

High Performance,
High Density Servers for

Data Center, Virtualization, & HPC

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

http://www.iXsystems.com/e5

Key FeatureS

iXr-1204+10G

Dual Intel® Xeon® Processors e5-2600 Family•	
Intel® C600 series chipset•	
Intel® X540 Dual-Port 10 Gigabit ethernet Controllers•	
up to 16 Cores and 32 process threads•	
up to 768GB main memory•	
Four SaS/Sata drive bays•	
Onboard Sata raID 0, 1, 5, and 10•	
700W high-efficiency redundant power supply with •	
FC and PMBus (80%+ Gold Certified)

iXr-22X4IB

Dual Intel® Xeon® Processors e5-2600 Family per node•	
Intel® C600 series chipset•	
Four server nodes in 2u of rack space•	
up to 256GB main memory per server node•	
One Mellanox® ConnectX QDr 40Gbp/s Infiniband w/QSFP •	
Connector per node
12 SaS/Sata drive bays, 3 per node•	
Hardware raID via LSI2108 controller•	
Shared 1620W redundant high-efficiency Platinum •	
level (91%+) power supplies

MODeL: iXr-22X4IB

768GB
of raM in 1u

e5-2600
High-Density iXsystems Servers powered by the
Intel® Xeon® Processor e5-2600 Family and Intel®
C600 series chipset can pack up to 768GB of raM
into 1u of rack space or up to 8 processors - with
up to 128 threads - in 2u.

On-board 10 Gigabit ethernet and Infiniband for Greater
throughput in less rack Space.

Servers from iXsystems based on the Intel® Xeon® Processor E5-2600
Family feature high-throughput connections on the motherboard, saving
critical expansion space. the Intel® C600 Series chipset supports up to
384GB of raM per processor, allowing performance in a single server to
reach new heights. this ensures that you’re not paying for more than you
need to achieve the performance you want.

The iXR-1204 +10G features dual onboard 10GigE + dual onboard
1GigE network controllers, up to 768GB of raM and dual Intel® Xeon®
Processors e5-2600 Family, freeing up critical expansion card space for
application-specific hardware. the uncompromised performance and
flexibility of the iXr-1204 +10G makes it suitable for clustering, high-traffic
webservers, virtualization, and cloud computing applications - anywhere
you need the most resources available.

For even greater performance density, the iXR-22X4IB squeezes four
server nodes into two units of rack space, each with dual Intel® Xeon®
Processors e5-2600 Family, up to 256GB of raM, and an on-board Mellanox®
ConnectX QDr 40Gbp/s Infiniband w/QSFP Connector. the iXr-22X4IB is
perfect for high-powered computing, virtualization, or business intelligence
applications that require the computing power of the Intel® Xeon® Processor
e5-2600 Family and the high throughput of Infiniband.

IXr-1204+10G: 10GbE On-Board

IXr-22X4IB

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the u.S. and other countries.

http://www.ixsystems.com/

High Performance,
High Density Servers for

Data Center, Virtualization, & HPC

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

http://www.iXsystems.com/e5

Key FeatureS

iXr-1204+10G

Dual Intel® Xeon® Processors e5-2600 Family•	
Intel® C600 series chipset•	
Intel® X540 Dual-Port 10 Gigabit ethernet Controllers•	
up to 16 Cores and 32 process threads•	
up to 768GB main memory•	
Four SaS/Sata drive bays•	
Onboard Sata raID 0, 1, 5, and 10•	
700W high-efficiency redundant power supply with •	
FC and PMBus (80%+ Gold Certified)

iXr-22X4IB

Dual Intel® Xeon® Processors e5-2600 Family per node•	
Intel® C600 series chipset•	
Four server nodes in 2u of rack space•	
up to 256GB main memory per server node•	
One Mellanox® ConnectX QDr 40Gbp/s Infiniband w/QSFP •	
Connector per node
12 SaS/Sata drive bays, 3 per node•	
Hardware raID via LSI2108 controller•	
Shared 1620W redundant high-efficiency Platinum •	
level (91%+) power supplies

MODeL: iXr-22X4IB

768GB
of raM in 1u

e5-2600
High-Density iXsystems Servers powered by the
Intel® Xeon® Processor e5-2600 Family and Intel®
C600 series chipset can pack up to 768GB of raM
into 1u of rack space or up to 8 processors - with
up to 128 threads - in 2u.

On-board 10 Gigabit ethernet and Infiniband for Greater
throughput in less rack Space.

Servers from iXsystems based on the Intel® Xeon® Processor E5-2600
Family feature high-throughput connections on the motherboard, saving
critical expansion space. the Intel® C600 Series chipset supports up to
384GB of raM per processor, allowing performance in a single server to
reach new heights. this ensures that you’re not paying for more than you
need to achieve the performance you want.

The iXR-1204 +10G features dual onboard 10GigE + dual onboard
1GigE network controllers, up to 768GB of raM and dual Intel® Xeon®
Processors e5-2600 Family, freeing up critical expansion card space for
application-specific hardware. the uncompromised performance and
flexibility of the iXr-1204 +10G makes it suitable for clustering, high-traffic
webservers, virtualization, and cloud computing applications - anywhere
you need the most resources available.

For even greater performance density, the iXR-22X4IB squeezes four
server nodes into two units of rack space, each with dual Intel® Xeon®
Processors e5-2600 Family, up to 256GB of raM, and an on-board Mellanox®
ConnectX QDr 40Gbp/s Infiniband w/QSFP Connector. the iXr-22X4IB is
perfect for high-powered computing, virtualization, or business intelligence
applications that require the computing power of the Intel® Xeon® Processor
e5-2600 Family and the high throughput of Infiniband.

IXr-1204+10G: 10GbE On-Board

IXr-22X4IB

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the u.S. and other countries.

http://www.ixsystems.com/

05/20134

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Supportive Editor
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Contributing:
Rob Sommerville, Steve Micallef, Michael Shirk, Dru Lavigne,

Carlos Antonio Neira

Top Betatesters & Proofreaders:
Ahmed Aneeth, Radjis Mahangoe, Barry Grumbine,

Bjørn Michelsen, Paul McMath, Eric Geissinger,
Eric De La Cruz Lugo, Imad Soltani, Luca Ferrari,

Ewa Duranc, Annie A. Zhang, Ben Milman, Lisa Liang

Special Thanks:
Denise Ebery
Matt Olander

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak

pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Advertising Sales:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Publisher :
Software Media Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Media Sp z o.o. SK is looking for partners from
all over the world. If you are interested in cooperation with

us, please contact us via e-mail: editors@bsdmag.org.

All trade marks presented in the magazine were used
only for informative purposes. All rights to trade marks

presented in the magazine are reserved by the companies
which own them.

Mathematical formulas created by Design Science
MathType™.

Dear Readers,
May issue of BSD Magazine is dedicated to security matters

with the use of Open Source solutions. On the following
pages, you will find articles about Packet Filter, Jails and tools for
troubleshooting, scanning, and text search.

We start with Rob’s column, where he will discuss the matter of
property laws and how it happens that good solutions are beaten
by technically less advanced ones and perish.

Next, we announce the second release of SpiderFoot– the tool
for spidering web pages. Its author, Steve Micallef, will explain its
features, installation process, and simply how it works.

In the Get Started section, Michael shows step by step how to
configure the firewall to only allow specific traffic to the service jails.

This month’s Dev Corner covers PC-BSD and MidnightBSD.
Kris will teach you more about jail management with Warden and
how to create jails via Hostname / Nickname and change and
assign IP addresses on the fly. Meanwhile Lucas will introduce you
to msearch – a full text search tool, that offers users the ability to
search against filenames or contents of text files.

Then, Dru explores some of the third-party utilities which are
available to help you analyze the log and state table of a PF firewall.

Next, we have the fourth part of Rob’s series on FreeBSD
Programming Primer. This time, sysadmins have an opportunity
to learn how to configure a development environment and write
HTML, CSS, PHP, and SQL code.

In May 2012, we published the article “Intro to Dtrace” by Carlos
Antonio Neira, where he explained the system configuration to
enable DTrace probes and some of this tool’s features. A year later,
he comes back with a much deeper approach...

We hope you will enjoy this issue and find many interesting
articles!

Patrycja Przybylowicz
Editor of BSD Magazine

& BSD Team

www.bsdmag.org 5

Contents

Let’s Talk
Whose Idea is it Anyway?
By Rob Somerville
With Apple fallen from grace as the world’s most

valuable company, how can large technology-based
companies succeed? The current trend for Intellectual
Property laws can only increase the speed at which the
race is towards the bottom...

What’s New
SpiderFoot 2.0: The Open Source
Footprinting Tool
By Steve Micallef

The original version of SpiderFoot was created in 2005
with the goal of being a freely available open source tool
for footprinting an Internet domain name. Version 2.0
was released May 2013 and is completely re-written in
Python with loads of new functionality and is now highly
extensible. The target user-base is penetration testers,
system administrators and security enthusiasts who wish
to gain a better understanding of what a domain name’s
Internet footprint looks like.

Get Started
FreeBSD Jails Firewall with PF
By Michael Shirk

Features are available for fully virtualizing FreeBSD jail
networking (as of FreeBSD 8.x). The code has improved
in the current 9.x code base but to get a jail up and
running with the current install, pf provides the necessary
functionality to firewall off multiple jailed services. This
article will cover basic jails configuration to highlight how
to configure the firewall to only allow specific traffic to the
service jails.

Developer’s Corner
Improvements to Jail Management via
the Warden
By Kris Moore

Over the past few months, several exciting new features
have been added to the Warden which greatly improve
jail management on FreeBSD & PC-BSD systems.Now
the Warden will be able to create jails via Hostname /
Nickname, and change and assign IP addresses on the
fly. This greatly simplifies jail creation via the command-
line, allowing you to create the jail and then set addresses
as needed later.

msearch: MidnightBSD Search
By Lucas Holt

MidnightBSD search, or msearch, is a full text search tool.
It offers the user the ability to search against filenames
or contents of text files. msearch is not meant to replace
other tools like find, locate, or whereis. From this article
you will learn the basic usage of the msearch tool and the
reason why it was written.

How To
Useful Utilities for PF
By Dru Lavigne

PF is a stateful firewall, meaning that it tracks the state of
existing connections in a state table, allowing the firewall
to quickly determine if packets are part of an established
connection. PF also provides a logging facility and the
firewall administrator controls which packets get logged by
including the log keyword in only the firewall rules which
should be logged when matched. This article explores
some of the third-party utilities which are available to help
you analyze the log and state table of a PF firewall.

Admin
FreeBSD Programming Primer – Part 4
By Rob Somerville

In the fourth part of our series on programming, we will
continue to develop our CMS. Here we will examine how a
modern CMS dynamically generates and controls content
and implement a similar model in our PHP code. From
this article you will learn how to configure a development
environment and write HTML, CSS, PHP, and SQL code.

Tips & Tricks
DTrace: A Deeper Approach
By Carlos Antonio Neira

The author of the article “Intro to DTrace”, published in
May 2012 in BSD Magazine, has described DTrace all
the way from configuring your system to enabling DTrace
probes to the point of executing some D scripts to show
you some DTrace features. This article will take a deeper
approach on DTrace.

06

28

20

38

12

16

08

18

05/20136

Let’s Talk

Whose Idea is it
Anyway?

With Apple fallen from grace as the world’s most valuable
company, how can large technology-based companies succeed?
The current trend for Intellectual Property laws can only increase
the speed at which the race is towards the bottom.

