a Point-of-Sale ter-

minal, access your bank’s web page, or visit your ATM,
there are many evil devices waiting to rob you.

A hidden camera records the PIN code that you type,
embedded malware records every keystroke, while anoth-
er device reads the magnetic stripe on your card.

Meanwhile, a network snooper on the line will pick up
your PIN, your user ID and credit card number so that
some sociopath can rob you of everything in the future.

If any of these devices misses anything, an internal se-
curity breach exports the entire customer details data-
base, which will be sold to criminals around the world.

The whole issue comes down to one thing. How do you
prove that you are really you?

Being a rational, hard-working person, you don’t have a
problem doing so, but the things your bank is asking you
to do, to achieve this, are becoming a bit user-hostile.

Since you don’t have a criminal record, and have no de-
sire to have some hacker create one for you, you’re not
particularly keen to supply fingerprints to your bank.

You don’t work for the CIA, so you also would rather
not have your retina scanned, nor to have your DNA test-

ed, nor to supply a voice-print. Anyway, biometric data is
transmitted digitised, so the hackers can intercept it, copy
it, and use it again.

Besides, imagine the length of the queues at Target, if
everyone had to wait to be scanned.

Your frightfully modern and forward-thinking bank is
making noises about introducing ‘multi-factor authentica-
tion’ – whatever that might be, which they say will fix the
security issues. The ‘multi’ bit sounds like you’re going to
have to write more than one password on the back of your
ATM card, since you’ll never remember more than one.

Your friend’s bank uses EMV smart cards, and you want
to ask her how that works, and then you remember that
she lost her card last month, and really can’t remember
buying all of the stuff that’s appearing on her bank state-
ments. Perhaps smart cards aren’t that smart, especially
since you tend to lose more things than your friend.

Okay, let’s look at a possible alternative solution.
Instead of communicating numbers to the bank or credit

card company, all of which can be intercepted, decrypt-
ed and used by the criminals, what would be really good,
would be some kind of telepathic password, which only
existed in your head.

Since it could be difficult to transit this password telepath-
ically, how about a compromise, where you transmit to your
credit card company, or bank, information about your tele-
pathic password, which only your bank understands?

Credit Card Fraud is a
Thing of The Past
I shop at Target – alongside a hundred million other people,
it would seem.
The difference is, that I’ve never used a credit card there,
which made me sympathise with all of the people who had
their card details stolen.

What you will learn…
• 	 Credit card fraud issue

What you should know…
• 	 Basics of security

Credit Card Fraud is a Thing of The Past

Yes, but the camera, and the malware, would record
what you typed, and use it to get into your account.

Okay, then, how about, if what you typed only worked
once. Then, using the same keystrokes a second time
would be useless. That would work, but how does the
bank know that, what you typed the second time, repre-
sented the same telepathic password? Also, you certainly
wouldn’t want to contact your bank every day, to get a new
method of transmitting your telepathic password, which
we’d better call a ‘keyword’, instead.

How about this, then? Each time you want to access
your account, a popup shows you an alphabet, with a
number under each letter, and you type the numbers, in-
stead of the letters?

Okay, that’s obviously bad because the camera would
pick up the numbers but, what if the numbers were all
scrambled? That’s better, but the camera would still get
you, and the malware would still send them back to some
sociopath who, after a few months, would be able to guess
your password, from the patterns of the numbers.

What about, if there were only two numbers and, what if
there were two alphabets, in upper and lower case? Then
your keyword would be represented by a selection from 52
letters, each letter identified by one of two random digits.

If the pattern of the digits changed randomly, with each
access, then your keyword of “gobbledeygook” could be
“1111010101110” the first time you accessed your account
but, the second time, it could be “1110010001101”.

Instead of calling this a ‘series of digits’, let’s invent a
name, and call it a ‘SteelCode’, which has a nice impreg-
nable sound to it.

Now we’re getting somewhere. Perhaps we should call
it a ‘matrix’, and it could look something like shown on Fig-
ure 1. The camera sees you entering a pattern of 1’s and
0’s, each of which could correspond to any one of 20 or 30
letters. The network snooper sees the numbers, but not
the letters, and the malware sees both, but doesn’t know
what they mean.

Luckily, you took maths in college, and spend a lot of
time in the casino, so you know how to calculate odds,

a d v e r t i s e m e n t

04/201440

Security

and you can see they’re now in your favour, but you still
want them to be better, because you have access to the
company’s payroll account, and would like to make sure
that only the employees get the cash.