Technology is a funny beast. You’d think that inventing the best software,
the most innovative user interface, developing a commitment from your
customer base that is almost religious in its zeal would be enough, but

no. The market – and the technology marketplace in particular – is fickle, yet the
proponents of draconian Intellectual Property (IP) rights fail to grasp this fact. What
is the latest de rigueur soon becomes passé as not only the technology evolves, but
customer expectation rises. The paradox is this: while it takes a tremendous amount
of financial investment to develop new technology, the returns are often quite ran-
dom and defy logic and statistical analysis. Take Betamax over VHS for example.
Technologically VHS was not as advanced as Betamax, yet the underdog won the
battle by having the support of the entertainment industry (partly due to the extra
recording time VHS provided) and reaching the tipping point in the marketplace
before Sony could roll out a 2 hour version. Result? The company that brought
the transistor radio and broadcast quality kit to the world was sorely under-
mined by a more efficient but less innovative manufacturer.

Now it could be argued that this is a strong basis for IP law, but the
problem fundamentally remains – who has the right to an idea? Even
more importantly, who has the right to lay sole claim to something that
will bring major benefits to mankind? Throughout history there seems to
be this “universal consciousness” where ideas arrive via the zeitgeist and
monumental battles arise as to who has the best format, original concept,
or design. Take Edison versus Tesla for example. Time and time again, the
lone inventor is an endangered species when exposed to the power and force
of the marketplace. Likewise, a multinational attempting to cling on to success
based upon a single idea or philosophy is futile – yesterday’s success is no
guarantee of tomorrow’s profitability. The success of the IBM PC was argu-
ably not down to IBM’s innovation, good design, or the fact that they were a
market leader – it was the sweat shops in Asia producing clones untouched
by Western patent law that blew the market right open. Of course, IBM hav-
ing its fingers severely burned jumped on the IP bandwagon with Micro-chan-

www.bsdmag.org 7

Whose Idea is it Anyway?

nel, restricted developers by implementing a licensing pol-
icy and guess what? MCA was dead in the water. Even
Compaq tried with Extended Industry Standard Architec-
ture (EISA) but they could not overcome the juggernaut
that the Industry Standard Architecture (ISA) had become.

Let’s play devil’s advocate with the whole philosophy of
IP. I am paid by my employer to write code, solve prob-
lems, and innovate. Any ideas I come up with and any
code I write belongs to my employer. That’s fair enough in
a 9 to 5 environment. However, being the type of person
that I am (incurable pedant), if my employer has a prob-
lem or my code doesn’t do what it says on the tin, I will
worry about it. I will want to improve it. I am like a dog with
a bone. And that means thinking about it – on the journey
home, in the bath, when I wake up in the morning. My
wife is witness to me sitting bolt upright in bed at 2:00 AM

yelling “You need to compsurf that drive” before set-
tling down to a more passive stage of uncon-

sciousness. Now, I subconsciously solve
the problem in a moment of revelation

when I least expect it at 4:00 AM.
Who has the intellectual property

on that? According to the law-
yers, I am supposed to chal-

lenge my employer and say
it was my idea but as it was
outside of my contractual
hours, I cannot share it
with them. Or maybe
not. The suggestion is
ludicrous, unethical,
and prohibitive, yet this
is where IP is driving
the innovators and the
creatives. I understand
the dilemma that is at
the heart of IP – reward

and recognition. A good
workman is worth his

wages, and credit where
credit is due. How can we

restore the value of the in-
novators, those that suc-
cessfully think outside the
box, in a society where
everybody is a winner?
How can large organiza-

tions profit yet at the same
time protect their invest-

ment? Certainly the digital
age brings huge challenges

in this regard. It takes little cost or effort to copy software,
a customer database, or in the case of Wikileaks, state
secrets. We live in an age where technology is demolish-
ing all the boundaries and traditional rules of ethics and
conceivably the universe. I cannot clone a car in the time
it would take me to clone a credit card, yet potentially the
amount of profit I could make from this (albeit illegally) is
potentially more that the value of a car that would take
one individual months – if not years – to replicate. What is
valuable now – information and power – hasn’t changed,
but the medium and how it is delivered and extracted has.

The last time we had a technological revolution on such
a scale, we were living in the 1400’s. It could be reason-
ably argued that the Protestant Reformation was a direct
consequence of Johannes Gutenberg and the printing
press. The established rule crumbled, and the renais-
sance brought enlightenment and a much needed free-
dom of information exchange. Part of the reason for this
explosion in knowledge was ironically due to the way in-
formation was disseminated prior to the black death –
monks in monasteries were responsible for producing
books, and the church was anxious to control what was
acceptable. The plague reduced the ability to produce
books efficiently, and from an economist’s point of view,
the printing press filled that market need.

Large organizations, like large groups of people – don’t
like change. The flexibility of the small or medium sized
company far outweighs that of the established behe-
moths. All large technology companies must face the fact
that they are not immortal or omnipotent, as history proves
time and again. It’s that fickle marketplace again. Red-
hat has made major inroads into powering major finan-
cial institutions, yet its share price remains a fraction of
Apple Inc. The fact that a business model based on Open
Source can breach the bulwark of the capitalist business
model should be a wake up call to those that believe that
the traditional rules still apply. Technology makes a great
slave but a terrible master. We live in interesting times.

Rob Somerville
Rob Somerville has been passionate about technology since
his early teens. A keen advocate of open systems since the mid
eighties, he has worked in many corporate sectors including fi-
nance, automotive, airlines, government and media in a vari-
ety of roles from technical support, system administrator, de-
veloper, systems integrator and IT manager. He has moved on
from CP/M and nixie tubes but keeps a soldering iron handy
just in case.

05/20138

what’s new

The target user-base is penetration testers, system
administrators and security enthusiasts who wish to
gain a better understanding of what a domain name’s

Internet footprint looks like, and perhaps where there may be
undesirable information leakage from that domain.

What is Footprinting?
In a generic sense, footprinting is the process of under-
standing as much as possible about an entity. In the con-
text of the Internet and specifically SpiderFoot, that entity
is a DNS domain name, for instance, Google.com. Some
people interpret footprinting as port scanning, others as
spidering web pages and so on, but what constitutes a
“complete” footprint is completely open and can actually
change over time.

If you consider what the Internet looked like in the year
2000, the footprint of an Internet domain name would
have included hostnames/sub-domains, IP addresses,
open ports, and others, but it would not have included
anything about social media presence. In the same vein,
the Internet is continually evolving with the addition of rich
data sources that provide a wealth of information about In-
ternet entities that were not available previously or only of-
fered in unstructured form. A lot of that has since changed,
not only resulting in more widely available data, but also
data available as web services, thus making its collection
and analysis more automatable.

How is it Done?
The most basic data source for footprinting is the website
of the entity itself. Simple things like e-mail addresses,
hostnames/sub-domains, web server versions, web serv-
er technologies, and much more can be gathered simply
by fetching web pages from the target, following links, per-
forming some regular expression checks, and analysing
HTTP headers.

But the real power of footprinting is combining data from
one activity with another to come up with a bigger picture. A
simple example is performing a DNS lookup of the entity’s
domain name to get the IP address, then looking up the
IP address in an Internet address registrar (for example,
RIPE, ARIN or APNIC) and from there, determining wheth-
er the entity owns the entire network range that the IP re-
sides on. Then, armed with that information, you can port
scan, banner grab, and so on in order to add to your foot-
print and in turn use the information obtained there (host-
names, software versions, and other data mentioned in
connection banners is one example), to build it up further.

Why Footprint?
Footprinting is not an academic exercise; it is typically the
precursor to a penetration test, enabling the penetration
tester to gain a birds-eye view into what an entity really
looks like at a technical level, what the entry points may
be for the penetration test, dependencies to other entities

SpiderFoot 2.0
The Open Source Footprinting Tool
The original version of SpiderFoot was created in 2005 with the
goal of being a freely available open source tool for footprinting an
Internet domain name. Back then, it was written in C# and only ran
on the Windows platform with fairly limited functionality. Version
2.0 was released May 2013 and is completely re-written in Python
with loads of new functionality and is now highly extensible.

What you will learn…
• 	 What is footprinting, and why is it used?
• 	 What does SpiderFoot do, and how can it be of use to you?
• 	 How to install and use SpiderFoot

What you should know…
• 	 A basic understanding of TCP/IP and how the Internet works would

help, but is not really essential.
• 	 If you’re using SpiderFoot on Linux or *BSD, basic knowledge of Py-

thon might help

www.bsdmag.org 9

SpiderFoot 2.0: The Open Source Footprinting Tool

(ISPs and Hosting providers, for example), and also po-
tential early indicators of points of weakness. Additional-
ly, many large organizations struggle with managing their
network perimeter and having an outside-in view of what
an entity looks like can help gain and maintain visibility.

SpiderFoot
Now that you understand what footprinting is, how it’s do-
ne and why, it’s more meaningful when we say that Spi-
derFoot is a footprinting tool designed to automate the
footprinting process to the fullest extent possible by ex-
tracting information from whatever data can be obtained
freely from the Internet.

Background
When SpiderFoot v0.1b was originally released in 2005, it
used the then-available Google API, Netcraft and website
spidering as methods for building up a footprint, and these
methods were hard-coded into the tool. Despite Google
dropping support for its API and Netcraft blocking access
to much of its data, SpiderFoot continued to be download-
ed and used – clearly a need still existed for automated
footprinting.

Modules
In version 2.0, which is completely modular and entirely
re-written in Python, each method for building up the foot-
print is encapsulated in its own module. In addition, mod-
ules generate each data element identified (i.e. an IP ad-
dress, a web page, etc.) as an “event” that is consumed
by other modules listening for that event. This model en-
ables SpiderFoot to extract “maximum value” out of each
piece of data found. SpiderFoot’s modules, at the time of
writing, are as follows:

• 	 sfp _ dns: Performs a number of DNS checks to ob-
tain IP Addresses and Affiliates.

• 	 sfp _ geoip: Identifies the physical location of IP ad-
dresses identified.

• 	 sfp _ googlesearch: Some light Google scraping to
identify links for spidering.

• 	 sfp _ mail: Identify e-mail addresses in any obtained
web content.

• 	 sfp _ pageinfo: Information about web pages (do they
take passwords, do they contain forms, etc.)

• 	 sfp _ portscan _ basic: Scans for commonly open
TCP ports on IP addresses found.

• 	 sfp _ ripe: Queries RIPE to identify owned netblocks
and other info.

• 	 sfp _ similar: Searches various sources to identify
similar looking domain names.

• 	 sfp _ spider: Spidering of web-pages to extract con-
tent for searching. Probably the most valuable module.

• 	 sfp _ stor _ db: Stores scan results into the back-end
SpiderFoot database. This is modularized for future
scalability purposes. For now it stores results to an in-
ternal SQLite database.

• 	 sfp _ subdomain: Identify hostnames / sub-domain
names in URLs and obtained content.

• 	 sfp _ websvr: Obtain web server banners to identify
versions of web servers and related technology being
used.

• 	 sfp _ xref: Identify whether other domains are associ-
ates (“Affiliates”) of the target.

Going into the inner workings of each module is beyond the
scope of this article, but you can find the source code to
each of them and more at the GitHub link provided below.

Installing
On Linux, *BSD or Solaris, installing and running Spider-
Foot should be a breeze. Provided you have Python 2.6 or
2.7 (Python 3.x support coming soon), all you’ll need are
CherryPy and Mako, two modules SpiderFoot uses for its
web-based interface.

I am using FreeBSD 9.1-RELEASE as an example here,
but if you’re using another BSD, you’ll probably need to
adapt your approach slightly. If you’re using Linux, follow
the instructions in the README file included in the Spider-
Foot package.

Step 1
Install pip if you don’t have it already. This will enable you
to easily install Python packages.

cd /usr/ports/devel/py-pip

make && make install

Step 2
Install SQLite for Python.

cd /usr/ports/databases/py-sqlite3

make && make install

Step 3
Install CherryPy and Mako Python modules.

pip install cherrypy

pip install mako

Step 4
Unpack SpiderFoot into a location of your choice.