What if you had two keywords, and added the num-
bers from the first to the numbers of the second? That
would make it even tougher for the hackers to work out
your keywords.

Something like “gobbledeygook” and “GOBBLEDEY-
GOOK”, would mean adding “1111010101110” to
“0011100000001” which would mean that you would type
“1122110101111”.

Even at 2 o-clock in the morning, you could manage to
do this arithmetic without a calculator, assuming that you
had consumed fewer than ten beers, or so.

This is now getting really interesting, as you consider
more possibilities.

You could further confuse the hackers by, for instance,
adding or subtracting ‘1’ from every digit, or from every
other digit, adding an incrementing number to every digit,
and a host of similar tricks. The only limiting factor would
be how well you think your brain normally works at two
o’clock in the morning.

Now, there is only one piece of information left, that the
hacker knows about your keyword. He knows its length.

Having come this far, you’re not going to be beaten by a
trivial setback like that. When you define your password,
it’s a simple matter to also define, that a certain number of
leading and a (perhaps different) number of trailing digits
are dummies.

Now, when you enter your digits, you add, maybe, two
random digits in front, and, maybe, three random digits at
the end. Now the hacker will be trying to crack the wrong
length password.

Let’s say that the credit card company installs an au-
thentication server, which uses the methods we’ve dis-
cussed. So how does that help the retailer?

Picture the scene, where you’re standing at the point-of
sale terminal at Target, about to pay for the present you
bought for your wedding anniversary. What happens next?

Figure 1. Matrix

They hand you the little terminal device, and you swipe
your card. This is a new kind of card, where the magnet-
ic stripe only contains your user ID on the authentication
server, and a code, describing the credit card company.

The retailer’s POS server sends your user ID to the
credit card company, identified by the code on your card.
The user ID is received by the authentication server,
which sends out a matrix. You fill in the SteelCode, which
is transmitted back to the credit card company.

If the authentication server finds that the SteelCode is
correct, it passes this information to the credit card com-
pany’s usual server, which makes sure that your card
hasn’t expired, and that you have enough credit. Only
then, does it send approval to the retailer.

So, what did all of the hacker’s devices pick up?
They know your user ID, credit card company and what

was in the matrix. They also know the SteelCode that you
typed – and all of this is the only information left in the re-
tailer’s transaction logs.

The SteelCode is useless, since it was only valid in con-
junction with the matrix of the time. The next purchase you
make will have a different matrix, and a different Steel-
Code.

I guess the hackers could wait patiently, and collect ma-
trix and SteelCode data over a period of a few months, in
the hope that you’d be buying stuff every day. When they
had a few hundred samples, they could narrow your key-
word down to a few hundred possibilities. By the time they
got it right, one of two things would have happened.

First, they’d be drawing a retirement pension and, sec-
ond, you’d have changed your keyword.

Try the solution at www.designsim.com.au.

Mark Sitkowski
Design Simulation Systems Ltd
http://www.designsim.com.au

Consultant to Forticom Security
http://www.forticom.com.au

http://www.designsim.com.au
http://www.designsim.com.au
http://www.forticom.com.au

04/201442

Column

With the Recent Announcement of the
Widespread Heartbleed SSL Vulnerability is
it Time to Reconsider who the Troublemakers
Really are?

Unless you have been away from the newspapers,
television or the internet for some time, the wide-
spread media coverage (and to some degree pan-

ic) of this particular coding error in the OpenSSL library
will not have escaped your attention. Due to a fairly trivial
coding oversight, an attacker can compromise any server
running SSL and extract X509 keys, cookie data, user-
names, passwords or even potentially documents. This
affects OpenSSL from versions 1.0.1 through to 1.0.1f – a
vulnerability window of 2 years in the wild.

I’ll be the first to admit then that my optimism in last
month’s column about security matters improving was
probably premature taking into account this latest an-
nouncement. I think in the future I will return to the cynical
position that the only secure computer is one encased in
concrete and dumped in the bottom of the Western Pa-
cific. What is more disturbing is the announcement by
Bloomberg News [1] that the NSA was aware of this ex-
ploit for two years and did not alert the software security
community or OpenSSL. The NSA naturally denied this,
but to paraphrase the immortal words of Mandy Rice-Da-
vies who was embroiled in the UK Porfumo spy scandal in
the 1960’s – “They would, wouldn’t they?”