05/201310

what’s new

~$ tar zxf spiderfoot-2.x.x-src.tar.gz

~$ cd spiderfoot

Starting
To run SpiderFoot, simply execute sf.py from the direc-
tory you extracted SpiderFoot into:

$ python ./sf.py

Once executed, a web-server will be started, which
by default will listen on 127.0.0.1:5001. You can then
use the web-browser of your choice by browsing to
http://127.0.0.1:5001. You should then see something like
this: Figure 1.

Configuring
With the exception of the IP and Port bound to by the Spi-
derFoot web server, which are set on the command-line,
all other SpiderFoot configuration settings are controlled
in the UI. After clicking on the Settings button in the title
bar, you will be presented with a few global settings fol-
lowed by module-specific settings (Figure 2).

Here you can configure things like the User-Agent string
to use during spidering, the period of time to pause be-
tween web requests, TCP ports to scan, and more. Save
settings keep them persistent between scans even if you
stop and start SpiderFoot completely.

Running Scans
Running a scan is extremely simple – click the New Scan
button in the title bar, then give the scan a descriptive name,
specify the target you want to scan, and then select which
modules you would like enabled or disabled: Figure 3.

Browsing Results
Thanks to the introduction of an SQLite database back-
end in 2.0, scan results are stored – in real time as the
scan progresses – locally in a database file. By clicking
on the Scans button in the title bar, you can see a list of
scans run previously, in addition to the scan you have just
initiated. Click the name of the scan you are interested in
and you will be presented with the data available for that

Figure 1. The SpiderFoot interface after starting it up for the first time

Figure 2. User interface for setting SpiderFoot’s configuration

Figure 3. The SpiderFoot interface for initiating new scans

Figure 4. A list of data elements making up the footprint of a target

www.bsdmag.org

scan. This starts getting populated the moment a scan ini-
tiates; see Figure 4. From here you are then able to “drill
down” into the actual data. Data can also be exported to
CSV format for offline manipulation/analysis if desired by
clicking the blue icon to the right (Figure 5).

Looking Ahead
Hopefully this article has given some insight into the in-
teresting world of footprinting with SpiderFoot. The tool is
still very much in its infancy, but it does the job it is tasked
to do with big plans for new modules and additional core
functionality. Plans for future modules include SSL certifi-
cate checks, identifying the entity’s ISPs (possibly using
Traceroute or BGP tables), and 3rd party integration with
vulnerability scanners and the like, but you can get a full
list on the GitHub project site with the link provided below.

Happy Footprinting!

Steve Micallef
Steve Micallef has been specializing in IT Security for the past 13
years, currently working in a large financial institution. With a
passion for security and for delivering quality security solutions,
Steve has designed, built and delivered global solutions in the
areas of SIEM (Security Information & Event Management), Vul-
nerability Scanning, Data Leakage Prevention and more.
Steve created SpiderFoot with the goal of giving Penetration
Testers a way to automate the more cumbersome and time-con-
suming process of a penetration test – footprinting. He is con-
stantly looking at ways to improve the tool, always with that
goal in mind.

Figure 5. A detailed listing of the data elements (in this case, Web
Servers) from a footprint

On the Web
• 	 http://www.spiderfoot.net – The SpiderFoot website.
• 	 http://github.com/smicallef/spiderfoot – SpiderFoot source

code on GitHub.
• 	 http://twitter.com/binarypool – SpiderFoot twitter feed.

http://www.spiderfoot.net
http://github.com/smicallef/spiderfoot
http://twitter.com/binarypool

05/201312

Get Started

This article will cover basic jails configuration to
highlight how to configure the firewall to only al-
low specific traffic to the service jails. The first thing

that needs to be completed is an install of FreeBSD 9.1
(amd64) with an install of the system source and the ports
tree (See FREEBSD-INSTALL for installation instruc-
tions).To help with the jail configuration, I am using ezjail.
Listing 1 shows how to install the ezjail port and how to
configure a basic jail called “ssh-test”.

The key thing about this configuration is that I am using an
IP on the local interface “127.0.1.1”. ezjail-admin will output
that the interface has not been configured when creating the
jail. Listing 2 demonstrates the configuration to get the jail up
and running on the local interface with an alias on lo0.

Once the system has rebooted, the new jail will be up
and running with the local alias IP “127.0.1.1”. Listing 3
shows the output of the jls command and the alias on the
local interface.

FreeBSD Jails Firewall
with PF
Features are available for fully virtualizing FreeBSD jail
networking (as of FreeBSD 8.x). The code has improved
in the current 9.x code base but to get a jail up and
running with the current install, PF provides the necessary
functionality to firewall off multiple jailed services.

What you will learn…
• 	 Configuration of PF to setup nat and rdr rules for ssh access
• 	 Basic setup of jails using ezjail and the jls and jexec utils

What you should know…
• 	 Basic FreeBSD knowledge to navigate the command line
• 	 Familiarity with PF and navigating the ports system

Listing 1. Install ezjail and setup ssh-test jail. (Note: for the jail creation, em0 is the interface type for a VirtualBox VM. This may be different in
your setup so use the appropriate interface)

cd /usr/ports/sysutils/ezjail/

make -DBATCH install clean

..

(Output from install ezjail port)

echo ‘ezjail_enable=”YES”’ >> /etc/rc.conf

ezjail-admin install

..

(This will take some time, as it creates a base jail)

ezjail-admin create ssh-test ‘em0|127.0.1.1’

Listing 2. Configuring the interface to load up with the jail IP

echo ‘ifconfig_lo0_alias0=”inet 127.0.1.1 netmask 0xffffffff”’ >> /etc/rc.conf

reboot

www.bsdmag.org 13

FreeBSD Jails Firewall with PF

For now, we will setup ssh to automatically start in-
side the jail. In addition, we will create a “test-user” to be
able to login over ssh. Listing 4 shows the commands to
change the default ssh port to 2022, add the test-user and
enable sshd on startup.

At this point, when running from the host operating sys-
tem, you should be able to ssh on port 2022 into the jail.
However, if you wanted to connect in from a remote sys-
tem, the local interface connection would not be available.
This is where pf can be configured to redirect traffic into

the jail. Listing 5 shows a basic pf configuration to provide
NAT redirection for the jail.

The firewall rules essentially take all tcp port 2022 traf-
fic and redirect it to the jailed sshd service. Any traffic sent
back will be NATed on the host interface (em0 in this ex-
ample). The firewall needs to be configured at startup,
which is demonstrated in Listing 6.

The system will reboot and from another remote system
(or the host OS) you should be able to ssh on port 2022
into the jail. Check the above configuration settings if this

Listing 3. Output of jls showing new interface alias and the ssh-test jail up and running. (Note: the jail ID in this configuration is 1, which is
used with the jexec command to run a shell inside the jail)

jls

 JID IP Address Hostname Path

 1 127.0.1.1 ssh-test /usr/jails/ssh-test

ifconfig lo0

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384

 options=600003<RXCSUM,TXCSUM,RXCSUM_IPV6,TXCSUM_IPV6>

 inet6 ::1 prefixlen 128

 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5

 inet 127.0.0.1 netmask 0xff000000

 inet 127.0.1.1 netmask 0xffffffff

 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

jexec 1 tcsh

root@ssh-test:/ # ls

.cshrc COPYRIGHT bin dev lib media proc root sys usr

.profile basejail boot etc libexec mnt rescue sbin tmp var

root@ssh-test:/ #

Listing 4. Changing the default port for sshd and enable it on startup for the jail.

root@ssh-test:/ # sed -i ‘’ ‘s/^.*Port 22.*$/Port 2022/g’ /etc/ssh/sshd_config

root@ssh-test:/ # echo ‘sshd_enable=”YES”’ >> /etc/rc.conf

root@ssh-test:/ # pw user add -n test-user -s /bin/csh -m

root@ssh-test:/ # passwd test-user

Changing local password for test-user

New Password:

Retype New Password:

root@ssh-test:/ # /etc/rc.d/sshd start

..

(Output from the SSH key generation)

root@ssh-test:/ # sockstat -4

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS

root sshd 1301 3 tcp4 127.0.1.1:2022 *:*

root sendmail 1141 3 tcp4 127.0.1.1:25 *:*

root syslogd 1087 6 udp4 127.0.1.1:514 *:*

root@ssh-test:/ # exit

#

(You should be out of the jail for the next steps.)

05/201314

Get Started

Listing 5. /etc/pf.conf configuration for redirecting remote traffic
to jailed services. (Note: adjust the $ext_if according to the interface
type you are using.)

ext_if=”em0”

SSHTEST=”127.0.1.1”

nat all jail traffic

nat pass on $ext_if from $SSHTEST to any -> ($ext_if)

port 2022 is redirected to the jail

rdr pass on $ext_if proto tcp from any to any port 2022

-> $SSHTEST port 2022

port 22 on host

pass in log on $ext_if inet proto tcp from any to port

22 flags S/SA

pass out log on $ext_if proto tcp all keep state flags S/

SA

Listing 6. /etc/rc.conf configuration for enabling pf on startup.

echo ‘pf_enable=”YES”’ >> /etc/rc.conf

echo ‘pf_rules=”/etc/pf.conf”’ >> /etc/rc.conf

echo ‘pf_program=”/sbin/pfctl”’ >> /etc/rc.conf

echo ‘pf_flags=””’ >> /etc/rc.conf

reboot

Listing 7. Running ssh to remotely connect into the jail.

$ ssh -p2022 test-user@192.168.58.120

Password:

Last login: Mon May 06 17:24:04 2013 from 192.168.58.1

FreeBSD 9.1-RELEASE (GENERIC) #0 r243825: Tue Dec 4

09:23:10 UTC 2012

Welcome to FreeBSD!

Before seeking technical support, please use the

following resources:

o Security advisories and updated errata information

for all releases are

 at http://www.FreeBSD.org/releases/ - always consult

the ERRATA section

 for your release first as it’s updated frequently.

o The Handbook and FAQ documents are at http://www.

FreeBSD.org/ and,

 along with the mailing lists, can be searched by

going to

 http://www.FreeBSD.org/search/. If the doc package

has been installed

 (or fetched via pkg_add -r lang-freebsd-doc, where

lang is the

 2-letter language code, e.g. en), they are also

available formatted

 in /usr/local/share/doc/freebsd.

If you still have a question or problem, please take the

output of

`uname -a’, along with any relevant error messages, and

email it

as a question to the questions@FreeBSD.org mailing list.

If you are

unfamiliar with FreeBSD’s directory layout, please refer

to the hier(7)

manual page. If you are not familiar with manual pages,

type `man man’.

Edit /etc/motd to change this login announcement.

test-user@ssh-test:/home/test-user %

is not working. Listing 7 shows the output of remotely log-
ging into the jail with ssh. This is only a basic configuration
for providing services within a jail. If you include the ports
system for the jail, additional software can be added to
provide web services and any other basic services. Using

pf, all services can be provided to external connections
while at the same time authorizing only the necessary
ports for jail access giving additional security for services.

Michael Shirk
Michael Shirk is a BSD zealot who has worked with OpenBSD and
FreeBSD for over 7 years. He works in the security community and
supports Open Source security products that run on BSD operat-
ing systems. Michael is the Chief Executive Manager of Daemon
Security Inc., a company which provides security solutions utiliz-
ing the BSD operating systems: http://www.daemon-security.com

References
• 	 FREEBSD-INSTALL: http://www.freebsd.org/doc/handbook/

bsdinstall.html
• 	 Jails: http://www.freebsd.org/doc/handbook/jails.html
• 	 ezjail: http://erdgeist.org/arts/software/ezjail/

http://www.daemon-security.com
http://www.freebsd.org/doc/handbook/bsdinstall.html
http://www.freebsd.org/doc/handbook/bsdinstall.html
http://www.freebsd.org/doc/handbook/jails.html
http://erdgeist.org/arts/software/ezjail/

BSDCAN 2013

BSDCAN 2013

WHERE

15-16 May – tutorials
17-18 May – conference

WHO

All who are working on and with 4.4BSD
based operating systems and related
projects.

VENUE

University of Ottawa
http://www.uottawa.ca/

AT FEES YOU CAN AFFORD

We plan to keep to a minimum. As such, the
conference will be held at University of Ottawa
and accommodation is available within the
University residences. Hotels are also within
close walking distance of the conference
venue.

WHAT DOES IT COST?

Type CAD
Individual $195
Corporate $350
Additional Corporate $175
Student $60
Tutorial (per half day) $60
University of Ottawa Staff&Student $45

Take the BSDA Certification exam.
For details see

http://bsdcertification.org/

•	 A NetBSD based Tracking Radar
•	 FreeBSD Kernel Security
•	 Automating the deployment of FreeBSD

& PC-BSD
•	 Backup and Restore with Bacula
•	 Benchmarking FreeBSD
•	 Switching from Linux to FreeBSD
•	 DNSSec: Troubleshooting and

Deployment
•	 Embedding NetBSD: VOIP applications
•	 FreeBSD, Capsicum, GELI and ZFS
•	 FreeBSD Doc Sprint
•	 FreeBSD storage options
•	 Hands-on bhyve, the BSD Hypervisor
•	 Introduction to pkgsrc
•	 MCLinker BSD
•	 Making FreeBSD Ports
•	 Managing FreeBSD at scale
•	 Modern package management
•	 Mozilla on OpenBSD
•	 OpenIKED
•	 Runtime Process Infection
•	 The BSD ISP
•	 Buffer Cache in OpenBSD
•	 Wireless networking - mobile, gigabit and

beyond
•	 Complexity of checksums in TCP/IP

High value. Low cost. Something for everyone.

BSDCan 2013 – The event to be at this year

THE BEST EVENT OF 2013
http://www.bsdcan.org/

16 05/2013

Developers Corner

Historically the Warden has always organized its
collections of jails via a primary IP address. This
was functional but not the optimal point of refer-

ence when dealing with large quantities of jails on a sys-
tem. Thanks to some recent cooperation between the PC-
BSD & FreeNAS teams, this has been done away with
and improved.

Now the Warden will be able to create jails via Host-
name / Nickname, and change and assign IP addresses
on the fly. This greatly simplifies jail creation via the com-
mand-line, allowing you to create the jail and then set ad-
dresses as needed later.

warden create myjail

warden set ipv4 myjail 192.168.0.25/24

warden set ipv6 myjail fe80::8a89:a5ff:fe52:ad19

In addition to being able to set both a primary Ipv4 and
Ipv6 address, jails can also include a number of oth-
er addresses. Any number of aliases for both Ipv4 and
Ipv6 can be set, along with the default router for Ipv4 &
Ipv6. The Warden is also now configured to automati-
cally use the VNET option, giving each jail its own virtu-
al network stack. This includes giving jails their own net-
work interface and can allow a wider variety of services

to run behind a jailed interface. Because of this feature,
the Warden will require that your kernel is compiled with
the VIMAGE option enabled. Users of PC-BSD & TrueOS
rolling-release will be able to update to this kernel via the
normal freebsd-update mechanisms. With these new
features brings new options which can be set via the
command-line:

warden set myjail alias-ipv4 192.168.0.200/24

warden set myjail bridge-ipv4 192.168.0.2/24

# warden set myjail alias-bridge-ipv4 192.168.0.3/24	

Along with new virtual networking functionality, the War-
den also has a few new tricks up its sleeve. For PC-BSD
& TrueOS 9.1 and higher users, we have begun build-
ing and maintaining our own full package repository us-
ing pkgng. When creating standard jails, the Warden will
handle automatically boot-strapping the pkgng package
and repository.

Should this process be unable to complete, such as
on a system with no internet connectivity, or be cor-
rupted by a well-meaning end user, it can be re-run at
any time:

warden bspkgng myjail

Improvements to Jail
Management via the
Warden®
Over the past few months, several exciting new features have been
added to the Warden which greatly improve jail management on
FreeBSD & PC-BSD systems.

www.bsdmag.org 17

Improvements to Jail Management via the Warden

www.bsdmag.org

Improvements to Jail Management via the Warden

Another long-requested feature was the ability for the
Warden to manage setting various permissions and flags
for a jail and handle user-supplied nullfs mounts. These
can both be easily configured per-jail by using the “set
flags” and “fstab” options respectively.

warden set myflags myjail allow.raw_sockets=true

warden fstab myjail

All of these new features and options are also fully ex-
portable. This will allow you the ability to provision a jail
on your PC-BSD workstation, either via the command-

line or GUI. Once you have finished the initial configura-
tion and testing of your jail, you can then easily export it
to a single archive file. This export file can then be taken
to another system, such as FreeNAS, and then imported.

warden export myjail –dir=/exports

warden import /exports/myjail.wdn

At the time of this writing many of these changes are al-
so being implemented into the Warden’s Graphical In-
terface. As easy as the command-line flags may be, the
GUI takes it a step further, making jail creation and man-
agement possible without having to remember or look up
a single command.

So what is next for the Warden? Even with these new
features still hot off the press, there are other improve-
ments waiting in the wings. One of these will be the abil-
ity to create and manage various jail “templates”. This will
allow you to build a jail template for a particular FreeBSD
release (say you have a product which needs to run on
8.3). By creating the 8.3 template, you will be able to cus-
tomize it with software or configuration options specific to
your needs. Then when it comes time to build jails, you
will be given the option of using the latest release or your
own jail template. Stay tuned to BSD Magazine for more
details on this in a future issue.

Kris Moore
Kris Moore is the founder and lead developer of PC-BSD. He lives
with his wife and four children in East Tennessee, USA and enjoys
building custom PC’s and gaming in his (limited) spare time. He
can be reached at: kris@pcbsd.org.

Figure 1. The jails IPv4 configuration

Figure 2. Setting jail permissions

18 05/2013

Developers Corner

msearch: MidnightBSD
Search
A few years ago, I was trying to find a file on my
MidnightBSD desktop system. I couldn’t remember the
name, but knew there was a specific phrase in it. I could use
the grep command to find the file, but it would take time.

What you will learn…
• 	 the history of the msearch tool and why it was written,
• 	 basic usage of the msearch tool

What you should know…
• 	 how to install MidnightBSD or download a virtual machine image

I thought about how quickly Apple’s Spotlight works in
Mac OS X. I also considered how terrible most open
source full text search engines operate. I decided to

write my own search tool to make searching for files easier.

Using MidnightBSD Search
MidnightBSD search, or msearch is a full text search tool.
It offers the user the ability to search against filenames or
contents of text files.

msearch is not meant to replace other tools like find, lo-
cate or whereis.

Table 1. msearch option flags

Command Description
-c Print the match count only.

-l <number> Limit the number of results

-r Print the ranking information with full text results

-t Perform a full text search rather than just using
filenames

-z Print pathnames separated by an ASCII NUL
character rather than a newline.

How Does MidnightBSD Search Work?
Files on the system are indexed weekly from a period-
ic script that runs an indexing program. The indexes are
used by the command line tool when executing searches.

Indexing in action
msearch.index indexes files on the system by determin-
ing if the file is a text file using libmagic, reading the first
20KB of the file and loading it into the full text indexer. The
results are stored in SQLite databases; they are stored in
/var/db/msearch.

Listing 1. Example search queries

Filename based search, limited to 10 results.

msearch -l 10 msearch

/usr/bin/msearch

/usr/include/msearch.h

/usr/lib/libmsearch.a

/usr/lib/libmsearch_p.a

/usr/lib/libmsearch.so.1

/usr/lib/libmsearch.so

/usr/libexec/msearch.index

Text based search

msearch -t “Lucas Holt”

/usr/local/mailman/archives/public/midnightbsd-

users/2007-August.txt

/usr/local/mailman/archives/public/midnightbsd-

users/2011-February.txt

/usr/local/mailman/archives/public/midnightbsd-

kernel/2008-September.txt

www.bsdmag.org

The msearch.db file contains a list of filenames, own-
ership information, sizes, and other general metadata.
msearch_full.db contains the full text search data.

Turn on msearch indexing
Indexing is enabled by adding weekly_msearch_

enable=”YES” to /etc/periodic.conf. If you have many
files, it is recommended to have at least a few gigabytes
of free space on the /var mount point.

Once the index has been generated for the first time,
you will be able to use msearch to find files.

Extending MidnightBSD Search
msearch is built on top of a shared library, libmsearch,
that allows developers to integrate search functionality in-
to their own applications. Functions for creating and ma-
nipulating indexes, as well as performing searches are in-
cluded.

Consult the msearch.h header file for a complete list of
functions.

Future Directions
Following the 0.4-RELEASE of MidnightBSD, I plan to
write a graphical application to extend searching and a
new indexer. Scalability is a concern with regard to in-
dex storage size. Creating an indexing daemon would al-
low the index to maintain fresh. This would require use of
kqueue or porting inotify from Linux.

Summary
msearch is an easy to use full text search tool for Mid-
nightBSD. It allows users to quickly search text files on
their system.

Lucas Holt
Lucas Holt is the founder of the MidnightBSD project and a Se-
nior Application Programmer/Analyst for the University of Mich-
igan in Ann Arbor, MI, USA.

On the Web
•	 http://www.midnightbsd.org/ – MidnightBSD Project website,
•	 http://www.midnightbsd.org/cgi-bin/cvsweb.cgi/src/lib/libm-

search/ – msearch library.

Glossary
•	 msearch
•	 sqlite

http://www.midnightbsd.org/
http://www.midnightbsd.org/cgi-bin/cvsweb.cgi/src/lib/libmsearch/
http://www.midnightbsd.org/cgi-bin/cvsweb.cgi/src/lib/libmsearch/
https://register.bsdcertification.org//register/payment
http://www.bsdcertification.org/
https://register.bsdcertification.org//register/get-a-bsdcg-id

05/201320

How To

Useful Utilities for PF
This article explores some of the third-party utilities which
are available to help you analyze the log and state table of a
PF firewall.

What you will learn…
• 	 How to view the PF state table in real time
• 	 How to convert the PF log to HTML format or graph format

What you should know…
• 	 How to restart PF
• 	 How to install third-party software on your BSD system

The PF firewall is developed by the OpenBSD Proj-
ect. PF has also been ported to FreeBSD, NetBSD,
and DragonFly BSD. You can learn more about PF

and its features in the PF User’s Guide at http://www.
openbsd.org/faq/pf/.

PF is a stateful firewall, meaning that it tracks the state
of existing connections in a state table, allowing the fire-
wall to quickly determine if packets are part of an es-
tablished connection. PF also provides a logging facility
and the firewall administrator controls which packets get
logged by including the log keyword in only the firewall
rules which should be logged when matched.

PF provides the pfctl utility for displaying the state ta-
ble and the built-in tcpdump utility can be used to view the
PF log. In addition to these tools, some third-party pack-
ages can be installed on BSD systems. These can be
used to manipulate information from the state table and
the PF logging facility in order to get a different view on
what is happening with the firewall. This article provides

an overview of the following utilities: pftop, pflogx, and
pfstat. These utilities were tested on a PC-BSD system
and the utilities were installed using FreeBSD packages.
This article assumes that you already know how to restart
PF and how to install software on your BSD system using
packages, ports, or pkgsrc.

pftop

• 	 Website: http://www.eee.metu.edu.tr/~canacar/pftop/
• 	 Availability: pkgsrc, FreeBSD and OpenBSD packages
• 	 Description: provides real time display of PF state ta-

ble and rule statistics

This utility is similar to top as it provides a real time, co-
lumnar display. However, instead of displaying the top
processes running on the system, it displays real time
information about the current connections in the PF
state table.