So let us look at the the anatomy of a bug, particularly
insidious ones like Heartbleed. To start with, the more com-
plex a piece of software, the greater the chances there will
be errors in it. If more than one programmer is working on
a project, the greater the possibility that errors will accu-
mulate. I say “Aluminium” where as State side, it is “Alumi-
num”. One coder will use a for .. each loop, another will use
a do … while loop. Differences in writing style, design and
logic will always plague large projects, even with strict con-
trols in place, as people have a natural or cultural approach
to coding these syntactical and logical errors will creep in.
And that is before we even get down to the nitty-gritty of
genuine bugs, where code has been tested thoroughly and

found to be fit for purpose. The infamous Therac-25 radia-
tion therapy bug that killed patients undergoing radiothera-
py would only arise when the operator pressed an obscure
sequence of keys. The other lesson that was not learned
is that previous versions of the software were reused and
modified. Unfortunately, the earlier version was dependent
on a hardware interlock preventing the fatal sce-
nario. In later versions, the
software acted as the
interlock, and as the
previous fail-safe
masked the true na-
ture of the bug mis-
takes were made.

And so it is today
with the program-
mers’ dependence
on libraries. Best
practice always says
“Don’t reinvent the
wheel” yet how much
confidence can a devel-
oper have on any library?
Human beings make errors,
and even the best program-
ming team in the world can-
not produce 100% reliable,
bug free code that will work
flawlessly under every cir-
cumstance. That is why the
Open Source movement is so
critical in these days of technological
complexity – the community is much
larger than any corporate division and
with peer review the chances of prob-
lems coming to light sooner are much

www.bsdmag.org 43

With the Recent Announcement of...

greater. From a security and code review perspective,
Openness is good, Opacity is bad. That is why, if true,
the failure of the NSA to notify the developers concerning
Heartbleed is so morally and ethically repugnant. While I
fully appreciate the difficulty that is the ethical minefield
of National Security, to me – naively I know – behaving in
this way seems a total betrayal of why the agency is there
in the first place. A cynical colleague once suggested that
a lot of viruses and malware were designed by the An-
ti-virus software manufacturers themselves to keep their
businesses viable. He may have been closer to the truth
than he thought.

So who are the real troublemakers? If a tree falls in a for-
est and there is no-one there to observe it does it make a
sound? Without an attack or extensive research by the se-
curity community, a lot of these errors will remain hidden.
All software has bugs and vulnerabilities. Period. From
the O/S right through to the user interface, the thread of
error runs. While some are more diligent than others in
writing quality systems, we will not reach perfection in this
lifetime no matter how hard we try. The developer using

a third party library trusts the third party. The
end user trusts the IT department

to source the best software for
the purpose at hand. The cus-
tomer trusts the company or
organisation. Like banking,
the IT industry is built upon
layers of trust, and where this
is betrayed, confidence is re-
duced. Unlike banking, the in-
dustry is still young and devel-

oping, so there is hope that we
will grow and mature accord-

ingly. However, our hands are
tied by the disconnect between

the technologists, black hat hack-
ers and the establishment. There are

stringent laws in place with punitive sen-
tences for those that breach the computer

misuse act. If I were to probe a third party SSL
server without the owners’ permission to defin-

itively prove whether or not it was vulnerable to
Heartbleed I could potentially leave myself open to

prosecution in the UK, and no doubt the USA as well.
That seems fair until you realise that > 66% of the servers
out there are probably vulnerable to this bug. Will all these
sys-admins patch their code? What about organisations
that are undergoing fiscal cuts and do not have the tech-
nical resources? To deal with Heartbleed will take a lot of
resources and ideally the internet as a community should

be the one to deal with it by identifying this silent and per-
nicious weakness and lending a helping hand. No wonder
some people on forums are saying “Stay off the Internet”.
If all you have is someone’s word, without empirical evi-
dence, it is a lot to ask when your credit card or personal
details are at stake.

The black hats on the other hand will be having a field
day. The call has already gone out to build an army of
Heartbleed honey traps, but more troubling is the poten-
tial data loss that may have quietly occurred unseen in the
previous two years. There are known knowns. There are
known unknowns. There are unknown unknowns. If I was
a Black hat, and discovered such a vulnerability, I would
make sure I kept very quiet indeed and make hay while
the sun shines. Now that the attack is out in the open, all
bets are off. It will be a straight race between the Black and
White hats with those that are not technologically aware no
doubt accidentally tripping both sides up from time to time.