Listing 1. pfctl View of State Table

pfctl -s states
all tcp 192.168.1.71:19348 → 204.152.184.134:21 ESTABLISHED:ESTABLISHED
all tcp 192.168.1.71:34852 → 204.152.184.134:42342 ESTABLISHED:ESTABLISHED
all udp 192.168.1.71:5353 → 224.0.0.251:5353 SINGLE:NOTRAFFIC
(snip rest of output...)

http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/
http://www.eee.metu.edu.tr/~canacar/pftop/

05/201322

How To

Figure 1. Default pftop Display

Figure 2. Viewing Loaded Rules Using pfctl

www.bsdmag.org 23

Useful Utilities for PF

Typically, the state table is read using pfctl as seen in
the following example. This output is from a PC-BSD sys-
tem that is downloading a PBI using AppCafe.

Figure 1 shows the same state table. This time, the dis-
play is generated by typing pftop.

In order, the columns in this default view list the proto-
col (TCP or UDP), the direction (into the system or out of
the system), the source address and socket, the destina-
tion address and port, the state of the connection, the age
of the connection, how long until that connection expires
from the state table, the number of packets in that connec-
tion, and the number of bytes transferred.
pftop also provides a view for displaying which rules are

currently loaded. First, Figure 2 shows which firewall rules
have been loaded using the built-in pfctl.

Next, Figure 3 shows the same rules, this time viewed
using pftop. This display adds information such as the
number of packets, bytes, and established connections
(states) associated with each rule.
pftop also provides an interactive mode where key-

strokes can be used to modify the view, sort the column
order, change the number of lines to display, and to pause
or restart the display. Display filters can also be created
using tcpdump syntax. Refer to pftop(8) for details.

pflogx

• 	 Website: http://akldev.free.fr/pflogx/
• 	 Availability: FreeBSD and OpenBSD packages
• 	 Description: generates an XML file from a PF log

which can then be optionally transformed into HTML
or csv format

PF writes its logs in a binary format, meaning that they
cannot be read using head, tail, more, less, or an editor.
While the logs can be read in real time using the com-
mand tcpdump -n -e -ttt -i pflog0, it is sometimes con-
venient to convert the logging information to another for-
mat in order to study it and analyze trends. pflogx ren-
ders the PF log in XML format and includes the ability to
transform the XML into HTML or csv format. Optionally,
the generated XML file can be passed to other third-par-
ty tools for conversion to other formats.

In order to use pflogx, the PF logging module must be
loaded and at least one rule in the PF rulebase must in-
clude the log keyword. You can double-check that log en-
tries exist by typing pflogx -i /var/log/pflog. As seen in
this example, this command displays the log entries to the
screen: Listing 2.

Figure 3. Viewing Loaded Rules Using pftop

http://akldev.free.fr/pflogx/

05/201324

How To

To instead save the log to an XML file, after the input
(-i /var/log/pflog), specify the name of the output file
(-o filename.xml).

Optional filters can be placed between the input and out-
put. They can be defined by action (-a pass or -a drop), di-
rection (-d in, -d out, or -d in-out), protocol (-p icmp, -p
ip, -p tcp, or -p udp), and interface (-n interface_name).

If a filter is not included, all packets in the input log file
will be generated to the output XML file. Several filter ex-
amples can be found in the README file that is installed
with pflogx.

The package installs several XSLT files which are used
to transform the XML file to HTML, XHTML, or csv format.
To transform a generated XML file, copy it to the directory

Listing 2. Sample XML File

pflogx -i /var/log/pflog
<?xml version=”1.0” encoding=”UTF-8”?>
<pflogx version=”0.86” >
<logs>
<log date=”2013-04-23 12:43:48.261661” if=”em0” action=”drop” rule=”2” direction=”in” protocol=”udp” src_

adr=”205.233.73.201” src_port=”123” dest_adr=”192.168.1.71” dest_port=”123” />
<log date=”2013-04-23 12:44:24.41857” if=”em0” action=”drop” rule=”2” direction=”in” protocol=”(2)” src_

adr=”192.168.1.254” src_port=”” dest_adr=”224.0.0.1” dest_port=”” />
<log date=”2013-04-23 12:46:29.44070” if=”em0” action=”drop” rule=”2” direction=”in” protocol=”(2)” src_

adr=”192.168.1.254” src_port=”” dest_adr=”224.0.0.1” dest_port=”” />
<log date=”2013-04-23 12:47:50.298105” if=”em0” action=”drop” rule=”2” direction=”in” protocol=”udp” src_

adr=”192.168.1.71” src_port=”138” dest_adr=”192.168.1.255” dest_port=”138” />
<log date=”2013-04-23 12:47:50.298145” if=”em0” action=”drop” rule=”2” direction=”in” protocol=”udp” src_

adr=”192.168.1.71” src_port=”138” dest_adr=”192.168.1.255” dest_port=”138” />
(rest of output snipped....)

Figure 4. Sample PF log in HTML Format

05/201326

How To

containing these files. On a FreeBSD or PC-BSD system,
these files are located in /usr/local/share/examples/
pflogx/. In the generated XML file, the first line should be:

<?xml version=”1.0” encoding=”UTF-8”?>

Insert a second line that contains the name of the XSLT
file. For example, to transform to HTML, add this line:

<?xml-stylesheet type=”text/xsl” href=”export_html.xsl”?>

Save the edit and you should now be able to view the XML
file in a web browser, as seen in the example in Figure 4.

pflogx provides a merge option (-m) which can be used
to append new log entries to an existing XML file, allowing
you to visualize the transformed log over time.

pfstat

• 	 Website: http://www.benzedrine.cx/pfstat.html
• 	 Availability: pkgsrc, FreeBSD and OpenBSD packages
• 	 Description: automatically generates graphs from PF

statistics

If you prefer to visualize the PF logs in a graph format,
install pfstat. Once installed, create its log directory and
log file if they do not exist:

mkdir /var/log/pflog

touch /var/log/pflog/pflog

Next, create a configuration file named /usr/local/etc/
pfstat.conf. This file controls which graphs get creat-
ed. A comprehensive file with comments on the various
graphs it creates can be downloaded from http://www.
benzedrine.cx/pfstat.conf. The following example shows
a simpler configuration file which creates two graphs:
one displays bandwidth in bits per second and the oth-
er charts the state table. Edit the text in red to point to
an existing directory path. The filename (e.g. bandwidth.
jpg) should not already exist in the specified directory as
pfstat will generate it for you.

Next, type crontab -e as the superuser to edit the root
user’s crontab. Add the following line:

*/5 * * * * /usr/local/bin/pfstat -q >> /var/log/pfstat

Listing 3. Sample pfstat Configuration

more /usr/local/etc/pfstat.conf
 collect 1 = interface “em0” pass bytes in ipv4 diff
 collect 2 = interface “em0” pass bytes out ipv4

diff
 image “/usr/home/dru/bandwidth.jpg” {
	 from 7 days to now
	 width 1000 height 400
	 left
		 graph 1 bps “in” “bits/s” color 0 192 0

filled
	 right
		 graph 2 bps “out” “bits/s” color 0 0 255
 }
 collect 3 = global states entries
 image “/usr/home/dru/states.jpg” {
	 from 12 months to now
	 width 800 height 200
	 left
		 graph 3 “states” “entries” color 200 0 0
 }

Figure 5. Sample Graph

http://www.benzedrine.cx/pfstat.html
http://www.benzedrine.cx/pfstat.conf
http://www.benzedrine.cx/pfstat.conf

www.bsdmag.org

This instructs pfstat to query the logging interface ev-
ery five minutes and to store the received logging infor-
mation in its own database, which it uses to generate
graphs.

Finally, add this line to the beginning of /etc/pf.conf
in order to set the logging interface. Replace em0 with the
name of the interface you wish to collect statistics on. Re-
start the PF firewall after saving this edit.

set loginterface em0

Wait a bit (at least five minutes) to allow pfstat to add
logging information to its database. The amount of infor-
mation added to the database will depend upon how of-
ten a logged rule matches the criteria you have config-
ured pfstat to graph.

Whenever you want to generate a graph, type pfstat
-p. This instructs pfstat to read the entries in its data-
base and to generate the images to the locations that you
specified in /usr/local/etc/pfstat.conf. Figure 5 shows
a sample /usr/home/dru/bandwidth.jpg from the configu-
ration file above, after running pfstat for one day on a
home desktop system.

pfstat(8) provides some more information on how to use
pfstat, remove old entries from the database, and query
a remote host running pfstatd.

Summary
pftop, pflogx, and pfstat can be used to help the admin-
istrator visualize the traffic flowing through a PF firewall.
These utilities are easy to install and configure. If you are
using the PF firewall, consider adding them to your admin-
istrative toolkit.

Dru Lavigne
Dru Lavigne is author of BSD Hacks, The Best of FreeBSD Basics,
and The Definitive Guide to PC-BSD. As Director of Communi-
ty Development for the PC-BSD Project, she leads the documen-
tation team, assists new users, helps to find and fix bugs, and
reaches out to the community to discover their needs. She is the
former Managing Editor of the Open Source Business Resource,
a free monthly publication covering open source and the com-
mercialization of open source assets. She is founder and cur-
rent Chair of the BSD Certification Group Inc., a non-profit orga-
nization with a mission to create the standard for certifying BSD
system administrators, and serves on the Board of the FreeBSD
Foundation.

05/201328

admin

In the early days of the World Wide Web, HTML pag-
es were literally handcrafted masterpieces of content.
Before applications such as Dreamweaver arrived that

allowed content providers to design attractive pages with
the ease of a document produced in a word processor, it
was a matter of writing copious amounts of HTML for each
page, checking that the links and the HTML were correct,
and repeating for each page. This model was highly inef-
ficient, as not only was a lot of the HTML repeated across
pages, the chances of errors coming in and either caus-
ing the page to render incorrectly or pointing to the wrong
address became greater as the site grew. Managing a
website with 100 pages is possible; a website with 10,000
pages a nightmare.

The complex sites we see today on the Internet would
be impossible without the Content Management System.
Yet even now, large innovative sites are moving away
from the CMS model toward frameworks that consider the
locally provided content to be only a part of the website
with 3rd party content supplying a significant proportion of
the content.

While the technology meets the ethos of the web in
that data can be shared freely, it poses the web designer
and brand manager with a huge challenge – how can
we take disparate pieces of content and serve these in
a “wrapper” that to our website visitors appears as if it
seamlessly represents our brand values? How can we

divorce the business process from the presentation? Is
it possible for a website to develop a unique “personal-
ity” while at the same time remaining fresh, dynamic and
easily changeable?

These hurdles are being overcome with the use of CSS
(Cascading Style Sheets) and templating technologies.
While the CSS manages the color, fonts, size, etc. of the
content, templates allow us to adjust the order and vis-
ibility of the content. For example, we want to generate
widely different content (both from a stylized and literal

FreeBSD Programming
Primer – Part 4
In the fourth part of our series on programming, we will
continue to develop our CMS. Here we will examine how a
modern CMS dynamically generates and controls content
and implement a similar model in our PHP code.

What you will learn…
• 	 How to configure a development environment and write HTML,

CSS, PHP, and SQL code

What you should know…
• 	 BSD and general PC administration skills

Figure 1. Page generation process

05/201330

admin

content perspective) depending on website section, page
number and content type. See Figure 1 – Page genera-
tion process.

MySQL Interface
As it is important that we can quickly test our CMS, for
those that would prefer the “Cut, Paste and Click” ap-
proach rather than managing long SQL statements via
the command line, you can use a lightweight web-based
database manager. The lightest of these (a single PHP
page) is Adminer. An alternative is SQL buddy, and either
of these can be quickly installed if desired by download-
ing the archive and extracting into a folder under the /usr/
home/dev/data. The web-based interface can then be ac-
cessed from: http://myserver/dirname. See Table 1 – Use-
ful links.

Adding New Content Types
At the moment, we only have one content type – a page.
This is stored in the pages table and holds the following
content as shown in Table 1.

Table 1. Page content from MySQL pages table

id title h1 body
1 My first page Page header Lorem ipsum dolor sit amet,

consectetur adipiscing elit.
Mauris interdum auctor tellus
sed dignissi...

This results in the following output as seen in Figure 2.
Now let us create a second page in our database:

Method 1 – Via CLI

 $ mysql -uroot -p’cms-password’;

 mysql> use freebsdcms;

 mysql> INSERT INTO `pages` (`title`, `h1`, `body`)

 -> VALUES (‘My second page’, ‘H1’, ‘2’);

Figure 2. Our first page

Method 2 – Via saved SQL statement
If you prefer, create a SQL file createpage2.sql in the SQL
directory with the following content:

 USE freebsdcms;

 INSERT INTO `pages` (`title`, `h1`, `body`)

 VALUES (‘My second page’, ‘H1’, ‘2’);

Then execute this at the command line:

$ mysql -uroot -p’cms-password’ < createpage2.sql

Method 3 – Via Adminer / SQL Buddy
Alternatively use the SQL command function in Adminer
to execute the following SQL statement:

 INSERT INTO `pages` (`title`, `h1`, `body`)

 VALUES (‘My second page’, ‘H1’, ‘2’);

Houston, We Have a Problem
We now have two pages in our database, but index.php
still contains the following code:

 // Build page - use first record in database

 $page[‘id’] = 1;

 buildpage($page);

This hard-wires index.php to only serve a page with an
ID of 1. Depending on the URL passed to the webserver,
we want to serve that type of content. For example http://
mysite/pages/1 will serve a page with an ID of 1, where-
as http://mysite/faqs/1 will serve an FAQ with an ID of 1,
etc. Visiting http://mysite will return the home page (Page
1). This leads us to the next problem – where do we
store the content types? We could include this in a sep-
arate MySQL table, but this would require an addition-
al SQL query to be executed every time a page is load-
ed. As content types will not be changed very often, we
can create another include file that defines our content

http://myserver/dirname
http://myserver/dirname
http://myserver/dirname
http://myserver/dirname
http://myserver/dirname

www.bsdmag.org 31

FreeBSD Programming Primer – Part 4

Listing 1. content.inc

<?php

/*

 *

 * content.inc

 * Defines content types for our CMS

 *

 */

// Define the content type. This must match any tables

defined in our

// CMS

$content_types[] = ‘page’;

$content_types[] = ‘faq’;

$content_types[] = ‘news’;

// Map each content type to a table. Each content type

must be matched

// to a corresponding table

$content_tables[‘page’] = ‘pages’;

$content_tables[‘faq’] = ‘faqs’;

$content_tables[‘news’] = ‘news’;

Listing 2. pages_template.inc

<?php

/*

 *

 * pages_template.inc

 * Template for our page content type

 *

 * For content type foo the corresponding template would be:

 * foo_template.inc

 *

 * To display a field:

 * render($theme[‘name_of_field_as_defined_in_db’]);

 *

 * To hide a field omit it from here

 * To change the rendering order, just re-order the fields

 *

 * NOTE: Any content generated by javascript will not be

managed here

 * A closing ?> tag is mandatory

 *

 */

render($theme[‘title’]);

render($theme[‘debug’]);

render($theme[‘h1’]);

render($theme[‘timestamp’]);

render($theme[‘body’]);

render($theme[‘licence’]);

?>

Listing 3. index.php replacement code

// First we need to parse the URL that was passed to us

to extract the

// id and the content type.

$URI = $_SERVER[‘REQUEST_URI’];

if($URI == ‘/’){

 // If this is a request to root (/) redirect to page 1

 $request = array(‘pages’,1);

 buildpage($request);

}else{

 // Parse the request, if it is valid get the content

from our DB

 $request = parse_request($URI);

 if(!is_null($request)){

 buildpage($request);

 }else{

 echo “Invalid request”;

 }

}

Listing 4. core.inc replacement code

function buildpage($request) {

 // Content definitions

 require INCLUDES.’content.inc’;

 // Routes our incoming request to the right content

type and pulls

 // the content from out DB.

 $content_type = $request[0];

 $id = $request[1];

 $template_file = TEMPLATES . $content_type . ‘_

template.inc’;

 // Build the SQL and get the result

05/201332

admin

 $sql = “SELECT * FROM $content_type WHERE id=’$id’ LIMIT 1”;

 $result = mysql_select($sql);

 // Check we have some content to display

 if($result[0] == 0){

 echo ‘No data’;

 return;

 }

 // Check we have a template file

 if(!file_exists($template_file)){

 echo ‘No template’;

 return;

 }

 // Don’t write any output to browser yet as we want

to post process

 // our content using a theme. If enabled use our

optimization

 // callback to remove white space etc.

 ob_start(“optimize_callback”);

 // Output our page header

 outfile(TEMPLATES . ‘header.inc’);

 // Create our body

 echo wraptag(‘title’, $result[‘title’]);

 echo HEAD;

 echo BODY;

 // Generate a unique ID based on content type

 // Map the requested content type from our real table name

 $ct = array_search($content_type, $content_tables);

 echo ‘<div id=”’.$ct.’”>’;

 // If we are in debug mode, show an alert

 if(DEBUG){

 $theme[‘debug’] = div(‘¶’, ‘’, ‘debug’);

 }

 // Dump the title & id out to our theme template

 $theme[‘id’] = $result[‘id’];

 $theme[‘title’] = $result[‘title’];

 // As we don’t know how many fields we will have in

our content

 // type after our id, iterate through each in turn and wrap

 // the field with a div

 $offset = $result[1] - 1;

 $pos = 0;

 foreach($result as $key => $value){

 if($pos > $offset){

 $theme[$key] = div($result[$key], $key.’-’.$id, $key);

 }

 $pos ++;

 }

 // Add our standard copyright notice

 $theme[‘licence’] = div(ahref(COPYRIGHT, LICENCE, ‘Copyright and

 licence details’),’’,’licence’);

 // Include our template file

 require_once($template_file);

 // Close our content type tag

 echo ‘</div>’;

 // Output our HTML page footer

 outfile(TEMPLATES . ‘footer.inc’);

 // Flush it all out and display

 ob_end_flush();

}

www.bsdmag.org 33

FreeBSD Programming Primer – Part 4

Listing 5. core.inc additional code

 function parse_request($URI){

 // Returns the type of content and the ID

 // of the content requested.

 // parse_request(/page/1)

 // $array[‘page’][1]

 // parse_request(/rubbish/123456)

 // NULL

 // Content definitions

 require_once INCLUDES.’content.inc’;

 $ct = NULL;

 $id = NULL;

 $valid = 0;

 // Fetch the parameters from the URL

 $array = explode(‘/’,$URI);

 // We don’t need the first ‘/’ - delete the first

empty

 // array item

 $a = array_shift($array);

 // Check we have 2 parameters

 $paramcount = count($array);

 if($paramcount == 2){

 // First test passed - We have 2 parameters

 $valid ++;

 $ct = $array[0];

 $id = $array[1];

 }

 if(in_array($ct,$content_types)){

 // If content type matches our list second test

passed

 $valid ++;

 // Map the requested content type to our real

table name

 $array[0] = $content_tables[$ct];

 }

 if(is_numeric($id)){

 // If ID is a number, third test passed

 $valid ++;

 }

 if($valid == 3){

 // Valid parameters passed, return content type

and page ID

 return $array;

 }else{

 // Test failed - return NULL

 return NULL;

 }

}

function optimize_callback($buffer){

 // Replace all spaces and cruft between tags

 if(OPTIMIZE){

 $b = preg_replace(‘~>\s+<~’, ‘><’, $buffer);

 $b = preg_replace(‘/\r\n|\r|\n/’,’’,$b);

 $b = preg_replace(‘!\s+!’, ‘ ‘, $b);

 return $b;

 }

}

05/201334

admin

Listing 6. mysql.inc replacement code

<?php

/*

 *

 * mysql.inc

 * Contains MySQL functions for our CMS

 *

 */

function mysql_select($sql) {

$db = new mysqli(DBSERVER, DBUSER, DBPASSWORD, CMSDB);

if($db->connect_errno > 0){

 die(‘Unable to connect to database [‘ .

$db->connect_error . ‘]’);

}

if(!$result = $db->query($sql)){

 if(DEBUG){

 die(‘There was an error running the query

[‘.$db->error.’]’);

 }else{

 die(‘’);

 }

}

// Pass our results to an array to be returned

$r = array();

$r[] = $result->num_rows; // No of rows returned

$r[] = $db->field_count; // No of columns in table

$r[] = $db->affected_rows; // No of rows affected e.g.

update / delete

// Append the results to our result count

if($result->num_rows != 0){

 $r = array_merge($r, $result->fetch_array(MYSQLI_

ASSOC));

}

// Free the result

$result->free();

// Close the connection

$db->close();

return $r;

}

Figure 3. Using Adminer to execute SQL statement

Your donations have helped make FreeBSD
the best OS available! By investing in
the services provided by The FreeBSD
Foundation you have helped us fund projects
to keep FreeBSD a high-performance,
secure, and stable OS.

What will the Foundation accomplish with your
donation in 2013?

•	Software development projects for FreeBSD:
$600,000.

•	Paid staff time supporting Release
Engineering and Security teams.

•	Grow staff: Five technical staff members by
year-end.

•	Provide support for BSD conferences
around the globe, in Europe, Japan, Canada,
and the USA.

•	Hardware to maintain and improve FreeBSD
project infrastructure: $130,000.

•	FreeBSD community growth through
marketing and outreach to users and
businesses.

•	Legal services and counsel protecting the
FreeBSD trademarks.

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system. Our mission is to continue and increase
our support and funding to keep FreeBSD at the forefront of
operating system technology. But, we can’t do this without
your help!

Last year with your generosity, we raised over $770,000. This year we will invest $1,000,000
to support and promote FreeBSD.

We have kicked off the new year with three newly funded projects, and are actively
soliciting additional project proposals.

Please support the Foundation during our Spring Fundraising Drive, and help us raise
$100,000 from 1000 donors between April 15th and May 30th.

Make your donation today. Go to:
www.freebsdfoundation.org/donate

Then talk to your employer
about matching your gift— or

making their own donation.

Find out more, visit:

05/201336

admin

types. We can then automatically use a custom template
depending on the content type to post process our spe-
cific content.

First of all, we need to make some modifications to
Apache so that it serves our index.php page as default.
Edit the line in /usr/local/etc/apache22 /httpd.conf to
match the following:

 DirectoryIndex index.php

Find the section marked <Directory “/usr/local/www/

apache22/data”> and add the following:

 #

 # Redirect on error via our CMS

 #

 ErrorDocument 401 /index.php

 ErrorDocument 403 /index.php

Listing 7. html.inc replacement code

<?php

/*

 *

 * html.inc

 * Contains core html functions for our CMS

 *

 */

function wraptag($tag, $text) {

 // Wraps $text with compliant tags

 // wraptag(‘p’,sometext)

 // <p>sometext</p>

 return ‘<’ . $tag . ‘>’ . $text . ‘</’ . $tag . ‘>’;

}

function div($divcontent, $class, $id = ‘’) {

 // Generates a div tag $text with compliant tags

 // div(‘content’,’class’)

 // <div class=”class”>content</div>

 // div(‘content’,’class’,’id’)

 // <div id=”id” class=”class”>content</div>

 // div(‘content’,’’,’id’)

 // <div id=”id”>content</div>

 // div(‘content’,’’,’’)

 // <div>content</div>

 if ($id != ‘’) {

 $id = ‘ id=”’ . $id . ‘”’;

 }

 if ($class != ‘’) {

 $class = ‘ class=”’ . $class . ‘”’;

 }

 return ‘<div’ . $id . $class .’>’ .