As an industry, we need to grasp the nettle of ethical
disclosure, and help each other out but unfortunately this
will be a tough call. Walking home one night, I saw a car
parked outside my house with the driver’s door unlocked
and the keys in the ignition. I didn’t recognise the car,
and being an area renowned for joy-riding and car theft, I
checked the car to see if I could find any clue to the own-
ership details. Finding none, I locked the car and phoned
the police to say I had the keys, and would they like me
to drop them off at the police station? Thanking me for my
community spirit, they got in touch with the owner. Unfor-
tunately, it was my next door neighbour, who was fixing
the car for a friend and was duly reprimanded by the own-
er for his carelessness. I didn’t even get a thank you – just
a very gruff “Keys” and an angry glare for my efforts when
he knocked on my door late that night. As the old saying
goes, no good deed ever goes unpunished.

References
• 	 http://www.bloomberg.com/news/2014-04-11/nsa-said-to-have-

used-heartbleed-bug-exposing-consumers.html
• 	 http://www.theguardian.com/technology/2014/apr/12/us-govern-

ment-nsa-denies-aware-heartbleed-internet-bug

Rob Somerville
Rob Somerville has been passionate about technology since his early
teens. A keen advocate of open systems since the mid-eighties, he has
worked in many corporate sectors including finance, automotive, air-
lines, government and media in a variety of roles from technical sup-
port, system administrator, developer, systems integrator and IT man-
ager. He has moved on from CP/M and nixie tubes but keeps a solder-
ing iron handy just in case.

http://www.bloomberg.com/news/2014-04-11/nsa-said-to-have-used-heartbleed-bug-exposing-consumers.html
http://www.bloomberg.com/news/2014-04-11/nsa-said-to-have-used-heartbleed-bug-exposing-consumers.html
http://www.theguardian.com/technology/2014/apr/12/us-government-nsa-denies-aware-heartbleed-internet-bug
http://www.theguardian.com/technology/2014/apr/12/us-government-nsa-denies-aware-heartbleed-internet-bug

04/201444

Reports

Kagurazaka is the old-established town near the
Edo castle, and 6 minutes by train from Akihabara
cyber electronic town. During the Edo period, ma-

ny significant rendezvous are held in Ryoutei – Japanese
traditional restaurant. It is a good place to get some think-
ing done. Now you walk up the long sloping street and find
the conference room in narrow back streets.

This year, over 140 attendees (33% from overseas)
joined the conference.

Keynote Speech

• 	 Bambi Meets Godzilla: They Elope – Open Source
Meets the Commercial World by Eric Allman

• 	 An Overview of Security in the FreeBSD Kernel by
Dr. Marshall Kirk McKusick

FreeBSD

• 	 The Future of LLVM in the FreeBSD Toolchain by Da-
vid Chisnall

• 	 Deploying FreeBSD systems with Foreman and mfs-
BSD by Martin Matuška

• 	 Modifying the FreeBSD kernel Netflix streaming serv-
ers by Scott Long

• 	 Transparent Superpages for FreeBSD on ARM by
Zbigniew Bodek

• 	 How FreeBSD Boots: a soft-core MIPS perspective
by Brooks Davis

ZFS

• 	 OpenZFS ensures the continued excellence of ZFS
on FreeBSD, Linux, and Illumos by Matthew Ahrens

• 	 Snapshots, Replication, and Boot-Environments
– How new ZFS utilities are changing FreeBSD &
PC-BSD by Kris Moore

• 	 ZFS for the Masses: Management Tools Provided by
the PC-BSD and FreeNAS Projects by Dru Lavigne

bhyve

• 	 Visualizing Unix: Graphing bhyve, ZFS and PF with
Graphite by Michael Dexter

• 	 Nested Paging in Bhyve by Neel Natu and Peter Gre-
han

FreeNAS

• 	 Introduction to FreeNAS Development by John
Hixson

NetBSD
• 	 NPF – progress and perspective by Mindaugas Rasi-

ukevicius
• 	 Developing CPE Routers based on NetBSD: Fifteen

Years of SEIL by Masanobu Saitoh and Hiroki Suenaga
• 	 Carve your NetBSD by Pierre Pronchery and Guillau-

me Lasmayous

AsiaBSDCon2014
Report
AsiaBSDCon (http://www.asiabsdcon.org/) is a conference
for users and developers on BSD based systems.
During 13-16 March 2014, the 9th AsiaBSDCon was held at
the Tokyo University of Science in Kagurazaka, Tokyo, Japan.