 $divcontent . ‘</div>’;

}

function ahref($text, $url, $title = ‘’) {

 // Generates an href tag $text with compliant tags

 // ahref(‘Click here’,freebsd.org)

 // <a href=”http://freebsd.org” title=”Click

here”>Click here

 // ahref(‘Click here’,freebsd.org,’Link title’)

 // <a href=”http://freebsd.org” title=”Link

title”>Click here

 if ($title == ‘’) {

 $title = $url;

 }

 $ahref = ‘<a href=”’ . $url . ‘” title=”’ . $title

 . ‘”>’ . $text . ‘’;

 return $ahref;

}

function render($field){

 // Renders via template

 echo $field;

}

www.bsdmag.org 37

FreeBSD Programming Primer – Part 4

 ErrorDocument 404 /index.php

 ErrorDocument 500 /index.php

This will force all traffic to be passed to our index.php for
processing. As root, delete our unwanted files then re-
start Apache:

$ rm /home/dev/data/index.xhtml

$ rm /home/dev/data/index.html

$ apachectl restart

When you visit http://mysite or http://mysite/, page 1
should be displayed. Now for the modifications that will
facilitate content type routing and theme control. Create
a file in the includes directory called content.inc with the
content from Listing 1.

Create the following template file pages_template.inc in
the templates directory shown in Listing 2.

Remove the following section entirely from index.php:

// Build page - use first record in database

$page[‘id’] = 1;

buildpage($page);

Replace with the one shown in Listing 3. Remove entire-
ly the function call buildpage($page) from core.inc. Re-
place with the code shown in Listing 4. Add the function
calls from Listing 5 to the end of core.inc.

Replace html.inc with Listing 7. Append the following to
cms.inc:

// Optimize output by removing white space between tags etc.

define(“OPTIMIZE”, true);

Testing and Adding New Content
That is a lot of code we have added, but we now have a
major jump in functionality. We can create any number of
content types now by creating a new table (e.g. faq, news,
etc.) The only essential fields we must define are ID and
TITLE. After these two fields you may define as many or
as few as you require. You will need to create a match-
ing template file with the fields you want to display or else
the content will be unable to render. Once you have add-
ed new records to your content type (Adminer makes this
quick and easy), the content can be accessed via your
browser at: http://mysite/mycontenttype/mypageid. If you
attempt to access invalid content, you will be presented
with a rudimentary error message.

In the next article in the series, we will look at theming in
detail and how we can lay out the site using a combination
of templates and CSS.

Rob Somerville
Rob Somerville has been passionate about technology since his
early teens. A keen advocate of open systems since the mid-eight-
ies, he has worked in many corporate sectors including finance,
automotive, airlines, government and media in a variety of roles
from technical support, system administrator, developer, systems
integrator and IT manager. He has moved on from CP/M and nixie
tubes but keeps a soldering iron handy just in case.

Useful Links
• 	 SQL buddy – http://sqlbuddy.com
• 	 Adminer – http://www.adminer.org

Errata
In the previous article of this series the following syntax was
incorrect:

 #dev mysql -u root password ‘cms-password’ <

createdb.sql

 #dev mysql -u root password ‘cms-password’ < createpagetbl.sql

 #dev mysql -u root password ‘cms-password’ < createpage.sql

It should have read:

 #dev mysql -u root -p’cms-password’ < createdb.sql

 #dev mysql -u root -p’cms-password’ < createpagetbl.sql

 #dev mysql -u root -p’cms-password’ < createpage.sql

Our apologies.

http://mysite/
http://mysite/
http://mysite/
http://mysite/
http://mysite/
http://mysite/
http://mysite/
http://sqlbuddy.com/
http://sqlbuddy.com/
http://sqlbuddy.com/
http://sqlbuddy.com/
http://sqlbuddy.com/
http://www.adminer.org/
http://www.adminer.org/
http://www.adminer.org/
http://www.adminer.org/
http://www.adminer.org/
http://www.adminer.org/
http://www.adminer.org/

05/201338

Tips & Tricks

The processing and buffering of all probe data takes
place in the DTrace kernel module. Each probe
definition is composed of the four elements sepa-

rated by colons. The general form is:

provider:module:function:name

Provider
A provider is a DTrace kernel module, which logically
groups together various probes that are related. Exam-

ples of providers in DTrace include: fbt, which instruments
kernel functions; pid, which instruments userland pro-
cesses; and syscall which instruments system calls.

Module
A module is the program location of the group of probes.
This could be the name of a kernel module where the
probes exist, or it could be a userland library. Example
modules are the libc.so library or the ufs kernel module.

Function
Specifies the specific function which this probe should fire
on. This could be something like a particular function in a
library such as printf() or strcpy().

Name
This is usually the meaning of the probe. Sample names
are “entry“ or “return” for a function or “start” for an I/O
probe. For instruction level tracing, this field specifies the
offset within the function. Understanding this allows you to
understand the purpose of a particular probe. You can list
all the probes on a DTrace instrumented system by provid-
er by running the dtrace –l command. It will list the probes
in the format described above. If one of them is missing, it
will be taken as a wildcard. It could be written as:

provider::function:name or provider:*:function:name

DTrace
A Deeper Approach
In my article “Intro to DTrace”, published in May 2012 in BSD
Magazine, I described DTrace all the way from configuring
your system to enabling DTrace probes to executing some
D scripts in order to show you some DTrace features. This
article will take a deeper approach to DTrace.

Table 1. D Macro Variables

Name Description Reference
$[0-9]+ macro arguments look at macros

$egid effective group-ID getegid(2)

$euid effective user-ID geteuid(2)

$gid real group-ID getgid(2)

$pid process ID getpid(2)

$pgid process group ID getpgid(2)

$ppid parent process ID getppid(2)

$projid project ID getprojid(2)

$sid session ID getsid(2)

$target target process ID see target process id

$taskid task ID gettaskid(2)

$uid real user-ID getuid(2)

05/201340

Tips & Tricks

Table 2. DTrace Built-in Variables

Type and Name Description
int64_t arg0, ..., arg9 The first ten input arguments to a probe represented as raw 64-bit integers. If fewer than ten arguments are

passed to the current probe, the remaining variables return zero.

args[] The typed arguments to the current probe, if any. The args[] array is accessed using an integer index, but each
element is defined to be the type corresponding to the given probe argument. For example, if args[] is referenced by
a read(2) system call probe, args[0] is of type int,args[1] is of type void *, and args[2] is of type size_t.

uintptr_t caller The program counter location of the current thread just before entering the current probe.

chipid_t chip The CPU chip identifier for the current physical chip.

processorid_t cpu The CPU identifier for the current CPU.

cpuinfo_t *curcpu The CPU information for the current CPU.

lwpsinfo_t *curlwpsinfo The lightweight process (LWP) state of the LWP associated with the current thread. This structure is described
in further detail in the proc(4) man page.

psinfo_t *curpsinfo The process state of the process associated with the current thread. This structure is described in further
detail in the proc(4) man page.

kthread_t *curthread The address of the operating system kernel’s internal data structure for the current thread, the kthread_t.
The kthread_t is defined in<sys/thread.h>. Refer to Solaris Internals for more information on this variable and
other operating system data structures.

string cwd The name of the current working directory of the process associated with the current thread.

uint_t epid The enabled probe ID (EPID) for the current probe. This integer uniquely identifies a particular probe that is
enabled with a specific predicate and set of actions.

int errno The error value returned by the last system call executed by this thread.

string execname The name that was passed to exec(2) to execute the current process.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is the system-wide unique identifier for the probe as published by
DTrace and listed in the output of dtrace -l.

uint_t ipl The interrupt priority level (IPL) on the current CPU at probe firing time. Refer to Solaris Internals for more
information on interrupt levels and interrupt handling in the illumos operating system kernel.

lgrp_id_t lgrp The latency group ID for the latency group of which the current CPU is a member.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string probefunc The function name portion of the current probe’s description.

string probemod The module name portion of the current probe’s description.

string probename The name portion of the current probe’s description.

string probeprov The provider name portion of the current probe’s description.

psetid_t pset The processor set ID for the processor set containing the current CPU.

string root The name of the root directory of the process associated with the current thread.

uint_t stackdepth The current thread’s stack frame depth at probe firing time.

id_t tid The thread ID of the current thread. For threads associated with user processes, this value is equal to the
result of a call to pthread_self(3C).

uint64_t timestamp The current value of a nanosecond timestamp counter. This counter increments from an arbitrary point in the
past and should only be used for relative computations.

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread’s saved user-mode register values at probe firing time. Use of the uregs[] array is discussed in

uint64_t vmregs[] The current thread’s active virtual machine register values at probe firing time.

uint64_t vtimestamp The current value of a nanosecond timestamp counter that is virtualized to the amount of time that the
current thread has been running on a CPU, minus the time spent in DTrace predicates and actions. This counter
increments from an arbitrary point in the past and should only be used for relative time computations.

uint64_t walltimestamp The current number of nanoseconds since 00:00 Universal Coordinated Time, January 1, 1970.

www.bsdmag.org 41

DTrace
: A Deeper Approach

Macro Variables
The D compiler defines a set of built-in macro variables
that you can use when writing D programs or interpreter
files. Macro variables are identifiers that are prefixed with
a dollar sign ($) and are expanded once by the D compiler
when processing your input file. The D compiler provides
the following macro variables, shown in Table 1.

Built-in Variables
Table 2 provides a complete list of D built-in variables. All
of these variables are scalar global variables; no thread-
local or clause-local variables or built-in associative ar-
rays are currently defined by D.

Macro Arguments
The D compiler also provides a set of macro variables cor-
responding to any additional argument operands speci-
fied as part of the dtrace command invocation. These
macro arguments are accessed using the built-in names
$0 for name of the D program file or dtrace command, $1
for the first additional operand, $2 for the second operand,
and so on. If you use the dtrace -s option, $0 expands to
the value of the name of the input file used with this op-
tion. For D programs specified on the command-line, $0
expands to the value of argv[0] used to exec DTrace itself.