http://www.asiabsdcon.org/

www.bsdmag.org 45

AsiaBSDCon2014 Report

OpenBSD

• 	 VXLAN(4) and Cloud-based networking with Open-
BSD by Reyk Floeter

OSX

• 	 Adapting OSX to the Enterprise by Jos Jansen

Networking and development

• 	 Netmap as a core networking technology by Luigi
Rizzo

• 	 OpenBGPD turns 10 years – Design, Implementation,
Lessons learned by Henning Brauer

• 	 Implementation and Modification for CPE Routers:
Filter Rule Optimization, IPsec Interface and Ethernet
Switch by Masanobu Saitoh and Hiroki Suenaga

• 	 Bold, fast optimizing linker for BSD by Luba Tang

BSD Associate Exams:

• 	 Analysis of BSD Associate Exam Results by James
P. Brown

BSDA Certification Requirements have been translat-
ed to Japanese and the 1st Japanese version of the BS-
DA certification exam was held at this conference (http://
www.bsdcertification.org/news/bsda-certification-re-
quirements-now-available-in-japanese).

Tutorial

• 	 Networking from the Bottom Up (Packet Processing
Frameworks) by George Neville-Neil

• 	 IPv6 Basics by Massimiliano Stucchi and Philip
Paeps

• 	 Kerberos service operation by Hiroki Sato
• 	 An Introduction to the FreeBSD Open-Source Oper-

ating System by Dr. Marshall Kirk McKusick
• 	 Testing on FreeBSD by Julio Merino

Work-In-Progress session

• 	 FreeBSD Journal
• 	 Porting DTrace to NetBSD/arm
• 	 Improving MII PHY
• 	 Building PKG binaries for #FreeBSD/#RaspberryPi
• 	 https://wiki.freebsd.org/Teams/clusteradm/generic-

mirror-layout

• 	 Simple Shell Script to build a big company’s system
• 	 Writing the ZFS Chapter of the FreeBSD Handbook
• 	 FreeBSD Benkyokai
• 	 FreeBSD Test Suite
• 	 OSv on Bhyve

Developer Summit:

• 	 FreeBSD Developer Summit
• 	 NetBSD Developer Summit
• 	 *BSD Vendor Summit
• 	 NetBSD BOF (https://www.facebook.com/events/727

500413946864/)

BhyveConf: (http://peatix.com/event/30480)
Bhyve masters arrived for AsiaBSDCon weekend on Wednes-
day. Before AsiaBSDCon Day 1, BhyveConf was held in
SAKURA Internet Research Center in Shinjyuku,Tokyo.

• 	 Introduction to Bhyve
• 	 Bhyve Future developments
• 	 Bhyve provisioning and monitoring
• 	 How ScaleEngine Replaced its last CentOS box
• 	 OSv on Bhyve / ruby-virtualmachine
• 	 Introduction to Qubes OS
• 	 mocloudos

AsiaBSDCon is organized by Hiroki Sato and BSD Re-
search (http://www.bsdresearch.org/). There are three
points to drive home regarding this conference.

• 	 Speaker should write the paper, not just give the tech-
nical lecture.

• 	 Keep a creative atmosphere between Speaker and
developer.

• 	 Need more sponsorship and supporters.

AsiaBSDCon2015 will be back in March 2015, Kagu-
razaka, Tokyo. If you have a plan to spend the Easter
holidays in the East, join the conference and have a
great time!

Please contact secretary@asiabsdcon.org if you need sup-
port and/or have a specific question about AsiaBSDCon.

Jun Ebihara

http://www.bsdcertification.org/news/bsda-certification-requirements-now-available-in-japanese
http://www.bsdcertification.org/news/bsda-certification-requirements-now-available-in-japanese
http://www.bsdcertification.org/news/bsda-certification-requirements-now-available-in-japanese
https://wiki.freebsd.org/Teams/clusteradm/generic-mirror-layout
https://wiki.freebsd.org/Teams/clusteradm/generic-mirror-layout
https://www.facebook.com/events/727500413946864/
https://www.facebook.com/events/727500413946864/
http://peatix.com/event/30480
http://www.bsdresearch.org/
mailto:mailto:secretary%40asiabsdcon.org?subject=

	Cover
	Dear Readers
	Contents
	Free Pascal on BSD
	Revision Control Systems and Configuration Management. Part 1
	Deploying NetBSD on the Cloud using AWS EC2: Part 2
	Getting to Grips with the Gimp – Part 3

	Credit Card Fraud is a Thing of The Past
	With Every Business a Target for a Security Attack, are Organisations Finally Grasping the Security
	AsiaBSDCon2014 Report

	http://www:
	iXsystems:
	com/mini: Off

	ixsystems:
	com/ 6: Off