For example:

#!/usr/sbin/dtrace -s

syscall::write:entry

/pid == $1/

{

}

Target Process ID
Use the $target macro variable to create scripts that can
be applied to a particular user process of interest that is
selected on the DTrace command line using the -p option
or created using the -c option. The D programs specified
on the command line or using the -s option are compiled
after processes are created or grabbed and the $target
variable expands to the integer process-ID of the first
such process. For example, the following D script could
be used to determine the distribution of system calls ex-
ecuted by a particular subject process:

syscall:::entry

/pid == $target/

{

	 @[probefunc] = count();

}

Subroutines
Subroutines differ from actions because they generally
only affect internal DTrace state. Therefore, there are no
destructive subroutines, and subroutines never trace data
into buffers. Many subroutines have analogs in the Sec-
tion 9F or Section 3C interfaces...

alloca

void *alloca(size_t size)

alloca allocates size bytes out of scratch space, and re-
turns a pointer to the allocated memory. The returned
pointer is guaranteed to have 8–byte alignment. Scratch
space is only valid for the duration of a clause. Memory
allocated with alloca will be deallocated when the clause
completes. If insufficient scratch space is available, no
memory is allocated and an error is generated.

basename

string basename(char *str)

basename is a D analogue for basename(1). This sub-
routine creates a string that consists of a copy of the
specified string, but without any prefix that ends in /. The
returned string is allocated out of scratch memory, and
is therefore valid only for the duration of the clause. If in-
sufficient scratch space is available, basename does not
execute and an error is generated.

bcopy

void bcopy(void *src, void *dest, size_t size)

bcopy copies size bytes from the memory pointed to by src
to the memory pointed to by dest. All of the source memo-
ry must lie outside of scratch memory and all of the desti-
nation memory must lie within it. If these conditions are not
met, no copying takes place and an error is generated.

cleanpath

string cleanpath(char *str)

cleanpath creates a string that consists of a copy of the
path indicated by str, but with certain redundant ele-
ments eliminated. In particular /./ elements in the path
are removed, and /../ elements are collapsed. The col-
lapsing of /../ elements in the path occurs without regard
to symbolic links. Therefore, it is possible that cleanpath-

05/201342

Tips & Tricks

could take a valid path and return a shorter, invalid one.
For example, if str was /foo/../bar and /foo was a sym-
bolic link to /net/foo/export, cleanpath would return the
string /bar even though bar might only be in /net/foo
not/. This limitation is due to the fact that cleanpath is
called in the context of a firing probe, where full symbol-
ic link resolution or arbitrary names is not possible. The
returned string is allocated out of scratch memory, and is
therefore valid only for the duration of the clause. If insuf-
ficient scratch space is available, cleanpath does not ex-
ecute and an error is generated.

copyin

void *copyin(uintptr_t addr, size_t size)

copyin copies the specified size in bytes from the spec-
ified user address into a DTrace scratch buffer and re-
turns the address of this buffer. The user address is in-
terpreted as an address in the space of the process as-
sociated with the current thread. The resulting buffer
pointer is guaranteed to have 8-byte alignment. The ad-
dress in question must correspond to a faulted-in page
in the current process. If the address does not cor-
respond to a faulted-in page, or if insufficient scratch
space is available, NULL is returned, and an error is
generated. See Chapter 33, User Process Tracing for
techniques to reduce the likelihood of copyin errors.

copyinstr

string copyinstr(uintptr_t addr)

copyinstr copies a null-terminated C string from the
specified user address into a DTrace scratch buffer and
returns the address of this buffer. The user address is in-
terpreted as an address in the space of the process as-
sociated with the current thread. The string length is lim-
ited to the value set by the strsize option. As with copy-
in, the specified address must correspond to a faulted-
in page in the current process. If the address does not
correspond to a faulted-in page, or if insufficient scratch
space is available, NULL is returned and an error is gen-
erated.

copyinto

void copyinto(uintptr_t addr, size_t size, void *dest)

copyinto copies the specified size in bytes from the
specified user address into the DTrace scratch buffer

specified by dest. The user address is interpreted as an
address in the space of the process associated with the
current thread. The address in question must correspond
to a faulted-in page in the current process. If the address
does not correspond to a faulted-in page, or if any of the
destination memory lies outside scratch space, no copy-
ing takes place and an error is generated.

dirname

string dirname(char *str)

dirname is a D analogue for dirname(1). This subroutine
creates a string that consists of all but the last level of the
pathname specified by str. The returned string is allocat-
ed out of scratch memory, and is therefore valid only for the
duration of the clause. If insufficient scratch space is avail-
able, dirname does not execute and an error is generated.

lltostr

string lltostr(long long num)

string lltostr(long long num, int base)

lltostr is a D analogue for strtoll(). This subroutine cre-
ates a string that represents the value of num. If base is
specified, then num is interpreted in that base.

msgdsize

size_t msgdsize(mblk_t *mp)

msgdsize returns the number of bytes in the data message
pointed to by mp. See msgdsize(9F) for details. msgdsize only
includes data blocks of type M _ DATA in the count.

msgsize

size_t msgsize(mblk_t *mp)

msgsize returns the number of bytes in the message
pointed to by mp. Unlike msgdsize, which returns only the
number of data bytes, msgsize returns the total number
of bytes in the message.

mutex_owned

int mutex_owned(kmutex_t *mutex)

mutex _ owned is an implementation of mutex _ owned(9F).
mutex _ owned returns non-zero if the calling thread cur-

http://dtrace.org/guide/chapter33.html#chp-user

www.bsdmag.org

rently holds the specified kernel mutex or zero if the
specified adaptive mutex is currently unowned.

mutex_owner

kthread_t *mutex_owner(kmutex_t *mutex)

mutex _ owner returns the thread pointer of the current
owner of the specified adaptive kernel mutex. mutex _

owner returns NULL if the specified adaptive mutex is
currently unowned or if the specified mutex is a spin mu-
tex. See mutex _ owned(9F).

mutex_type_adaptive

int mutex_type_adaptive(kmutex_t *mutex)

mutex _ type _ adaptive returns non-zero if the specified
kernel mutex is of type MUTEX _ ADAPTIVE, or zero if it is
not. Mutexes are adaptive if they meet one or more of
the following conditions:

• 	 The mutex is declared statically
• 	 The mutex is created with an interrupt block cookie of NULL
• 	 The mutex is created with an interrupt block cookie

that does not correspond to a high-level interrupt

See mutex _ init(9F) for more details on mutexes. The
majority of mutexes in the illumos kernel are adaptive.

progenyof

int progenyof(pid_t pid)

progenyof returns non-zero if the calling process (the
process associated with the thread that is currently trig-

Table 3. SPARC uregs[] Constants

Constant Register
R_G0..R_G7 %g0..%g7 global registers

R_O0..R_O7 %o0..%o7 out registers

R_L0..R_L7 %l0..%l7 local registers

R_I0..R_I7 %i0..%i7 in registers

R_CCR %ccr condition code register

R_PC %pc program counter

R_NPC %npc next program counter

R_Y %y multiply/divide register

R_ASI %asi address space identifier register

R_FPRS %fprs floating-point registers state

05/201344

Tips & Tricks

gering the matched probe) is among the progeny of the
specified process ID.

rand

int rand(void)

rand returns a pseudo-random integer. The number re-
turned is a weak pseudo-random number and should not
be used for any cryptographic application.

rw_iswriter

int rw_iswriter(krwlock_t *rwlock)

rw _ iswriter returns non-zero if the specified read-
er-writer lock is either held or desired by a writer. If the
lock is held only by readers and no writer is blocked or if
the lock is not held at all, rw _ iswriter returns zero. See
rw _ init(9F).

rw_write_held

int rw_write_held(krwlock_t *rwlock)

rw _ write _ held returns non-zero if the specified read-
er-writer lock is currently held by a writer. If the lock is
held only by readers or not held at all, rw _ write _

heldreturns zero. See rw _ init(9F).

speculation

int speculation(void)

speculation reserves a speculative trace buffer for
use with speculate and returns an identifier for this
buffer.

strjoin

string strjoin(char *str1, char *str2)

strjoin creates a string that consists of str1 concate-
nated with str2. The returned string is allocated out of
scratch memory and is therefore valid only for the dura-
tion of the clause. If insufficient scratch space is avail-
able, strjoin does not execute and an error is generated.

strlen

size_t strlen(string str)

Table 4. x86 uregs[] Constants

Constant Register
R_CS %cs

R_GS %gs

R_ES %es

R_DS %ds

R_EDI %edi

R_ESI %esi

R_EBP %ebp

R_EAX %eax

R_ESP %esp

R_EAX %eax

R_EBX %ebx

R_ECX %ecx

R_EDX %edx

R_TRAPNO %trapno

R_ERR %err

R_EIP %eip

R_CS %cs

R_ERR %err

R_EFL %efl

R_UESP %uesp

R_SS %ss

Table 5. amd64 uregs[] Constants

Constant Register
R_RSP %rsp

R_RFL %rfl

R_RIP %rip

R_RAX %rax

R_RCX %rcx

R_RDX %rdx

R_RBX %rbx

R_RBP %rbp

R_RSI %rsi

R_RDI %rdi

R_R8 %r8

R_R9 %r9

R_R10 %r10

R_R11 %r11

R_R12 %r12

R_R13 %r13

R_R14 %r14

R_R15 %r15

www.bsdmag.org 45

DTrace
: A Deeper Approach

strlen returns the length of the specified string in bytes,
excluding the terminating null byte.

tolower

string (char *str)

tolower returns a new string which is the lowercase ver-
sion of str.

toupper

string (char *str)

toupper returns a new string which is the uppercase ver-
sion of str.

Creating Debugging Tools
First Case Scenario
Let’s suppose we have an application that segfaults when
trying to execute and instruction at address 0x40404040,
this is clearly an overflow. With DTrace, we can stop the
program before it crashes trying to execute the instruction
at this address. This allows us to carry out data collection
and analysis, such as printing CPU register values, func-
tion parameters, dumping memory:

#/usr/sbin/dtrace -s

pid$target:a.out::return

 / uregs[R_EIP] == 0x40404040 / {

 printf(“I’m going to crash !!!”);

 printf(“Module: %s Function %s”,probemod, probefunc);

@[ustack(10)]=count(); // 10 deep userland stack

}

Here is where R _ EIP constant came from:

uregs[] Array

The uregs[] array enables you to access individual us-
er registers. The following tables list indices into the
uregs[] array corresponding to each supported Solaris
system architecture. On AMD64 platforms, the uregs ar-

ray has the same content as it does on x86 platforms,
plus the additional elements listed in Table 5. The aliases
listed in Table 6 can be used on all platforms.

Second Case Scenario
You want to take a look at every string that is being writ-
ten, as you have encountered that a file that has been cor-
rupted by the word “COW”.

syscall::write:entry

{

 if(copyinstr(arg1) == “COW”)

 {

 printf(“ some one wrote COW “);

 ustack(); //--> check user stack

 }

}

Third Case Scenario
Let’s check malloc return pointer and size requested. Nice
for quick debugging

pid$target::malloc:entry{

 self->trace = 1;

 self->size = arg0;

}

pid$target::malloc:return

/self->trace == 1/

{

	 ustack(1);

	 printf(“malloc return: <ptr=0x%p> <size=%d>”, arg1, self->size);

	 self->trace = 0;

	 self->size = 0;

}

Hope this was as useful for you as it was for me! Now it’s
just a matter of really what you want to look at with DTrace.

Carlos Antonio Neira
Carlos Antonio Neira is a C, Unix and Mainframe developer. He de-
velops in asm and does some kernel development for a living. In
his free time he contributes to open source projects. Apart from
that, he spends his time on testing and experimenting with his ma-
chines. What gives him a a lot of enjoyment is solving old problems
with new ideas. You may reach him at: cneirabustos@gmail.com.

Table 6. Common uregs[] Constants

Constant Register
R_PC program counter register

R_SP stack pointer register

R_R0 first return code

R_R1 second return code

References
• 	 http://dtrace.org/
• 	 https://wikis.oracle.com/display/DTrace
• 	 http://bsdmag.org/magazine/1800-bsd-security-protect-your-bsd

http://dtrace.org/
https://wikis.oracle.com/display/DTrace
http://bsdmag.org/magazine/1800-bsd-security-protect-your-bsd

Next issue is coming
in June!

In the next issue:

• 	Basic Applications in BSD OS

• 	FreeBSD in Xen Cloud Platform

• 	OSSEC on NanoBSD

http://www.ixsystems.com/perfectmatch?utm_source=BSD%2BAD&utm_medium=Magazine&utm_campaign=BSD%2BMag%2BAd

	Cover
	Dear Readers
	Contents
	Whose Idea is it Anyway?
	SpiderFoot 2.0 The Open Source Footprinting Tool
	FreeBSD Jails Firewall with PF
	Improvements to Jail Management via the Warden
	msearch: MidnightBSD Search
	Useful Utilities for PF
	FreeBSD Programming Primer - Part 4
	DTrace A Deeper Approach

	http://www:
	ixsystems:
	com/ 2: Off
	com/ 4:

	ixsystems:
	com/ 2: Off
	com/ 4:

	bsdcertification 9:
	bsdcertification 10:
	bsdcertification 11:

