
http://www.ixsystems.com/

Unified. Scalable. flexible.

Across all industries the demands of data infrastructure have soared to new heights.

As capacity requirements continue to rise at an ever-increasing rate, performance must not be compromised. The hybrid

architecture and advanced software capabilities of the TrueNAS appliance enable users to be more agile, effectively

manage the explosion of unstructured data and deploy a centralized information storage infrastructure. Whether it’s

backing virtual machines, business applications, or web services, there’s a TrueNAS appliance suited to the task. Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and other countries.

call ixsystems toll free or visit our website today!

1-855-GREP-4-IX | www.iXsystems.com

TruenaS™ Storage appliances: Harness The cloud
iXsystems’ TrueNAS Appliances offer scalable high-throughput, low latency storage

Tru
eNAS Pro

Tru
eNAS Ente

rp
ris

e

Tru
eNAS Ulti

mate

Tru
eNAS File

share

Tru
eNAS Archiver P

ro

Tru
eNAS Pro

-H
A

Tru
eNAS Ente

rp
ris

e-H
A

Tru
eNAS Ulti

mate
-H

A

FEATURES PERFoRmANCE ARChIvER hIgh AvAIlAbIlITy
Fusion-io Card X X X

Deduplication X

high Availability X X X

gigabit NICs Quad Dual Dual Dual Dual Quad Quad Dual

10 gigabit NICs Dual* Quad* Dual* Quad*

max main memory 48gb 96gb 192gb 48gb 192gb 48gb 96gb 192gb

max Capacity 320Tb 500Tb 450Tb 680Tb 2.2Pb 250Tb 310Tb 1.4Pb

Rack Units 2U/4U 2U/4U 4U 2U/4U 4U 3U 3U Dual 3U

*optional component

Key Features:
One or Two Six-core intel® xeon® Processors •	
5600 series

Share data over cifS, nfS and iScSi•	

Hybrid storage pool increases performance and •	
decreases energy footprint

128-bit ZfS file system with up to triple parity •	
software Raid

All TrueNAS Storage Appliances feature the Intel® Xeon® Processors 5600 series, powering the fastest data transfer

speeds and lowest latency possible. TrueNAS appliances come in three lines: Performance, Archiver, & high Availability.

high-performance, high-capacity iomemory modules from Fusion-io are available in the TrueNAS Enterprise, Ultimate,

and Archiver Pro models.

http://www.ixsystems.com/

Unified. Scalable. flexible.

Across all industries the demands of data infrastructure have soared to new heights.

As capacity requirements continue to rise at an ever-increasing rate, performance must not be compromised. The hybrid

architecture and advanced software capabilities of the TrueNAS appliance enable users to be more agile, effectively

manage the explosion of unstructured data and deploy a centralized information storage infrastructure. Whether it’s

backing virtual machines, business applications, or web services, there’s a TrueNAS appliance suited to the task. Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the U.S. and other countries.

call ixsystems toll free or visit our website today!

1-855-GREP-4-IX | www.iXsystems.com

TruenaS™ Storage appliances: Harness The cloud
iXsystems’ TrueNAS Appliances offer scalable high-throughput, low latency storage

Tru
eNAS Pro

Tru
eNAS Ente

rp
ris

e

Tru
eNAS Ulti

mate

Tru
eNAS File

share

Tru
eNAS Archiver P

ro

Tru
eNAS Pro

-H
A

Tru
eNAS Ente

rp
ris

e-H
A

Tru
eNAS Ulti

mate
-H

A

FEATURES PERFoRmANCE ARChIvER hIgh AvAIlAbIlITy
Fusion-io Card X X X

Deduplication X

high Availability X X X

gigabit NICs Quad Dual Dual Dual Dual Quad Quad Dual

10 gigabit NICs Dual* Quad* Dual* Quad*

max main memory 48gb 96gb 192gb 48gb 192gb 48gb 96gb 192gb

max Capacity 320Tb 500Tb 450Tb 680Tb 2.2Pb 250Tb 310Tb 1.4Pb

Rack Units 2U/4U 2U/4U 4U 2U/4U 4U 3U 3U Dual 3U

*optional component

Key Features:
One or Two Six-core intel® xeon® Processors •	
5600 series

Share data over cifS, nfS and iScSi•	

Hybrid storage pool increases performance and •	
decreases energy footprint

128-bit ZfS file system with up to triple parity •	
software Raid

All TrueNAS Storage Appliances feature the Intel® Xeon® Processors 5600 series, powering the fastest data transfer

speeds and lowest latency possible. TrueNAS appliances come in three lines: Performance, Archiver, & high Availability.

high-performance, high-capacity iomemory modules from Fusion-io are available in the TrueNAS Enterprise, Ultimate,

and Archiver Pro models.

http://www.ixsystems.com/

08/20124

Contents

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Supportive Editor
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Contributing:
Paul Ammann, Juraj Sipos, Martin Matuska, Luca Ferrari,

Antonio Francisco Gentile

Top Betatesters & Proofreaders:
Paul McMath, Bjørn Michelsen, Barry Grumbine,

Babak Farrokhi, Eric De La Cruz Lugo, Eric Geissinger ,
Luca Ferrari, Imad Soltani, Norman Golish,

Luiz Claudio Pacheco, Radjis Mahangoe, Rob Cabrera,
Will Clayton, Zander Hill

Special Thanks:
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all
over the world. If you are interested in cooperation with us,

please contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used
only for informative purposes. All rights to trade marks

presented in the magazine are reserved by the companies
which own them.

Mathematical formulas created by Design Science
MathType™.

Dear Readers,
Here comes another issue of BSD Magazine, what couldn’t be
possible without your support and interest in the subject.

I think that all who read it, believes as I do, that the future
belongs to Open Source Software. Every year the OS makes the
step forward and although there will always exist big companies
with their software, I think that it’s a matter of time when the
powers will shift. More and more not only common users,
but also companies are in favor of OS. And what is the most
valuable – there are more young and skilled developers who
choose the OS path. I’m sure that not only among our authors,
but also among our readers there are lots of them.

I would like to encourage those, who are still uncertain or
humbled by successes of others, to try themselves in this task.
Fresh ideas and passion can overcome the experience, and
there is no better way to gain the experience than to follow the
ideas, which come out of passion. So, don’t wait longer, just start
to act. I’m sure that many of you will be surprised with the effect.

We may choose only the next step we will take. The rest
just don’t belong to us anymore, but to the past. And with this
thought I leave you now, so you could enjoy the August issue of
BSD Magazine.

Wish you a good read!
Patrycja Przybylowicz

& BSD Team

www.bsdmag.org 5

Contents

MPD5 – VPN Server with FreeBSD Setup
and Management
By Antonio Francesco Gentile

Mpd5 is a fast, flexible and secure way to make VPN con-
nections on FreeBSD. It requires very few resources and
supports a wide range of protocols, a great tool for net-
work managers. By reading this article you will learn to
setup and manage a VPN server PPTP based.

PostgreSQL Partitioning (part 1)
By Luca Ferrari

In the previous articles the main features of PostgreSQL,
including server-side programming were shown. In this ar-
ticle a simple application scenario will be used to demon-
strate the capability of partitioning huge amounts of data
into different tables in different spaces transparently.

Security
DNSSEC Part 4: Securing DNS
Transactions
By Paul Ammann

In the June 2012 issue, we outlined the threats, securi-
ty objectives, and protection approaches for various DNS
transactions. This article provides the steps involved in
implementing those approaches, as well as operational
best practices that go with those implementations.

How To
Tuning ZFS on FreeBSD
By Martin Matuska

ZFS is a modern 128-bit file system based on the copy-
on-write model. It originates from the OpenSolaris proj-
ect and has first appeared in FreeBSD in 2008. ZFS has
many innovative features including an integrated vol-
ume manager with mirroring and RAID capabilities, data
checksumming and compression, writable snapshots that
can be transferred between systems and many more. In
this article the author is going to discuss several tuning
options including sysctl(2) knobs and give examples how
can ZFS performance and efficiency can be measured
and evaluated. This article is intended for FreeBSD users
with ZFS version 28 available since 8.3-RELEASE and
9.0-RELEASE.

What’s New
MaheshaBSD Server Edition Has Been
Just Released!
By Juraj Sipos

Many newcomers to FreeBSD find it difficult to setup their
own FTP/WWW server quickly and, on the other hand,
experienced users sometimes need to take precautions
for unexpected crash situations – that is, to have a strat-
egy for time economization and portability, as these two
are valuable assets in our rushing world. From this article
you will find out ow to run a simple and smart FTP/WWW
server.

06

34

TM

10

16

20

What’s New

08/2012 6

A USB flash drive with an operating system running
off it answers many questions when portability and
time effectiveness become indispensable. All you

need to do is to plug your USB flash drive into the USB
port. The computer’s operating system stays unaltered
and geared up for any task it is used for. And USB flash
drives boot several times faster than CD’s or DVD’s.

Readers who will only randomly find this article should
know that MaheshaBSD and MaheshaBSD Server edition
are two different things, although tightly related to each
other. The article about MaheshaBSD was already pub-
lished in the March 2012 issue of BSD Mag (http://bsd-
mag.org/magazine/1795-nessus-exploitation-tools-and-
payloads).

The Story Behind MaheshaBSD Server
A year ago I bought a second-hand IBM notebook and the
experienced technician in the store there told me, after we
discussed which operating system to use, that he would
call me if he had a customer interested in an FTP/WWW
server running FreeBSD. I welcomed the offer. However,
I was surprised to learn that it was difficult for a proficient
Linux user to setup an FTP server on FreeBSD.

Some time later a friend asked me if I knew of any good
FTP server software for Windows. Then another friend
asked me to recommend him some software which coun-
seling psychologists could use to share data. As many

MaheshaBSD
Server Edition Has Been Just Released

What you will learn…
• 	 How to run a simple and smart FTP/WWW server.

What you should know…
• 	 How to mount drives in FreeBSD.

Many newcomers to FreeBSD find it difficult to setup their
own FTP/WWW server quickly and, on the other hand,
experienced users sometimes need to take precautions for
unexpected crash situations – that is, to have a strategy
for time economization and portability, as these two are
valuable assets in our rushing world.

Figure 1. In the server edition of MaheshaBSD transliteration of
Sanskrit works too (Seamonkey)

http://bsdmag.org/magazine/1795-nessus-exploitation-tools-and-payloads
http://bsdmag.org/magazine/1795-nessus-exploitation-tools-and-payloads
http://bsdmag.org/magazine/1795-nessus-exploitation-tools-and-payloads

www.bsdmag.org 7

MaheshaBSD Server Edition Has Been Just Released

Unique Features of MaheshaBSD Server
All users, whether experienced or not, whether friends of
Unix or not, will have an immediate possibility to operate
a simple FTP/WWW server off a USB flash/hard drive.
Portability and time effectiveness are vital assets also for
experienced users. If you work in a small business and
your hard drive or computer with a server system on it
fails to boot one day (imagine a situation your boss does
not want to invest money in an expensive IT infrastruc-
ture), it may take several hours to buy a new hard drive,
install your favorite server system on it, and configure
it.

USB flash drives are very fast and with MaheshaBSD
Server you will get the operating system (FreeBSD) and
a superbly easy FTP/WWW server into which you just
copy files via SFTP. A prospect to use NTFS (and FAT32)
disks/flash drives with write access and use them as a
place for immediate FTP/WWW data storage will appear
very practical not just for Windows users. Please do not
ridicule me for the above statement, as for many peo-
ple out there it is still much easier to use a spare NT-
FS/FAT32 drive in Unix (without much knowledge about
Unix) than to format it, as the data on it may have a val-
ue and backing it up takes time too. Unfortunately, not
many BSD LiveCD/USB projects support writing to NTFS
drives.

Unique features
MaheshaBSD Server supports quotas.

MaheshaBSD Server has a remote administration tool
(Webmin; Figure 2).

You can work with any hard disk (NTFS partitions too).
MaheshaBSD Server (FTP/WWW/Webmin) is connect-

able on aliased IP’s on LAN that all end with 200 and

Windows users consider Unix to be the unknown ocean
in which they do not want to dip their toes, my only choice
was to look for Windows software. I looked on the Internet
and was stunned by the prices people are willing to pay
for Windows FTP server solutions. Some of them climb up
even up to 500 US dollars. My head whirled round. Thus,
the idea to make my own easy FTP/WWW server solution
was born and finally MaheshaBSD Server edition slith-
ered to day light – a smart and straightforward FTP/WWW
server, something I was looking for. It runs off a USB flash
drive and it does not require a Windows license. It is free
for personal use.

A decision to sell my FTP/WWW server solution has two
goals:

• 	 A wish to donate some money to FreeBSD and
OpenBSD (sorry I do not mention other BSD sys-
tems here; I am only familiar with the two mentioned
above).

• 	 I have a few friends in very poor countries and I
would like to help them (Figure 1).

Figure 3. To log in to Webmin, use any of the addresses specified
above, as you see on the picture

Figure 2. In MaheshaBSD Server even a child can change passwords
in Webmin

Figure 4. To fetch your passwords, you must log in as user guest5 and
not as user vsftpd, as you see on the picture

What’s New

08/2012 8

which all can be used as follows (depending on your LAN
configuration): 10.0.0.200, 10.0.1.200, 192.168.0.200,
192.168.1.200, 172.16.0.200, and 172.16.1.200 (Figure
3).

SSH works with the “boss” account only. This is a secu-
rity measure.

A Practical Example How To Use The
MaheshaBSD Server’s FTP/WWW Server
The text is written also with focus on absolute beginners.

Download the USB image from the following URL:
ftp://2227.x.rootbsd.net/index.html.

Unrar it and write it to your USB flash drive or USB hard
drive.

In FreeBSD:

dd if=/path/MaheshaBSD9-server.img of=/dev/da0

bs=10240 conv=sync

In Windows use a program such as Winimage.

When you boot your computer with MaheshaBSD Serv-
er, simply use programs such as Winscp for Windows (on-
ly SFTP protocol works), or SFTP in Unix, and fetch your
passwords (log in as guest5):

• 	 Login: guest5
• 	 Password: guest6

Then just log in to your vsftpd account (via SFTP) and
copy anything to the vsftpd > ftp directory (Figure 4-6).

Of course, you can do all of the above steps also with
physical access to the computer where MaheshaBSD
Server is running. When you boot your computer off your
USB flash/hard drive, you will see the password for root
in a blue text. Then just log in and type (Figure 7 and Fig-
ure 8):

Figure 5. After you log in, you will see all the user directories in /home
with one shareable directory (public_tmp)

Figure 6. To see your passwords, first click on the guest5 directory and
then on passes.txt

Figure 7. All you need is to copy any file to the vsftpd > ftp (or apache
> www) directory to have it immediately displayed in your browser

Figure 8. We chose the file winimage.exe as an example here; the file
is immediately displayed in the MaheshaBSD Server’s FTP server

Figure 9. Even little children will create html pages in easy to use
Seamonkey, which is available both in MaheshaBSD and MaheshaBSD
Server

ftp://2227.x.rootbsd.net/index.html

www.bsdmag.org

more /home/guest5/passes.txt in your shell

I also tested this with a NTFS drive redirected via
mount_nullfs and I copied a 700 MB file onto it without
any problems.

All other details, if you are more interested in this proj-
ect, are in the documentation available at: http://www.
freebsd.nfo.sk/MaheshaBSDserverManual.pdf.

Conclusion
Groups tend to live inside themselves and often without
knowledge of other waters. Thus, the MaheshaBSD Serv-
er’s goal is not to be penchant for one group only. To at-
tract new users to the BSD world requires giving them
some of the water they were accustomed to bathe in. If
a child sets up IP Forwarding in its router and will easily
start its own WWW/FTP server from home, this may be its
first challenge to look at FreeBSD. To easily share data
can be the same challenge for scholars, teachers, small
businesses, and actually for all Windows users, too, if
they happen to ask questions where to find a simple FTP/
WWW server solution. Not many non-Windows choices
(although usable with Windows) await them on their mar-
ket with FTP/WWW servers. I made this work also with
hope that skilled Linux users (like the technician men-
tioned in the beginning of this article), who do not know
how to set up an FTP/WWW server with FreeBSD, might
be also challenged to look at this project.

I thank http://www.rootbsd.net for allowing me to distrib-
ute MaheshaBSD and MaheshaBSD Server.

JURAJ SIPOS
Juraj lives in Slovakia and he works in a library in an educa-
tional institute. Some time in the past he was fortunate to trav-
el around the world and he spent a bit of time in India and Aus-
tralia. Juraj’s hobbies are computers, mostly Unix, but spiritual-
ity too. His first published computer article was Xmodmap How-
to (http://tldp.org/HOWTO/Intkeyb/). In addition to computers,
he is very interested in Hinduism but not really the guru side of
things, but more-so freedom and self-actualization. More at his
website:
http://www.freebsd.nfo.sk/ (FreeBSD)
http://www.freebsd.nfo.sk/maheshaeng.htm (MaheshaBSD)

http://www.freebsd.nfo.sk/MaheshaBSDserverManual.pdf
http://www.freebsd.nfo.sk/MaheshaBSDserverManual.pdf
http://www.rootbsd.net
http://www.freebsd.nfo.sk/
http://www.freebsd.nfo.sk/maheshaeng.htm
https://register.bsdcertification.org//register/payment
http://www.bsdcertification.org/
https://register.bsdcertification.org//register/get-a-bsdcg-id

How To

08/2012 10

In this article I am going to discuss several tuning op-
tions including sysctl(2) knobs and give examples how
can ZFS performance and efficiency can be measured

and evaluated. This article is intended for FreeBSD users
with ZFS version 28 available since 8.3-RELEASE and
9.0-RELEASE.

ZFS has a lot of tuning options accessible via the sys-
ctl(8) command. In addition, the ZFS part of the Open-
Solaris kstat (kernel statistics facility) framework has also
been made available on FreeBSD providing raw statistical
data in form of various counters. There are more than 60
vfs.zfs knobs and over 80 kstat.zfs knobs providing ac-
cess to miscellaneous kernel counters, state and sizing
variables. There is currently only a very limited amount of
tools available that process this information.

The first sections of this article are going to focus on
tuning zfs prefetch and caches, introducing the zfs-stats
and zfs-mon statistics processing tools for measurement
and evaluation. They are followed by individual tuning tips
like using ZFS on web, database or file servers, and opti-
mizations for the advanced format (4k sector) drives.

General Tuning Tips
RAM memory
The amount of system RAM has a significant impact on
ZFS performance, especially if using deduplication. Many
issues can be cured by increasing system’s RAM memory.

The recommended memory minimum is 1GB, but I sug-
gest for highly utilized setups at least 8GB of system
RAM. For server use error correcting ECC memory is an
advantage.

Access time
On a FreeBSD system, every time a file is accessed its
access time (atime) gets updated. This may generate a lot
of disk write activity on servers working with a large num-
ber of files. In such a case you might want to disable atime
(access time) for the affected datasets or for the whole
pool. Turning off atime may improve performance of on all
types of application servers.

	 # zfs set atime=off dataset

Dataset compression
Using ZFS dataset compression saves space but has a
negative effect on system’s CPU performance and re-
sponsiveness. On the other hand, enabling compression
(mainly LZJB) may increase your data throughput, espe-
cially for slow storage. In particular the gzip compression
costs essentially more CPU time then the less-compress-
ing LZJB compression. Therefore I recommend using da-
taset compression only if you have compressible data and
the dataset is not a performance bottleneck or if you are
generally low on storage space. Datasets with low activity

Tuning ZFS on FreeBSD
ZFS is a modern 128-bit file system based on the copy-on-write
model. It originates from the OpenSolaris project and has first
appeared in FreeBSD in 2008. ZFS has many innovative features
including an integrated volume manager with mirroring and
RAID capabilities, data checksumming and compression, writable
snapshots that can be transferred between systems and many
more.

What you will learn…
• 	 how to optimize ZFS for various applications and workloads
• 	 how to measure and evaluate ZFS cache efficiency

What you should know…
• 	 ZFS system administration basics
• 	 working with sysctl(8) and loader(8) tunables

www.bsdmag.org 11

Tuning ZFS on FreeBSD

Cache and Prefetch Tuning
Adaptive Replacement Cache (ARC)
One of the primary tunable ZFS features is the memo-
ry-based Adaptive Replacement Cache (ARC). Data and
metadata of blocks read from disk devices are stored in
this cache. ARC provides a major speedup to ZFS opera-
tions and is enabled by default.

The main loader(8) tunables for ARC are:

•	 vfs.zfs.arc _ max: Maximum ARC size (in bytes)
•	 vfs.zfs.arc _ min: Minimum ARC size (in bytes)
•	 vfs.zfs.arc _ meta _ limit: ARC metadata limit (in bytes)

With these tunables you can control the size limits of the
ARC cache on your system. The minimum and maxi-
mum values for ARC are automatically sized on system
boot, depending on the installed RAM memory. The de-
fault values are:

• 	 vfs.zfs.arc _ max: physical RAM less 1 GB (or vm.kmem _

size, whatever is smaller)
• 	 vfs.zfs.arc _ meta _ limit: 1/4th of arc _ max

• 	 vfs.zfs.arc _ min: half of arc _ meta _ limit (equals to
1/8th of arc _ max)

Both arc _ min and arc _ max have a hard-coded minimum
of 16MB and both arc _ meta _ limit and arc _ min may not
be higher then arc _ max.

To display your current ARC size (in bytes), run:

	 # sysctl kstat.zfs.misc.arcstats.size

Default values should be sufficient for most users, as if
your system requires memory for other tasks, the ARC
memory is automatically freed, shrinking down to the
arc _ min value. Changing vfs.zfs.arc _ max is of advan-
tage only if you need explicitly reserved memory for oth-
er use. Alternatively there may be situations where your
metadata cache gets filled up (e.g. you have lots of small
files) and you observe bad performance of your ARC. In
such a situation you may want to increase the arc _ meta _

limit (loader(8) tunable). Please note that arc _ min is en-
forced to be at least the half of arc _ meta _ limit.

To display your current ARC metadata usage and meta-
data limit (in bytes), run:

	 # sysctl vfs.zfs.arc_meta_used

	 # sysctl vfs.zfs.arc_meta_limit

By default, ARC is enabled for all datasets. If you ex-
perience performance problems because of full and

containing e.g. log files are good candidates for gzip com-
pression. If you have fast storage with enough space and
need top-notch performance, disable dataset compres-
sion for the affected datasets.

	 # zfs set compression=[on|off] dataset

Deduplication
ZFS deduplication is a relatively new feature that enables
you to save space by keeping a single copy of data that
is available on your ZFS dataset in multiple copies. De-
duplication requires a large amount of RAM memory. The
ideal situation is if your whole deduplication table fits into
memory otherwise you may experience decreased sys-
tem performance. Deduplication can be enabled and/or
disabled on a per-dataset basis:

	 # zfs set dedup=on

You can view (detailed) deduplication information about
a pool using the zdb command:

	 # zdb -D pool

or

	 # zdb -DD pool

It is possible to simulate the effect of enabling dedupli-
cation for a pool. To verify possible space gains, a re-
sulting deduplication ratio of more than 2.00 indicates a
good candidate for deduplication:

	 # zdb -S pool

A discussion of the benefits and costs of ZFS dedupli-
cation is available at the blog of Constantin Gonzales
(http://constantin.glez.de/blog/2011/07/zfs-dedupe-or-not-
dedupe).

ZFS send/receive
If you are using send and receive in the same run (if you
are not streaming into a file but piping zfs send directly to
zfs receive) then you should consider using a buffering so-
lution to speed up the process. I personally recommend the
“mbuffer” program available in the FreeBSD ports tree as
misc/mbuffer. Mbuffer allows you to buffer local streams (via
a pipe) and is capable of standalone network streaming.

	 # zfs send tank/a@s1 | mbuffer –m 128M | zfs receive

tank2/a@s1

http://constantin.glez.de/blog/2011/07/zfs-dedupe-or-not-dedupe
http://constantin.glez.de/blog/2011/07/zfs-dedupe-or-not-dedupe

How To

08/2012 12

inefficient ARC you can decide to disable ARC or limit it
to cache only metadata on non-critical datasets:

	 # zfs set primarycache=[all|metadata|none] dataset

For displaying uptime and real-time ARC activity and ef-
ficiency, please refer to the “zfs-stats and zfs-mon” sec-
tion of this article.

Level 2 Adaptive Replacement Cache (L2ARC)
Fast block devices (e.g. SSD drives) can be used to ex-
tend the ARC cache of specific ZFS pools. This cache is
called Level 2 Adaptive Replacement Cache (L2ARC).
This cache type is optimal mainly in write-once and read
many storage scenarios, e.g. the static content of inter-
net websites with image and video files that do not get
overwritten (but the total space used keeps growing). It
requires fast cache devices (use of fast SSD drives is rec-
ommended). On the contrary to ARC being shared for the
whole system, L2ARC devices are pool-bound and cache
only the data of the pool they are attached to.

The size of L2ARC cache is defined by the size of the
cache device(s). To add/remove cache devices from a
pool, you can use the following commands:

	 # zfs add pool cache device

	 # zfs remove pool device

L2ARC provides several system tunables, I am going to
explain the following:

	 vfs.zfs.l2arc_feed_again: turbo warmup

	 vfs.zfs.l2arc_feed_secs: interval secs

	 vfs.zfs.l2arc_write_max: max write size

	 vfs.zfs.l2arc_write_boost: extra write during warmup

	 vfs.zfs.l2arc_headroom: number of dev writes to precache

	 vfs.zfs.l2arc_noprefetch: don’t cache prefetch bufs

The first tunable above enables or disables L2ARC turbo
warm-up. The turbo warm-up phase happens between sys-
tem bootup and the L2ARC cache getting ″warm″ (= the
first time L2ARC evicts data). During this phase the ARC
write speed is calculated as l2arc _ write _ max + l2arc _

write _ boost in bytes every l2arc _ feed _ secs seconds. If the
warm-up phase is disabled or L2ARC is already in warm
state, data is written at a maximum speed of l2arc _ write _

max bytes every l2arc _ feed _ secs seconds. Default settings
are warm-up enabled, l2arc _ feed _ secs set to one second
and both l2arc _ write _ max and l2arc _ write _ boost set to
8MB. The l2arc _ headroom tunable defines the number of
L2ARC writes to be precached. The default value is 2.

The goal of these settings is to avoid overwriting SSD
devices too quickly as these have a limited number of
overwriting cycles. These settings have been defined in
2008 and modern SSD drives can easily operate at faster
speeds. There are recommendations to at least double
the vfs.zfs.l2arc_write_max and vfs.zfs.l2arc_write_boost

loader(8) tunables to 16MB.
The l2arc_noprefetch tunable is set to 0 by default. This

disables caching of sequential reads. Enabling this set-
ting (value of 1) does in many cases improve the L2ARC
performance, e.g. for video streaming or web-serving of
large files.

	 # sysctl vfs.zfs.l2arc_noprefetch=1

By default, L2ARC is enabled for all datasets. You can
disable L2ARC or limit it to cache only metadata as a
per-dataset setting:

	 # zfs set secondarycache=[all|metadata|none] dataset

For displaying uptime and real-time L2ARC activity and
efficiency, please refer to the “zfs-stats and zfs-mon”
section of this article.

ZFS Intent Log (ZIL)
The ZFS Intent Log provides synchronous semantics for
ZFS. It is used to guarantee data consistency on fsync(2)
calls. It is used to replay data transactions in case of a ker-
nel panic, hardware or power failure.

By default, the ZFS Intent Log takes up a small amount
of storage space of each ZFS pool. To speed up synchro-
nous writes, a separate log device (including a mirrored
device) may be used. Fast SSD drives are recommended
for this purpose.

To add or remove a log device to a pool, use the follow-
ing commands:

	 # zpool add tank log device

	 # zpool remove tank device

It is possible to configure the synchronicity behaviour on
a per-dataset setting:

	 # zfs set sync=[standard|always|disabled] dataset

By setting sync to disabled, data is written to storage on-
ly on periodical (TXG – Transaction Group) write times.
This improves write performance but introduces the risk
of losing data during a kernel panic, hardware or power
failure and makes this option interesting only for tempo-

www.bsdmag.org 13

Tuning ZFS on FreeBSD

rary and volatile data. Setting sync to always has a large
performance penalty.

File-level Prefetching (zfetch)
The file-level prefetching mechanism implemented in ZFS
is named “zfetch”. This mechanism analyses read patterns
of files and tries to predict next reads resulting in reduction
in application response times. In some workloads, zfetch
may be CPU-intensive and limit scalability. The efficiency
of prefetch can be displayed and monitored with the “zfs-
stats” and “zfs-mon” tools (discussed later). Zfetch is en-
abled by default (disabled on systems with less than 4GB
of RAM) and you may disable or re-enable it by setting the
following loader tunable to 1 (disable) or 0 (enable):

	 vfs.zfs.prefetch_disable: Disable prefetch

Device-level Prefetch (vdev prefetch)
The vdev prefetch mechanism does pre-read data af-
ter small reads from pool devices. Currently, the vdev
prefetch cache is disabled by default. Long-term use has
shown that it is inefficient in most cases and its memory
consumption is proportional to the number of vdevs on

a system. There are user reports that re-enabling vdev
cache may significantly speed up the scrub (and resilver)
process on raid-z devices (or systems with slow drives)
by reducing disk seek times and speeding up metadata
reads.

The vdev prefetch is primarily controlled by the vfs.zfs.
vdev.cache.size loader(8) tunable that contains the per-
vdev cache size in bytes and is disabled by default (value
of 0). For expreienced users, there are additional tunables
for fine-tuning available under the vfs.zfs.vdev.cache load-
er(8) tunable group.

	 # sysctl -d vfs.zfs.vdev.cache

To enable vdev prefetch, set vfs.zfs.vdev.cache in loader.
conf(5) to a desired size in bytes different from zero, e.g.
previous default value of 10 megabytes:

	 vfs.zfs.vdev.cache.size=10485760

zfs-stats and zfs-mon: ZFS Statistics Tools
The kstat.zfs sysctl(8) knobs provide access to many ZFS
counter variables. These variables contain raw data and
to make any conclusions from these variables, interme-
diate values need to be computed. The perl scripts zfs-
stats and zfs-mon do process this data and provide hu-
man-readable output. The zfs-stats tool is based on Ben
Rockwood’s arc_summary.pl and includes modifications by
Jason J. Hellenthal and myself. Both tools are available in
the FreeBSD ports tree as sysutils/zfs-stats. The data in
zfs-stats summarizes and/or averages counters that col-
lect data since the system was booted. Example output
excerpt from zfs-stats: Listing 1.

The uptime averages do not tell much about the actu-
al system performance. To view real-time cache efficien-
cy (or raw numbers) I have written the “zfs-mon” tool. It
monitors ARC, L2ARC and zfetch in real time and outputs
10s, 60s and total per second averages (total = since the
program was started).

Example “zfs-mon -a” output after collecting 120 sec-
onds of data: Listing 2.

As of total cache efficiency, the L2ARC cache is ac-
cessed only on an ARC miss, so your total cache efficiency
is calculated using the following formula: [ARC efficiency]
+ (100-[ARC efficiency])*([L2ARC efficiency]/100).

Result for the example above: 89,96 + (100-

89,96)*(71,15/100) = 97,10.

Interpreting the output from zfs-stats and zfs-mon
The output of zfs-stats and zfs-mon may help you to
discover bottlenecks and decide to change some de-

Listing 1. Example output of ”zfs-stats”

ARC Size: 79.89% 25.57 GiB

 Target Size: (Adaptive) 79.89% 25.57 GiB

 Min Size (Hard Limit): 12.50% 4.00 GiB

 Max Size (High Water): 8:1 32.00 GiB

ARC Efficiency: 1.25b

 Cache Hit Ratio: 90.52% 1.13b

 Cache Miss Ratio: 9.48% 118.08m

 Actual Hit Ratio: 84.54% 1.05b

 Data Demand Efficiency: 95.45% 356.90m

 Data Prefetch Efficiency: 40.64% 11.36m

L2 ARC Breakdown: 118.18m

 Hit Ratio: 62.87% 74.29m

 Miss Ratio: 37.13% 43.89m

 Feeds: 849.64k

File-Level Prefetch: (HEALTHY)

DMU Efficiency: 28.09b

 Hit Ratio: 88.54% 24.87b

 Miss Ratio: 11.46% 3.22b

How To

08/2012 14

fault values. The main values to look at are usage and
efficiency of various caches. An efficiency value of
100% means all reads are done from the cache, 0%
means all reads are done from disks. For my uses, ef-
ficiency above 80% counts as efficient and above 90%
counts as highly efficient. Remember, that L2ARC
takes some time to warm-up and is intended to improve
your total cache efficiency. If using zfs-mon, try to col-
lect data for a longer period of time and watch the “tot”
column.

Here are some general tips:
Inefficient ARC data cache:

• 	 if you have limited the ARC size, increase or remove
the limit

• 	 disable ARC for some datasets

• 	 considering lowering the ARC metadata limit
• 	 add more RAM to your system
• 	 consider using additional L2ARC cache devices

Inefficient ARC metadata cache:

• 	 consider increasing the ARC metadata limit
• 	 add more RAM to your system

Inefficient L2ARC cache:

• 	 this depends very much on the structure of your
reads

• 	 if your ARC is already very efficient, L2ARC might
sometimes add only little advantage

• 	 if your ARC is inefficient, too, consider increasing
system memory and L2ARC

• 	in some scenarios L2ARC efficiency of 30-40% may
already be acceptable

Inefficient ZFETCH:

• 	consider disabling zfetch

Inefficient vdev prefetch:

• 	consider disabling vdev prefetch
• 	if enabled, scrub and resilver may run substantially

faster
• 	modify advanced vdev prefetch settings (experts on-

ly)

Tuning ZFS for Applications
Webservers
On FreeBSD, user experience has shown that it is an ad-
vantage to disable sendfile and mmap on your webserv-
ers, if you are serving your pages from ZFS datasets.
Otherwise your data may get cached in your memory
twice and this reduces your system memory.

Here are example configuration directives for popular
webservers:

Apache
EnableMMAP Off

EnableSendfile Off

Nginx
Sendfile off

Lighttpd
server.network-backend = ″writev″

Listing 2. Example output of ”zfs-mon -a” (runtime 120 seconds)

ZFS real-time cache activity monitor

Seconds elapsed: 120

Cache hits and misses:

 1s 10s 60s tot

 ARC hits: 259 431 418 466

 ARC misses: 51 40 49 52

 ARC demand data hits: 223 417 390 437

 ARC demand data misses: 36 20 17 16

 ARC demand metadata hits: 36 11 25 25

 ARC demand metadata misses: 15 19 21 25

 ARC prefetch data hits: 0 4 3 4

 ARC prefetch data misses: 0 1 10 8

 ARC prefetch metadata hits: 0 0 0 0

 ARC prefetch metadata misses: 0 0 1 3

 L2ARC hits: 47 34 40 37

 L2ARC misses: 4 5 9 15

 ZFETCH hits: 47903 47294 48155 47138

 ZFETCH misses: 272 449 1147 3593

Cache efficiency percentage:

 10s 60s tot

 ARC: 91.51 89.51 89.96

 ARC demand data: 95.42 95.82 96.47

 ARC prefetch data: 80.00 23.08 33.33

ARC prefetch metadata: 0.00 0.00 0.00

 L2ARC: 87.18 81.63 71.15

 ZFETCH: 99.06 97.67 92.92

www.bsdmag.org 15

Tuning ZFS on FreeBSD

Database servers
For databases like PostgreSQL and MySQL, users rec-
ommend to store them on a dataset created with a differ-
ent recordsize than the default of 128 kilobytes.

For PostgreSQL and MySQL (MyISAM storage), set the
recordsize to 8 kilobytes before populating the dataset:

	 # zfs create -o recordsize=8k tank/mysql

For MySQL InnoDB storage files (not logs) set the re-
cordsize to 16 kilobytes, logs might be left at the default
record size (you need to spread the data over more da-
tasets that have different recordsizes).

NFS servers
If sharing ZFS datasets on NFS servers with a lot of writes,
the ZFS Intent Log (ZIL) might be your bottleneck. To im-
prove performance, you may want to move ZIL to sepa-
rate log devices (fast SSD drives) or try to disable ZIL for
the affected datasets. Disabling ZIL may cause NFS client
corruption.

zfs set sync=disabled dataset

ZFS and 4k Sector Drives
Originally hard drives used to store data in 512 byte physi-
cal sectors. Today’s large harddrives use the Advanced
Format (4k sectors) and provide a 512 byte-sector com-
patibility mode. On FreeBSD, the mentioned drives usu-
ally still report a 512 byte sector size:

ada0: 2861588MB (5860533168 512 byte sectors: 16H 63S/T 16383C)

ZFS uses this value when defining the block size for de-
vices when added to a pool (or when a pool is created).
To view your pool device configuration, use the following
command:

zdb –C [poolname]

The parameter “ashift” describes the ZFS block size
used size as 2 ^ [ashift]. A value of “9” means 512 byte
sectors. To have 4 kilobyte blocks, a value of “12” is re-
quired.

Users report poor performance with Advanced Format
hard drives and ahift=9, especially in raidz configurations.
To create a pool optimized for 4 kbyte sectors, we have
to have to make the ZFS block size match the physical
sector size do some tricks with a fake gnop device. Let’s
assume we want to create a new pool with the /dev/ada0
device:

gnop create –S 4096 ada0

zpool create tank ada0.nop

zpool export tank

gnop destroy ada0.nop

zpool import tank

zdb –C tank | grep ashift

On a 4k block setup, small files up to 4k always take
one whole block. ZFS metadata is many times smaller
than 4kb. Please consider that using ashift=12 increas-
es the initial space required for metadata by a fairly large
amount (about 5% of your total disk space). Depending
on your data, this overhead may increase on filling the
pool with data (e.g. many small files). So this is effective-
ly a tradeoff between performance and free space and
you have to decide which is more important.

Conclusion
Default values of ZFS settings are intended to suit the av-
erage user. This article presented several ways how to
optimize a system for ZFS and how to tune these values
for specific workloads. The evaluation tools zfs-stats and
zfs-mon provide necessary measurement data.

ZFS is a great piece of software and I use it heavily on
dozens of systems in combination with FreeBSD, Open-
Indiana and even Linux. The lack of measurement and
evaluation tools have inspired me to work on zfs-stats and
zfs-mon.

Tuning links
• 	 http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_

Tuning_Guide

Technical links
• 	 http://dtrace.org/blogs/brendan/2012/01/09/activity-of-the-

zfs-arc
• 	 http://dtrace.org/blogs/brendan/2008/07/22/zfs-l2arc
• 	 https://blogs.oracle.com/roch/entry/tuning_zfs_recordsize
• 	 https://blogs.oracle.com/roch/entry/dedup_performance_

considerations1
• 	 http://constantin.glez.de/blog/2011/02/frequently-asked-

questions-about-flash-memory-ssds-and-zfs
• 	 http://ivoras.net/blog/tree/2011-01-01.freebsd-on-4k-sector-

drives.html

Martin Matuška
Martin Matuška (mm@FreeBSD.org) is an IT expert, senior sys-
tems administrator and developer. He is part of the FreeB-
SD ZFS team, maintainer of several FreeBSD ports and head of
the system administration company VX Solutions s. r. o. (http://
www.vx.sk). His company focuses on deploying and maintaining
ZFS systems and providing solutions based on FreeBSD, Linux
and IllumOS operating systems. He writes at http://blog.vx.sk

http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide
http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide
http://dtrace.org/blogs/brendan/2012/01/09/activity-of-the-zfs-arc
http://dtrace.org/blogs/brendan/2012/01/09/activity-of-the-zfs-arc
http://dtrace.org/blogs/brendan/2008/07/22/zfs-l2arc
https://blogs.oracle.com/roch/entry/tuning_zfs_recordsize
https://blogs.oracle.com/roch/entry/dedup_performance_considerations1
https://blogs.oracle.com/roch/entry/dedup_performance_considerations1
http://constantin.glez.de/blog/2011/02/frequently-asked-questions-about-flash-memory-ssds-and-zfs
http://constantin.glez.de/blog/2011/02/frequently-asked-questions-about-flash-memory-ssds-and-zfs
http://ivoras.net/blog/tree/2011-01-01.freebsd-on-4k-sector-drives.html
http://ivoras.net/blog/tree/2011-01-01.freebsd-on-4k-sector-drives.html
mailto:mailto:mm%40FreeBSD.org?subject=
http://www.vx.sk
http://www.vx.sk
http://blog.vx.sk

How To

08/2012 16

The package we will use is mpd5 and is particular-
ly suitable for those who need to grant VPN ac-
cess to external consultants, the so-called “Road

Warriors”. The operating system is FreeBSD version
8.2 release, but the configuration is also valid for ver-
sion 9.x. The internal network will use the address fam-

ily 10.0.0.0/255.255.255.0 and the internal address of the
BSD firewall will be 10.0.0.1.

The goal is to setup and manage a number of connec-
tion links between the PPTP VPN server and external
users, simultaneously, by using the Netgraph implemen-
tation of Point-to-Point Tunneling Protocol (PPTP), a sys-

MPD5
VPN Server with FreeBSD Setup and Management

What you will learn…
• 	 In this paper we will learn to setup and manage a VPN server PPTP

based.

What you should know…
• 	 Basics about how to compile BSD Kernel and basic BSD Networking

Setup

Mpd5 is a fast, flexible and secure way to make VPN
connections on FreeBSD. It requires very few resources and
supports a wide range of protocols, a great tool for network
managers.

Figure 1. Mpd5 VPN PPTP connections examples

www.bsdmag.org 17

MPD5 – VPN Server with FreeBSD Setup and Management

tem used to implement virtual private networks that uses
a control channel over TCP and a GRE tunnel operating
to encapsulate PPP packets.

What is the Netgraph System
Netgraph is the graph based kernel networking subsys-
tem and provides an uniform and modular environment
to implement kernel objects which perform various net-
working functions, known as nodes. The nodes can be
assembled in particular structures, so-called graphs,
whose edges are formed by the nodes “hooks” and are
used to manage data flows. With netgraph one has a
flexible and modular implementation to manage con-
nections and both protocol and network layer, using a
fast kernel based architecture. Mpd5 can serve several
Gigabits per second of PPP traffic with right hardware,
allowing many thousands of simultaneous connections
without important performance degradation, moreover
it needs very low resources, finally it supports many of
existing PPP link types like modem for asychronous se-
rial connections, pptp for the Point-to-Point Tunnelling
Protocol (PPTP), l2tp for Layer Two Tunnelling Protocol
(L2TP), pppoe for Ethernet connections with the PPP-
over-Ethernet (PPPoE) protocol, tcp/udp to tunnel PPP
session over a TCP/UDP connection. With different con-
figurations mpd5 is able to run as a PPP client or server
and supports many PPP protocols extensions, such as
MS-CHAP and EAP authentication, it uses traffic encryp-
tion like MPPE and includes many additional features
like Network address translation (NAT) support, telnet
and http control interfaces, IPv4 and IPv6 protocols sup-
port, and different authentication and accounting meth-
ods support such as RADIUS, PAM, script, or file.

Installing mpd5
One can install mpd5 using ports or binay packages

cd /usr/ports/net/mpd5

make install

pkg_add -rv mpd5

Note
Mpd5 documentation is installed in HTML and PostScript
format into /usr/local/share/doc/mpd.

Configuring mpd5
The mpd5 configuration folder is in /usr/local/etc/mpd5,
and its main configuration file is mpd.conf. For the network
previously shown, here is an example configuration file:
Listing 1.

Listing 1. The mpd5 core configuration file

root@freeBsd82-fw.virtual.test/usr/local/etc/mpd5#cat

mpd.conf

###

MPD configuration file

###

startup:

Disabling web and console access

set console close

set web close

default:

 load pptp_server

pptp_server:

 set ippool add poolsat 10.0.0.200 10.0.0.220

 create bundle template B

 set iface enable proxy-arp

 set iface idle 0

 set iface enable tcpmssfix

 set ipcp yes vjcomp

 set ipcp ranges 10.0.0.254/32 ippool poolsat

 set ipcp dns 10.0.0.1

Enabling Microsoft Point-to-Point encryption (MPPE)

 set bundle enable compression

 set ccp yes mppc

 set mppc yes compress e40 e56 e128 stateless

Creating clonable link template named L

 create link template L pptp

Setting bundle template to use

 set link action bundle B

Using Multilink for giving full 1500 MTU

 set link enable multilink

 set link yes acfcomp protocomp

 set link no pap chap eap

 set link enable chap

 set link enable chap-msv2

Reducing link mtu to avoid GRE packet fragmentation.

 set link mtu 1440

 set link keep-alive 10 60

Configuring PPTP and open link

 set pptp self 0.0.0.0 # So configured,daemon

listens on all interfaces

Allowing to accept calls

 set link enable incoming

How To

08/2012 18

In the above example configuration, we specified the
following fundamental settings:

• 	 set ipcp ranges <mpd-ip-address>/<mask> ippool poolsat:
the ip address that our mpd5 daemon is listening on,
in the subnet mask of our internal network.

• 	 set ipcp dns <dns-server>: the DNS server IP address.
• 	 set pptp self <mpd-ip-address>: Another time this is the

ip address on which our mpd5 daemon is listening on

• 	 set ippool add poolstat <ip-range1> <ip-range2>: the IP
Pool reserved for PPTP connections.

Now we must add user accounts that will be autho-
rized to connect to our PPTP server, they are stored in
the /usr/local/etc/mpd5/mpd.secret file. This file contains
username-passwords pairs that are used to authorize
a user, separated by a whitespace, a particular use
provides a fixed ip address to a particular username,

Listing 2. MPD credentials configuration file

##

MPD secrets configuration file

##

user_2012 user_2012

user2_2012 user2_2012 10.0.0.222

An external password access program

user3_2012 “!/usr/local/etc/mpd5/passwd_get.sh”

Listing 3. An mpd basic firewall ruleset to add to /usr/local/etc/
ipfw.rules

ipfw firewall ruleset for mpd

Macros

fwcmd=/sbin/ipfw

Allow Mpd pptp traffic

$fwcmd add 0554 allow tcp from any to any dst-port 1723

$fwcmd add 0555 allow tcp from any 1723 to any

$fwcmd add 0556 allow gre from any to any

MPD Vpn Rulesets

$fwcmd add 0671 allow gre from any to any

$fwcmd add 0672 allow all from any to any via ng0

$fwcmd add 0673 allow all from any to any via ng1

$fwcmd add 0674 allow all from any to any via ng2

$fwcmd add 0675 allow all from any to any via ng3

$fwcmd add 0676 allow all from any to any via ng4

$fwcmd add 0677 allow all from any to any via ng5

$fwcmd add 0678 allow all from any to any via ng6

$fwcmd add 0679 allow all from any to any via ng7

$fwcmd add 0680 allow all from any to any via ng8

Listing 4. The FreeBSD Netgraph Kernel Modules

root@freeBsd82-fw.virtual.test/home/utente#kldstat

Id Refs Address Size Name

 1 9 0xc0400000 c67484 kernel

 2 1 0xc3133000 4000 ng_socket.ko

 3 3 0xc3137000 b000 netgraph.ko

 4 1 0xc31cd000 4000 ng_iface.ko

 5 1 0xc31e2000 7000 ng_ppp.ko

Listing 5. The FreeBSD Netgraph Kernel Configuration Options

NETGRAPH KERNEL SUBSYSTEM

options NETGRAPH #netgraph(4) system

options NETGRAPH_ASYNC

options NETGRAPH_BPF

options NETGRAPH_ECHO

options NETGRAPH_ETHER

options NETGRAPH_FRAME_RELAY

options NETGRAPH_HOLE

options NETGRAPH_IFACE

options NETGRAPH_KSOCKET

options NETGRAPH_L2TP

options NETGRAPH_LMI

MPPC compression requires proprietary files (not included)

#options NETGRAPH_MPPC_COMPRESSION

options NETGRAPH_MPPC_ENCRYPTION

options NETGRAPH_ONE2MANY

options NETGRAPH_PPP

options NETGRAPH_PPPOE

options NETGRAPH_PPTPGRE

options NETGRAPH_RFC1490

options NETGRAPH_SOCKET

options NETGRAPH_TEE

options NETGRAPH_TTY

options NETGRAPH_UI

options NETGRAPH_VJC

www.bsdmag.org 19

MPD5 – VPN Server with FreeBSD Setup and Management

the following is a good example: Listing 2. The start-
ing “!” means that the password for user user3_2012
is not stored in the mpd.secret file directly, but will be
get by using the command /usr/local/etc/mpd5/passwd_
get.sh user3_2012, for example obtaining it from a data-
base. This system allows sysadmin to print the plain-
text password for the named user as a single line to
standard output, and then exit, allowing mpd5 to inter-
cept this operation. If there is an error, the command
should print what is the matter, helping in troubles res-
olution.

Another special case is the username “*” in the mpd.se-
cret file, particularly this line must be the last of the file and
will match any username,using external programs like the
previous passwd_get.sh to check a valid username. This
wildcard matching only works for “!” lines.

It’s basic that the total length of the executed command
is less than 128 characters. Finally, it’s important to know
that any additional arguments generated by the scripts will
be visible to users on the local machine running ps.

A good security practice is to limit access to the configu-
ration folder as follows:

chown -R root:root /usr/local/etc/mpd5

chmod -R 0600 /usr/local/etc/mpd5

Allowing mpd5 Traffic Through your Firewall
with ipfw
The standard firewalling system used in FreeBSD is ipfw.
If we are using mpd5 in a firewalled environment, we must
pass the traffic through the firewall for permitting clients to
connect to the PPTP server and our internal network, and
this is a real example: Listing 3.

Starting mpd5
To allow mpd5 daemon to start at boot time, we must add
these lines to our /etc/rc.conf file:

Host acts like a router

gateway_enable=”YES”

MPD5

mpd_enable=”YES”

mpd_flags=”-b -s mpd5”

arpproxy_all=”YES”

And then restart network subsystem and mpd5 daemon,
so our clients will be able to connect to it.

/etc/netstart

/usr/local/etc/rc.d/mpd5 start

The final step is to enable mpd5 logging with syslog, and
we can do this by creating a new empty file and chang-
ing its ownership only for root user

touch /var/log/ppp.log

chmod 600 /var/log/ppp.log

Then we must add these lines in /etc/syslog.conf

!mpd

. /var/log/ppp.log

After we saved the file, finally we must restart syslog

/etc/rc.d/syslogd reload

Note
We should check that all needed modules are loaded be-
fore putting the server online (Listing 4).

More Info About netgraph Subsystem
Many user-space applications use the Netgraph facility as
well as mpd5, and here is a list of netgraph kernel configu-
ration options for various device-independent node types
(Listing 5).

Conclusion
Mpd5 is a great way to establish secure connections rea-
sonably affordable with any compatible device (IPAD, An-
droid and of course, laptops and PC), all in a simple and
fast way ,really a “must to try”.

On the Net
• 	 Netgraph: http://www.freebsd.org/cgi/man.cgi?query=netgraph

&sektion=4
• 	 Mpd5 Documentation: http://mpd.sourceforge.net/**doc5/
• 	 http://mpd.sourceforge.net/doc5/
• 	 FreeBSD kernel compiling: http://www.freebsd.org/doc/en_

US.ISO8859-1/books/handbook/kernelconfig-building.html

Antonio Francesco Gentile
Antonio Francesco Gentile lives in Italy, Calabria, is a software
and network engineer. He works for a company in Rome as net-
work manager, with the “Culture Lab” http://culture.deis.uni-
cal.it Department of Telematics at University of Calabria, the
computer science associations “Hacklab Cosenza” http://hack-
lab.cosenzainrete.it/ and “Verde Binario” http://www.verde-
binario.org/ and is a freelance columnist for Italian magazines
“Linux&C” http://www.oltrelinux.com/ and “Linux Magazine”
http://www.linux-magazine.it/.

http://www.freebsd.org/cgi/man.cgi?query=netgraph&sektion=4
http://www.freebsd.org/cgi/man.cgi?query=netgraph&sektion=4
http://mpd.sourceforge.net/**doc5/
http://mpd.sourceforge.net/doc5/
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-building.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-building.html
http://culture.deis.unical.it
http://culture.deis.unical.it
http://hacklab.cosenzainrete.it/
http://hacklab.cosenzainrete.it/
http://www.verdebinario.org/
http://www.verdebinario.org/
http://www.oltrelinux.com/
http://www.linux-magazine.it/

How To

08/2012 20

Please note that the examples shown here, in or-
der to be as realistic as possible, make use of a
few hundred megabytes of data and will require

a bit of time to execut and will consume part of your disk
bandwidth. All the examples have been tested on a Post-
greSQL 9.1 cluster running on a FreeBSD 8.2-RELEASE
machine.

Data Partitioning
Data partitioning is a technique that aims at providing bet-
ter performances and modularity, splitting the data set in-
to groups with similar features. Partitioning makes sense
when the amount of data becomes big and/or complex
and there is a either a need for performance improvement
or a storage requirement. To put it simply, splitting the da-
ta set into smaller groups allows for both faster archiving
of each group and faster data scanning (i.e., queries on
the data).

The partitioning is done in an horizontal way, meaning
that data is not split into joined tables, but into tables that
group data depending on some of their attribute values.
Such tables will therefore have the same set of attributes,
but different values which will determine the table that will
handle a set of tuples. Since each table has a “fixed” set
of values, indexes and queries generally will not need to
filter such attributes, resulting in a smaller and faster data
search path.

Table Inheritance
PostgreSQL supports table inheritance. That means a ta-
ble can inherit (i.e., extend) a parent table. The concept
is pretty similar to the OOP inheritance: having defined
a master (or parent) table, it is possible to define a table
that has the same properties (i.e., columns) and provides
extensions (e.g., other columns, constraints, and so on)
to the parent set. When applying table inheritance it is im-
portant to remember a few concepts:

• 	 INSERT statements are routed automatically to the par-
ent table and not to the children;

• 	 other SQL statements (such as SELECT, UPDATE, DELETE)
automatically provide a union of the parent table and
all its children, unless told to do not do so;

• 	 there is no automatic way to apply an unique con-
straint (like a key) over a parent-child table: each ta-
ble is considered as a different entity and therefore
with different constraints;

• 	 foreign keys and unique constraints are not inherited
and have to be set-up manually.

Table inheritance is a key feature for data partitioning,
since it guarantees that all partitions (i.e., child tables
that inherit from a common ancestor) have the same da-
ta structure, allowing the DBA to define the conditions
that make the each partitions different from the others.

PostgreSQL
Partitioning (part 1)

What you will learn…
• 	 Basic concepts of data partitioning
• 	 how to implement a partition using PostgreSQL features
• 	 table inheritance

What you should know…
• 	 basic shell commands
• 	 basic PostgreSQL concepts
• 	 server-side programming concepts as explained in the previous pa-

pers

In the previous articles the main features of PostgreSQL,
including server-side programming were shown. In
this article a simple application scenario will be used to
demonstrate the capability of partitioning huge amounts of
data into different tables in different spaces transparently.

www.bsdmag.org 21

PostgreSQL: Partitioning (part 1)

It is now possible to connect to the new database and
to define the structure and the tables as shown in List-
ing 3. For the purposes of this example it suffices to
have an author table that will contain information about
each single forum user, a category table that will con-
tain a description of available forum categories (e.g.,
hardware, general, networking and so on) and a table
to contain each message (thread). The thread table is
the core of the forum database and contains a mes-
sage title and content, as well as foreign keys that ref-
erence the message’s the author and its category. To
keep the example simple each message is identified by
a “thread identifier” and a “message identifier”, columns
tid and mid, respectively. All messages with the same
tid belong to the same thread and are ordered by the
mid value, with the starting thread having a mid value
of zero.

The view vw_thread provides an easy way to get a list
of all threads with information about authors, categories

Application Scenario
Partitioning is worth applying to a large database with da-
tasets that can be split depending on a few well defined
criteria. As an example, a database for a simple Web fo-
rum will be implemented. Since Web forums are common-
ly used tools with a very high average of messages per
user; they can be considered a good test case for a parti-
tioned scenario. As usual, the example presented here is
kept as simple as possible for didactic purposes.

The first step is to create a new database, named
forumdb, and its superuser forum that will handle all the fo-
rum related data. In order to do that, connect as pgsql to
the template1 database and issue the following commands:

template1=# CREATE USER forum WITH LOGIN ENCRYPTED

PASSWORD ‘forum’;

CREATE ROLE

template1=# CREATE DATABASE forumdb WITH OWNER forum;

CREATE DATABASE

Listing 1. Output of vw_thread view

forumdb=> SELECT * FROM vw_thread WHERE thread_id = 1;

thread_id | category | main_title | started_by | message | replied_by

----------+----------+------------+---------------------------+--------------------+-----------------------------

 1 | Hardware | Thread start 1 | Luca Ferrari @ 1991-01-11 08:02:00 | How do you do this? |

 1 | Hardware | | | I think so and so. | A. Ferrari @ 1991-01-11 08:04:00

 1 | Hardware | | | I think so and so. | Claudio @ 1991-01-11 08:06:00

 1 | Hardware | | | I think so and so. | Ritchie @ 1991-01-11 08:08:00

 1 | Hardware | | | I think so and so. | A. Ferrari @ 1991-01-11 08:10:00

 1 | Hardware | | | I think so and so. | Claudio @ 1991-01-11 08:12:00

 1 | Hardware | | | I think so and so. | Ritchie @ 1991-01-11 08:14:00

 1 | Hardware | | | I think so and so. | A. Ferrari @ 1991-01-11 08:16:00

 1 | Hardware | | | I think so and so. | Claudio @ 1991-01-11 08:18:00

 1 | Hardware | | | I think so an

Listing 2. Size of the thread table

forumdb=> SELECT c.description, COUNT(t.mid), MIN(t.published_on), MAX(t.published_on)

FROM thread t JOIN category c ON t.category_pk = c.pk

GROUP BY c.description

ORDER BY c.description;

 description | count | min | max

-------------+---------+------------+------------

 General | 1310540 | 1990-01-05 | 2012-04-17

 Hardware | 391200 | 1991-01-11 | 2004-03-01

 Kernel | 848802 | 1993-01-05 | 2012-04-17

 Networking | 1493115 | 1992-01-05 | 2012-04-17

How To

08/2012 22

Listing 3. The definition of the database for the forum application
scenario

DROP TABLE IF EXISTS author;

CREATE TABLE author(

 pk SERIAL NOT NULL,

 username text NOT NULL,

 display_name text,

 PRIMARY KEY(pk),

 UNIQUE(username)

);

INSERT INTO author(username, display_name)

VALUES(‘fluca1978’, ‘Luca Ferrari’);

INSERT INTO author(username, display_name)

VALUES(‘ringhiobd’, ‘A. Ferrari’);

INSERT INTO author(username, display_name)

VALUES(‘winter’, ‘Claudio’);

INSERT INTO author(username, display_name)

VALUES(‘root’, ‘Ritchie’);

DROP TABLE IF EXISTS category;

CREATE TABLE category(

 pk serial NOT NULL,

 id varchar NOT NULL,

 description text,

 since date default ‘now’::text::date,

 PRIMARY KEY(pk),

 UNIQUE(id)

);

INSERT INTO category(id, description, since)

VALUES(‘misc’, ‘General’, ‘01/01/1990’::text::date);

INSERT INTO category(id, description, since)

VALUES(‘net’, ‘Networking’, ‘01/01/1992’::text::date);

INSERT INTO category(id, description, since)

VALUES(‘kern’, ‘Kernel’,’01/01/1993’::text::date);

INSERT INTO category(id, description, since)

VALUES(‘dev’, ‘Development’,’31/01/1993’::text::date);

INSERT INTO category(id, description, since)

VALUES(‘hw’, ‘Hardware’, ‘01/07/1991’::text::date);

DROP TABLE IF EXISTS thread;

CREATE TABLE thread(

 pk serial NOT NULL,

 tid integer NOT NULL,

 mid integer NOT NULL,

 title text,

 content text,

 published_on date default ‘now’::text::date,

 published_at time default ‘now’::text::time,

 category_pk integer,

 author_pk integer,

 PRIMARY KEY(pk),

 UNIQUE(tid, mid),

 FOREIGN KEY(category_pk) REFERENCES category(pk),

 FOREIGN KEY(author_pk) REFERENCES author(pk)

);

CREATE OR REPLACE VIEW vw_thread

AS

SELECT tid AS thread_id,

 c.description as category,

 CASE WHEN t.mid = 0 THEN title

 ELSE ‘’

 END as main_title,

 CASE WHEN t.mid = 0 THEN a.display_name || ‘

@ ‘ || t.published_on || ‘ ‘ ||

t.published_at

 ELSE ‘’

 END as started_by,

 t.content as message,

 CASE WHEN t.mid <> 0 THEN a.display_name || ‘

@ ‘ || t.published_on || ‘ ‘ ||

t.published_at

 ELSE ‘’

 END as replied_by

FROM ((thread t JOIN author a ON author_pk = a.pk) JOIN

category c ON t.category_pk = c.pk)

ORDER BY t.tid, t.mid;

www.bsdmag.org 23

PostgreSQL: Partitioning (part 1)

Listing 4a. The populate_forum stored procedure

CREATE OR REPLACE FUNCTION populate_forum()

RETURNS VOID

AS

$BODY$

DECLARE

 category_multiplier integer;

 thread_per_author integer;

 message_per_thread integer;

 available_authors integer;

 current_tid integer;

 current_mid integer;

 current_category category%rowtype;

 current_author author%rowtype;

 current_writer author%rowtype;

 current_published_at time;

 current_published_on date;

BEGIN

 -- a multiplier for the size of each category

 category_multiplier := 1;

 -- how many authors are there?

 SELECT count(pk)

 FROM author

 INTO available_authors;

 -- append to the max tid if any is existing

 SELECT max(tid)

 FROM thread

 IF current_tid IS NULL THEN

 current_tid := 0;

 ELSE

 current_tid := current_tid + 1;

 END IF;

 -- iterate over each category

 FOR current_category IN SELECT *

 FROM category

 ORDER BY id

 LOOP

 -- increment the category multiplier

 category_multiplier := category_

multiplier + 1;

 RAISE INFO ‘Category % (multiplier

%)’, current_category.description,

category_multiplier;

 -- set the initial date and time for

publishing this category

 current_published_on := current_

category.since + 2;

 current_published_at := time ‘08:02:00’;

 RAISE INFO ‘category start date % at

time %’, current_published_on,

current_published_at;

 -- iterate on each author

 FOR current_author IN SELECT *

 FROM author

 ORDER BY username

 LOOP

 -- how many message per author

and per thread?

 thread_per_author := category_

multiplier * 300;

 WHILE thread_per_author > 0 AND

current_published_on < current_date LOOP

 --RAISE INFO ‘ % threads

remaining’, thread_per_author;

 current_tid := current_tid + 1;

 current_mid := 0;

 current_published_on := current_

published_on + interval ‘2 days’;

 INSERT INTO thread(tid, mid,

title, content, category_pk, author_pk,

published_on, published_at)

 VALUES(current_tid,

current_mid, ‘Thread start ‘ ||

current_tid, ‘How do you do this?’,

current_category.pk, current_author.

pk, current_published_on, current_

published_at);

How To

08/2012 24

Listing 4b. The populate_forum stored procedure

 thread_per_author :=

thread_per_author – 1;

 message_per_thread :=

category_multiplier * 20 * available_

authors;

 WHILE message_per_thread >

0 LOOP

 -- now insert replies from

other authors

 FOR current_writer IN

SELECT *

 FROM

author

 WHERE

pk <> current_author.pk

 ORDER

BY display_name

 LOOP

 current_mid :=

current_mid + 1;

 message_per_thread :=

message_per_thread – 1;

 current_published_at

:= current_published_at + interval ‘2

minutes’;

 INSERT INTO thread(

tid, mid, title, content, category_

pk, author_pk, published_on,

published_at)

 VALUES(current_tid,

current_mid, ‘Thread reply ‘ ||

current_tid, ‘I think so and so.’,

current_category.pk, current_writer.

pk, current_published_on, current_

published_at);

 END LOOP;

 END LOOP; -- end of the while

for the thread messages

 END LOOP; -- end of the while per

author

 END LOOP; -- end of the iteration over

authors

 END LOOP; -- end of the category iteration

END;

$BODY$

LANGUAGE plpgsql;

Listing 5. A stored procedure that creates all the per-category tables

CREATE OR REPLACE FUNCTION create_category_tables()

RETURNS integer

AS

$BODY$

DECLARE

 current_category category%rowtype;

 created_tables integer;

BEGIN

 created_tables := 0;

 -- iterate over each category

 FOR current_category IN SELECT *

 FROM category

 ORDER BY id

 LOOP

 -- a dynamic query for creating the table

 EXECUTE ‘CREATE TABLE IF NOT EXISTS

thread_’ || current_category.id

 || ‘ (CHECK(category_pk = ‘ ||

current_category.pk || ‘), ‘

 || ‘ PRIMARY KEY(pk), ‘

 || ‘ FOREIGN KEY(category_pk)

REFERENCES category(pk), ‘

 || ‘ FOREIGN KEY(author_pk)

REFERENCES author(pk), ‘

 || ‘ UNIQUE(tid, mid) ‘

 || ‘) INHERITS (thread);’;

 created_tables := created_tables + 1;

 END LOOP; -- end of the category iteration

 RETURN created_tables;

END;

$BODY$

LANGUAGE plpgsql;

www.bsdmag.org 25

PostgreSQL: Partitioning (part 1)

and thread start/replies, so that for instance two different
threads are shown as follows: Listing 1.

Having defined the main structures, it is possible to
populate the database with a set of threads and re-
plies. In order to simulate a workload the special stored
procedure populate_forum has been defined (see List-
ing 4). The idea is that for each category each author
will start a certain number of threads and all the other
authors will post a specific number of replies to those
threads; by convention each thread starts two days af-
ter the previous one from the same author, and all re-
plies come with a little different time within the same
day; finally the population stops when either the num-
ber of threads-per-author or the current date is reached
on each category. While the time scenario is not a real
one, it will be useful to stress the partitioning implemen-
tation.

Executing the stored procedure makes the thread table
grow to more than 4 million tuples, scattered amongst cat-
egories as follows: Listing 2.

For a total number of 4043657 tuples in 49828 data
pages for around 390 MB of disk space. It is now time to
partition the data!

Partitioning Using the Forum Category
A first kind of partitioning could be based on the message
category: since each thread belongs to one and only one
category and each category can live on its own, this is a
good first partition schema. In order to implement this par-
tition it is required to:

• 	 create a table for each category; such table will han-
dle all the threads that belong to such category. It is
worth noting that these tables have the same data
structure of the main thread table;

• 	 build appropriate constraints on each table to avoid
the erroneous or malicious manipulation of data be-
longing to another category (e.g., the “net” category
table cannot accept threads or queries that refers to
the “kern” category);

Listing 6. A stored procedure that migrates all the data into the
appropriate table

CREATE OR REPLACE FUNCTION migrate_threads()

RETURNS VOID

AS

$BODY$

DECLARE

 current_category category%rowtype;

BEGIN

 -- iterate over each category

 FOR current_category IN SELECT *

 FROM category

 ORDER BY id

 LOOP

 RAISE INFO ‘Inserting for category %’,

current_category.description;

 -- copy each tuple in the right table

 EXECUTE ‘INSERT INTO thread_’ ||

current_category.id

 || ‘ SELECT * FROM thread ‘

 || ‘ WHERE category_pk = ‘ ||

current_category.pk;

 -- delete tuples from the master table

 RAISE INFO ‘Deleting for category %’,

current_category.description;

 EXECUTE ‘DELETE FROM ONLY thread ‘

 || ‘ WHERE category_pk = ‘ ||

current_category.pk;

 END LOOP; -- end of the category iteration

END;

$BODY$

LANGUAGE plpgsql;

Listing 7. A rule to handle inserting into the net category

CREATE OR REPLACE r_thread_insert_net AS

 ON INSERT TO thread

 WHERE new.category_pk = 2

 DO INSTEAD

 INSERT INTO thread_net (pk, tid, mid, title, content,

 published_on, published_at,

category_pk,

 author_pk)

 SELECT new.pk, new.tid, new.mid, new.title, new.

content,

 new.published_on, new.

published_at, new.category_pk,

 new.author_pk

How To

08/2012 26

Listing 8. A stored procedure to automate the creation of all rules
associated to the thread table

CREATE OR REPLACE FUNCTION create_category_rules()

RETURNS integer

AS

$BODY$

DECLARE

 current_category category%rowtype;

 created_rules integer;

BEGIN

 created_rules := 0;

 -- iterate over each category

 FOR current_category IN SELECT *

 FROM category

 ORDER BY id

 LOOP

 -- rule for INSERT

 EXECUTE ‘CREATE OR REPLACE RULE r_thread_

insert_’ || current_category.id

 || ‘ AS ON INSERT TO thread ‘

 || ‘ WHERE NEW.category_pk = ‘

|| current_category.pk

 || ‘ DO INSTEAD ‘

 || ‘ INSERT INTO thread_’ ||

current_category.id

 || ‘ SELECT NEW.*’;

 created_rules := created_rules + 1;

 END LOOP; -- end of the category iteration

 RETURN created_rules;

END;

$BODY$

LANGUAGE plpgsql;

Listing 9. A trigger function that re-routes tuple insertion

CREATE OR REPLACE FUNCTION thread_partitioning_handler()

RETURNS trigger

AS

$BODY$

DECLARE

 current_category_id text;

 current_category_table_name text;

BEGIN

 RAISE LOG ‘Trigger executing as %’, TG_OP;

 -- get the name of the category

 IF TG_OP = ‘INSERT’ THEN

 SELECT id

 FROM category

 INTO current_category_id

 WHERE pk = NEW.category_pk;

 END IF;

 -- build the table name for the right insert

 SELECT ‘thread_’ || current_category_id

 INTO current_category_table_name;

 RAISE LOG ‘The query is going to be re-routed to

the table %’,

 current_category_table_name;

 -- execute the insertion into the right table

 IF TG_OP = ‘INSERT’ THEN

 EXECUTE ‘INSERT INTO ‘

 || current_category_table_name

 || ‘ SELECT $1.* ‘

 USING NEW;

 END IF;

 RETURN NULL;

END;

$BODY$

LANGUAGE plpgsql;

Listing 10. A stored procedure to create all the re-routing triggers

CREATE OR REPLACE FUNCTION create_category_triggers()

RETURNS void

AS

$BODY$

DECLARE

 current_category category%rowtype;

BEGIN

 EXECUTE ‘DROP TRIGGER IF EXISTS tr_thread_

trigger ON thread’;

 || ‘ BEFORE INSERT ‘

 || ‘ ON thread ‘

 || ‘ FOR EACH ROW ‘

 || ‘ EXECUTE PROCEDURE thread_

partitioning_handler()’;

END;

$BODY$

LANGUAGE plpgsql;

www.bsdmag.org 27

PostgreSQL: Partitioning (part 1)

• 	 migrate all existing data from the thread table to the
right per-category table;

• 	 avoid the direct manipulation of the thread table,
since all the queries must be “routed” to a specific
per-category table;

• 	 allow transparent querying of the thread table and of
its per-category children.

Steps 1 and 2:
Creating the Tables and the Constraints
The first two steps can be done using a stored procedure,
so that if the number of categories changes over time new
partition tables can be created in an automated way. The
idea is simple: for each category in the category table a
new table named thread_categoryIdentifier (e.g., thread_
kern) will be created. Such table will have the same data
structure of the main thread table and will have a check
constraint that assures that the category_pk column re-
fers to only one category; moreover all foreign keys and

unique constraints have to be redefined. Therefore this
results in a manual statement like the following:

CREATE TABLE IF NOT EXISTS thread_kern(

 CHECK(category_pk = 2),

 PRIMARY KEY(pk),

 FOREIGN KEY(category_pk) REFERENCES category(pk),

 FOREIGN KEY(author_pk) REFERENCES author(pk),

 UNIQUE(tid, mid)

) INHERITS (thread);’;

As stated before, using a stored procedure the whole
task of creating each individual category table can be
automated, and therefore the procedure shown in Listing
5 can be used to create all the tables.

Step 3: Migrating Existing Data to the Right Table
Having all the per-category tables in place it is pos-
sible to migrate each tuple from the main thread table

Listing 11. The first messages on the thread table before migrating data

forumdb=> SELECT * FROM thread WHERE tid = 1;

 pk | tid | mid | title | content | published_on | published_at | category_pk | author_pk

-----+-----+-----+----------------+---------------------+--------------+--------------+-------------+-----------

 1 | 1 | 0 | Thread start 1 | How do you do this? | 1991-01-11 | 08:02:00 | 5 | 1

 2 | 1 | 1 | Thread reply 1 | I think so and so. | 1991-01-11 | 08:04:00 | 5 | 2

 3 | 1 | 2 | Thread reply 1 | I think so and so. | 1991-01-11 | 08:06:00 | 5 | 3

 4 | 1 | 3 | Thread reply 1 | I think so and so. | 1991-01-11 | 08:08:00 | 5 | 4

…

Listing 12. The first messages are now on the hardware category table

forumdb=> SELECT * FROM thread_hw WHERE tid = 1;

 pk | tid | mid | title | content | published_on | published_at | category_pk | author_pk

-----+-----+-----+----------------+---------------------+--------------+--------------+-------------+-----------

 1 | 1 | 0 | Thread start 1 | How do you do this? | 1991-01-11 | 08:02:00 | 5 | 1

 2 | 1 | 1 | Thread reply 1 | I think so and so. | 1991-01-11 | 08:04:00 | 5 | 2

 3 | 1 | 2 | Thread reply 1 | I think so and so. | 1991-01-11 | 08:06:00 | 5 | 3

 4 | 1 | 3 | Thread reply 1 | I think so and so. | 1991-01-11 | 08:08:00 | 5 | 4

...

forumdb=> SELECT * FROM ONLY thread WHERE tid = 1;

 pk | tid | mid | title | content | published_on | published_at | category_pk | author_pk

----+-----+-----+-------+---------+--------------+--------------+-------------+-----------

(0 rows)

How To

08/2012 28

Listing 13. The stored procedure that creates all the tables for
categories and years within a category

CREATE OR REPLACE FUNCTION create_category_tables()

RETURNS integer

AS

$BODY$

DECLARE

 current_category category%rowtype;

 created_tables integer;

 current_table_name text;

 current_year integer;

 current_year_to_check integer;

 current_max_year integer;

BEGIN

 created_tables := 0;

 -- iterate over each category

 FOR current_category IN SELECT *

 FROM category

 ORDER BY id

 LOOP

 -- build a dynamic query for creating the

table

 --EXECUTE ‘DROP TABLE thread_’ ||

current_category.id;

 EXECUTE ‘CREATE TABLE IF NOT EXISTS

thread_’ || current_category.id

 || ‘ (CHECK(category_pk = ‘ ||

current_category.pk || ‘), ‘

 || ‘ PRIMARY KEY(pk), ‘

 || ‘ FOREIGN KEY(category_pk)

REFERENCES category(pk), ‘

 || ‘ FOREIGN KEY(author_pk)

REFERENCES author(pk), ‘

 || ‘ UNIQUE(tid, mid) ‘

 || ‘) INHERITS (thread);’;

 created_tables := created_tables + 1;

 -- compute the current year

 current_year := EXTRACT(year FROM

current_category.since);

 -- get the max year for the current

category, so that

 -- no more tables than the max year will

be created

 SELECT EXTRACT(year FROM MAX(published_on))

 INTO current_max_year

 FROM thread

 WHERE category_pk = current_category.pk;

 RAISE LOG ‘Generating time tables from

year % to year %’, current_year,

current_max_year;

 WHILE current_year <= current_max_year LOOP

 RAISE LOG ‘Creating sub-table for

year %’, current_year;

 current_year_to_check := EXTRACT(

year FROM current_category.since) +

current_year – 1;

 EXECUTE ‘CREATE TABLE IF NOT EXISTS thread_’

 || current_category.id || ‘_

year’ || current_year

 || ‘ (‘

 || ‘ CHECK(‘

 || ‘ EXTRACT(year FROM

published_on) = ‘

 || current_year

 || ‘) ,’

 || ‘ PRIMARY KEY(pk), ‘

 || ‘ FOREIGN KEY(category_pk)

REFERENCES category(pk), ‘

 || ‘ UNIQUE(tid, mid) ‘

 || ‘) INHERITS (‘

 || ‘thread_’ || current_category.id

 || ‘);’;

 current_year := current_year + 1;

 END LOOP; -- end of the per-year-while

 END LOOP; -- end of the category iteration

 RETURN created_tables;

END;

$BODY$

LANGUAGE plpgsql;

www.bsdmag.org 29

PostgreSQL: Partitioning (part 1)

Listing 14. The stored procedure to migrate existing partitions and
split them depending on the time

CREATE OR REPLACE FUNCTION migrate_threads_by_category_

and_time()

RETURNS VOID

AS

$BODY$

DECLARE

 current_category category%rowtype;

 current_year integer;

 current_year_to_check integer;

 current_max_year integer;

BEGIN

 -- iterate over each category

 FOR current_category IN SELECT *

 FROM category

 ORDER BY id

 LOOP

 current_year := EXTRACT(year FROM current_

category.since);

 --find the max year for this category

 SELECT EXTRACT(year FROM MAX(published_on

))

 INTO current_max_year

 FROM thread

 WHERE category_pk = current_category.pk;

 WHILE current_year <= current_max_year LOOP

 current_category.

description, current_year;

 -- copy each tuple in the right table

 EXECUTE ‘INSERT INTO thread_’ ||

current_category.id

 || ‘_year’ || current_year

 || ‘ SELECT * FROM ONLY

thread_’ || current_category.id

 || ‘ WHERE category_pk = ‘ ||

current_category.pk

 || ‘ AND (EXTRACT(year FROM

published_on) ‘

 || ‘ = ‘ || current_year

 || ‘)’;

 -- delete tuples from the master table

 RAISE INFO ‘Deleting for category %,

year %’,

 current_category.

description, current_year;

 EXECUTE ‘DELETE FROM ONLY thread_’ ||

current_category.id

 || ‘ WHERE category_pk = ‘ ||

current_category.pk

 || ‘ AND (EXTRACT(year FROM

published_on) ‘

 || ‘ = ‘ || current_year

 || ‘)’;

 current_year := current_year + 1;

 END LOOP; -- end of the per-year loop

 END LOOP; -- end of the category iteration

END;

$BODY$

LANGUAGE plpgsql;

Listing 15. An extract of the result of data partitioning based on
categories and times.

forumdb=> SELECT relname, reltuples FROM pg_class WHERE

relname like ‘thread%’ AND relkind =

‘r’ ORDER BY relname;

 relname | reltuples

----------------------+-----------

 thread | 0

 thread_hw | 0

 thread_hw_year1991 | 29014

 thread_hw_year1992 | 29829

 thread_hw_year1993 | 29666

 ...

 thread_hw_year2004 | 5053

 thread_kern | 0

 thread_kern_year1993 | 43621

 thread_kern_year1994 | 43862

 thread_kern_year1995 | 44103

 thread_kern_year1996 | 44103

 thread_kern_year1997 | 43862

 ...

 thread_kern_year2012 | 13255

How To

08/2012 30

to the per-category table to which it belongs: each tu-
ple must be first inserted in the right table and then de-
leted from the main table. For instance, to migrate the
“net” category tuples a transaction should issue the fol-
lowing:

INSERT INTO thread_net SELECT * FROM thread WHERE

category_pk = 2;

DELETE FROM ONLY thread WHERE category_pk = 2;

And similarly, this should be done for all other catego-
ries, as shown by the function migrate_threads in Listing
6. Careful readers will have noticed a new keyword, ON-
LY, in the DELETE query above. Almost every PostgreSQL
command is aware of the table inheritance and accepts
an ONLY clause to specify that the command must be
routed exactly to the table without having to consider the
inheritance chain. Therefore, in the above commands,
the INSERT is performed in a child table, while the DELETE
only on the parent table.

Before the migration the situation on the thread table
was the following:

forumdb=> SELECT category, count(message)

FROM vw_thread

GROUP BY category;

 category | count

------------+---------

 Networking | 1493115

 Kernel | 848802

 Hardware | 391200

 General | 1310540

while after the migration the situation is the same, with
regard to the number of threads per category, but has
a different layout (each category is now contained in a
specific table and the thread table is empty):

forumdb=> SELECT relname, reltuples::integer

FROM pg_class WHERE relname LIKE ‘thread%’ AND relkind = ‘r’;

 relname | reltuples

-------------+-----------

 thread | 0

 thread_hw | 391200

 thread_kern | 848802

 thread_misc | 1310540

 thread_net | 1493115

Please note that for the above query to report the right
result it might be required to run a VACUUM FULL ANALYZE.

Step 4:
Avoiding the Manipulation of the Thread Table
This step can be implemented either with rules or triggers
on the thread main table: the idea is to intercept a state-
ment routed to the thread table (e.g., INSERT) and re-route
it to the appropriate table depending on the category in-
formation within the statement itself. For instance, when a
new message is posted within the net category (pk = 2),
the tuple must be stored in the thread_net table and not in
the thread table.

Using Rules
Rules allow the rewriting of queries so that the real target
(i.e., the table against which the statement will be execut-
ed) can be altered as required. For instance, for an INSERT
statement to be routed to the “net” table (pk = 2) a rule like
the following is required: Listing 7.

Such a rule, “attached” to the thread table, will re-route
an insert of the “net” category into the thread_net ta-
ble. Again, in order to get the rule creation automated,
a stored procedure is used (see Listing 8). It is worth re-
minding readers that UPDATE, SELECT and DELETE statements
already include the children tables, and therefore there is
no explicit need to define rules for such queries, even if
this were possible.

It is worth noting that the creation of rules, in particu-
lar the delete ones, will avoid manipulation of the thread
table. This is the reason why data was migrated in the
previous step, otherwise it would have been impos-
sible to remove scattered tuples from the thread table.
By the way, it is always possible to disable and re-en-
able the delete tuples in order to migrate data after this
step.

Using Triggers
Since INSERT statements need re-routing to the right table,
and this has to be applied before the tuple commits to the
thread main table, it is possible to build a simple trigger
function (see Listing 9) that can be associated with the
thread table.

The thread_partitioning_handler trigger function acts
for “before” events and performs an INSERT into the right
table. It is worth noting the usage of the special syntax
EXECUTE...USING that allows for the usage of the NEW
trigger tuple. Moreover, please note that the trigger al-
ways returns NULL meaning that no tuple must hit the
thread table as result of an INSERT statement. The trig-
ger function is attached to the thread table via a stored
procedure (see Listing 10), so that each time the proce-
dure Is called the triggers for each available category are
generated.

www.bsdmag.org 31

PostgreSQL: Partitioning (part 1)

Listing 16. The stored and trigger procedures to enable INSERT
triggers on per-category tables

CREATE OR REPLACE FUNCTION create_category_time_

triggers()

RETURNS void

AS

$BODY$

DECLARE

 current_category category%rowtype;

BEGIN

 -- iterate over each category

 FOR current_category IN SELECT *

 FROM category

 ORDER BY id

 LOOP

 EXECUTE ‘DROP TRIGGER IF EXISTS tr_thread_

trigger_time ON ‘

 || ‘ thread_’ || current_category.id;

 EXECUTE ‘CREATE TRIGGER tr_thread_trigger_time ‘

 || ‘ BEFORE INSERT ‘

 || ‘ ON thread_’ || current_category.id

 || ‘ FOR EACH ROW ‘

 || ‘ EXECUTE PROCEDURE thread_

subpartitioning_handler()’;

 END LOOP;

END;

$BODY$

LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION thread_subpartitioning_

handler()

RETURNS trigger

AS

$BODY$

DECLARE

 current_category_id text;

 current_category_table_name text;

 current_category_since date;

 current_category_year integer;

BEGIN

 RAISE LOG ‘Trigger executing as %’, TG_OP;

 -- get the name of the category

 IF TG_OP = ‘INSERT’ THEN

 -- get the current category id and

current year

 SELECT id, EXTRACT(year FROM NEW.

published_on)

 FROM category

 INTO current_category_id, current_

category_year

 -- build the table name for the right

insert

 SELECT ‘thread_’ || current_category_id

|| ‘_year’

 || current_category_

year

 INTO current_category_table_name;

 END IF;

 RAISE LOG ‘The query is going to be re-routed to

the table %’, current_category_table_

name;

 -- execute the insertion into the right table

 IF TG_OP = ‘INSERT’ THEN

 EXECUTE ‘INSERT INTO ‘

 || current_category_table_name

 || ‘ SELECT $1.* ‘

 USING NEW;

 END IF;

 RAISE LOG ‘Trigger finished!’;

 RETURN NULL;

END;

$BODY$

LANGUAGE plpgsql;

How To

08/2012 32

Step 5: Provide Transparent Querying of the Thread
Table
Believe it or not, this is the easiest part since PostgreSQL
gives you this for free! Each SELECT targeted to the thread
table will be automatically perform an union of all the re-
sults of the thread children: Listing 11. Which reports the
same results as if the query were run against the single
thread_hw table (category_pk = 5): Listing 12.

This is because the SELECT statement automatically pro-
vides a union of the table against which it is run (e.g.,
thread) and all its children. Using the ONLY keyword it
is possible to tell PostgreSQL to avoid descending the
inheritance chain, so that the following query now fails
since the thread table is empty: Listing 12. Similar consid-
erations are true for other non-insert statements, so there
is no special need to build a specific set of rules/triggers.

Time-based Partitioning
It is possible to improve the partitioning just completed
by adding a new partition based on the thread time (i.e.,
the published_on column). The idea is to refine each per-
category table by setting up a table that will contain each
year of messages. This means that per-year tables will

be defined for each category, for instance thread_net_
year1992, thread_net_year1993 and so on up to the last
year a post for the category exists; each post will be then
be routed to the right year table.

The partitioning steps are similar to those explained in the
previous example, but now the first step is to create per-year
tables, and therefore the stored procedure create_catego-
ry_tables is changed as shown in Listing 13. After the tables
are in place, data must be migrated from per-category tables
to per-year tables, and this is done similarly to previous par-
titioning using the migrate_threads_by_category_and_time
stored procedure (see Listing 14), that produces a database
populated as shown in Listing 15. As a last step, a trigger to
handle INSERT statements over each per-category table has
to be set, and this is automated through the create_catego-
ry_time_triggers stored procedure shown in Listing 16.

In the final scenario the master table thread cascades
queries to per-category tables (e.g., thread_net) which in
turn cascade to per-year tables within the same category
(e.g., thread_net_year2004).

As readers can see, the above examples are quite sim-
ple and partially simulate a real situation. Of course having
the ability to pre-partition the database before having to
deal with huge amounts of data allows a better database
design, and nullifies the migration of data. For instance,
having chosen from the beginning to partition messages
by time instead of by category could have remove a layer
of inheritance (the per-category tables) that could result in
a more difficult to maintain database.

Summary and Coming Next
This article examined the data partitioning and the table in-
heritance that can be exploited in PostgreSQL to achieve
data splitting across multiple tables. In the next article the
tablespace feature will be presented as wells as another
data partitioning scenario.

On The Web
• 	 PostgreSQL official Web Site: http://www.postgresql.org
• 	 ITPUG official Web Site: http://www.itpug.org
• 	 PostrgeSQL Table Inheritance Documentation: http://

www.postgresql.org/docs/current/static/ddl-inherit.html
• 	 GitHub Repository containing the source code of the ex-

amples: https://github.com/fluca1978/fluca-pg-utils

Box 1. How to quickly (re)set the database
In order to perform the partitioning examples described here
it is possible to quickly drop and rebuild the whole database.
The source code of the example is contained in the GitHub re-
pository (see the references) in the bsdmag/05-partitioning
folder, therefore, being connected to the forumdb it is possi-
ble to issue the following queries:

DROP TABLE IF EXISTS thread_net CASCADE;
DROP TABLE IF EXISTS thread_misc CASCADE;
DROP TABLE IF EXISTS thread_kern CASCADE;
DROP TABLE IF EXISTS thread_misc CASCADE;
DROP TABLE IF EXISTS thread CASCADE;
DROP TABLE IF EXISTS author;
DROP TABLE IF EXISTS category;
DROP VIEW IF EXISTS vw_thread;
\i 01-forum-database-initial-setup.sql
\i 02-function-populate.sql
SELECT populate_forum();
\i 03-function-create-category-tables.sql
SELECT create_category_tables();
\i 04-migration.sql
SELECT migrate_threads();
\i 05-thread-table-rules.sql
SELECT create_category_rules();

And to enable the per-year subpartitioning:

\i 07-partitioning-time.sql
SELECT migrate_threads_by_category_and_time();
SELECT create_category_time_triggers();
and last issue
VACUUM FULL ANALYZE;

Luca Ferrari
Luca Ferrari lives in Italy with his wife and son. He is an Adjunct Pro-
fessor at Nipissing University, Canada, a co-founder and the vice-
president of the Italian PostgreSQL Users’ Group (ITPUG). He simply
loves the Open Source culture and refuses to log-in to non-Unix sys-
tems. He can be reached on line at http://fluca1978.blogspot.com.

http://www.postgresql.org
http://www.itpug.org
http://www.postgresql.org/docs/current/static/ddl-inherit.html
http://www.postgresql.org/docs/current/static/ddl-inherit.html
https://github.com/fluca1978/fluca-pg-utils
http://fluca1978.blogspot.com

http://www.bsdmall.com/

Security

08/2012 34

This article provides the steps involved in imple-
menting those approaches, as well as operational
best practices that go with those implementations.

The DNS protocol protection approaches are elaborated
here in more detail:

Restricting Transaction Entities Based on IP Address
In this type of implementation, the DNS name servers and
clients participating in a DNS transaction are restricted
to a trusted set of hosts by specifying their IP address-
es in appropriate access control statements provided by
the name server software. The protection provided by
these IP-based access control statements can be circum-
vented by attacks such as IP spoofing. Hence, this solu-
tion is not recommended for DNS query/response, zone
transfer, and dynamic update transactions that have high
threat impact. However, for the DNS NOTIFY transaction,
where the only threat is spurious notification (which may
not even trigger a zone transfer), an access control based
on IP address will suffice. Although this solution is not rec-
ommended generally, a description of the mechanics of
access control using IP addresses is provided in “Restrict-
ing Transaction Entities Based on IP Address” because
the same statements are used to identify hosts based on
named keys while implementing transaction protection
using hash-based message authentication codes. This
approach has been implemented for all DNS transactions.

Transaction Protection through Hash-Based
Message Authentication Codes (TSIG Specification)
In this approach, transaction protection is enabled
through generation and verification of hash-based mes-
sage authentication codes (HMAC). Because these codes
are embedded within a special RR of RRType TSIG, the
specifications that outline protection of DNS transactions
using HMAC are called TSIG in the DNS community.
TSIG specifications are described in RFC 2845 and 3007.
Application of TSIG specifications for protection of zone
transfer and dynamic update transactions is described in
Transaction Protection Through Hash-Based Message
Authentication Codes (TSIG).

Transaction Protection through Asymmetric Digital
Signatures (DNSSEC Specification)
This approach, which goes by the name DNS security ex-
tensions (DNSSEC), is described through a family of RF-
Cs 4043, 4044, and 4045. The core services provided by
DNSSEC are data origin authentication and integrity pro-
tection. DNSSEC is used mainly for securing DNS infor-
mation obtained from DNS query/response transactions.
The deployment issues of DNSSEC are described in Part
5.

Before we dive into the article, I want to take a moment
to talk about NSD and Unbound vs. BIND. Most of you
know that BIND is the de facto standard DNS server. It’s

Securing DNS
Transactions

What you will learn…
• 	 How to restrict transactions based on IP address
• 	 How to configure TSIG for BIND and NSD

What you should know…
• 	 An understanding of how DNS works

In the June 2012 issue, we outlined the threats, security
objectives, and protection approaches for various DNS
transactions.

www.bsdmag.org 35

Securing DNS Transactions

es and IP prefixes, as described in “Restricting DNS
Query/Response Transaction Entities”). The address
match list is used as an argument in various access
control statements that are available for use in BIND
configuration files. There are separate access control
statements for each type of DNS transaction. The syn-
tax of the various access control statements and the
DNS transaction for which each is used are given in
Table 1.

The purpose of each of these access control statements
is as follows:

• 	 allow-query: specifies the list of hosts allowed to que-
ry the name server as a whole or a particular zone
within the name server

• 	 allow-recursion: specifies the list of hosts allowed
to submit recursive queries to the name server as
a whole or to a particular zone served by the name
server

• 	 allow-transfer: specifies the list of hosts allowed to
initiate zone transfer requests to the name server as
a whole or to a particular zone within the name serv-
er. This statement is predominantly required for con-
figuration of master name servers.

• 	 allow-update: specifies the list of hosts allowed to ini-
tiate dynamic update requests

• 	 allow-update-forwarding: specifies the list of hosts al-
lowed to forward dynamic update requests (regard-
less of the originator of the requests)

• 	 allow-notify: specifies the list of hosts from which to
accept DNS NOTIFY messages indicating changes
in the zone file. This list is relevant only for configura-
tion of secondary slave name servers.

• 	 blackhole: specifies the list of hosts that are black-
listed (barred) from initiating any transaction with this
name server. Used only in an options server-wide
ACL statement.

The foregoing access control statements are, in fact,
substatements that can be used in the context of options

a free software product and is distributed with most UNIX
and Linux platforms.

NSD is an open-source authoritative server developed
by NLNet Labs of Amsterdam in cooperation with the
RIPE NCC. NSD is a test-bed server for DNSSEC, and
new DNSSEC protocol features are often prototyped us-
ing the NSD code base. The original intention of NSD was
to develop an authoritative server implementation inde-
pendent of BIND that could be used on root servers, thus
making the root zone more robust through software di-
versity. Three root servers and several top-level domains
now use NSD, but you don’t have to be a root server or
TLD to benefit from NSD’s robustness, speed, and sim-
plicity.

Unbound is a recursive DNS server that is complemen-
tary to NSD. It was developed in C by NLNet Labs from
a Java implementation by Verisign, Nominet, Kirei, and
EP.NET. Together, NSD and Unbound provide flexible,
fast, secure DNS service appropriate for most sites. The
NLNet Labs components are not as mature as BIND and
do not have as many bells and whistles, but they are fine
solutions for most sites.

The DNSSEC code in NSD and Unbound is more robust
and better tested than that in BIND. It’s also faster. For ex-
ample, Unbound is about five times faster than BIND at
verifying DNSSEC signatures. BIND still has an edge in
some areas, though, notably in documentation and in ex-
tra features. For a really robust DNS regime, run both!

Restricting Transaction Entities Based on IP
Address
Some DNS name server implementations, such as BIND
9 and higher, provide access control statements through
which it is possible to specify hosts that can participate in
a given DNS transaction. The hosts can be identified by
their IP address or IP subnet reference (called IP prefix) in
these statements.

The list containing these IP addresses and/or IP pre-
fixes is called an address match list. (An address match
list can be made up of other things besides IP address-

Table 1. BIND Access Control Statement Syntax for DNS Transactions

Access Control Statement Syntax DNS Transaction
allow-query { address_match_list } DNS Query/Response
allow-recursion { address_match_list } Recursive Query
allow-transfer { address_match_list } Zone Transfer
allow-update { address_match_list } Dynamic Update
allow-update-forwarding { address_match_list } Dynamic Update
allow-notify { address_match_list } DNS Notify
blackhole { address_match_list } Blacklisted Hosts

Security

08/2012 36

and zone statements in the BIND 9 and higher configu-
ration file (with the exception of blackhole). When they
are used within the zone statement, they specify access
control restrictions for the corresponding DNS transac-
tion for that specific zone. When they are used as part
of the options statement, they specify access control re-
strictions for the corresponding DNS transaction for the
name server as a whole (because a name server could
host multiple zones).

NSD has a similar set of configuration options for cer-
tain transactions. NSD has a more limited set of options
and currently can only restrict zone transfers. In the fol-
lowing sections, if a comparable set of options exists for
NSD, they will be listed. Otherwise, it should be noted
that a comparable option does not exist at the time of
writing.

Restricting DNS Query/Response Transaction
Entities
An example of the usage of the allow-query substate-
ment (to specify restrictions for the DNS query/response
transaction stating the IP addresses/subnets from which
DNS queries are accepted) both at the server- and at
the zone level (for the zone example.com) is given
below:

options {

 allow-query { 254.10.20.10; 239.10.30.29/25; };

};

zone “example.com.” {

 type master;

 file “zonedb.example.com”;

 allow-query { 192.249.249.1; 192.249.249.4; };

};

Specifying the list of IP addresses and IP prefixes within
the options and zone statements could clutter the config-
uration file. Furthermore, the list of IP addresses and IP
prefixes could be the same for many of the access con-
trol statements within a name server, and errors could
be introduced if any additions or subtractions are made
for that list. To avoid these problems, BIND provides a
means to create named address match lists, which are
called access control lists (ACL). These ACLs can be
used in place of the list of IP addresses/IP prefixes (in
the address match list argument) in the access control
statements.

The ACLs are created by using the acl statement in
BIND 9 and higher. The general syntax of the acl state-
ment is as follows:

acl acl-list-name {

 address_match_list

};

The acl-list-name is a user-defined string (e.g.,
internal _ hosts). The address _ match _ list can be
a list of IP addresses, IP address prefixes (denoting
subnets), or cryptographic keys. An example of an acl
statement that uses an IP address and a subnet refer-
ence in address _ match _ list is given below. In the ex-
ample, 254.10.20.10 denotes the IP address of a host,
and the IP prefix 239.10.30.0/24 denotes a class C sub-
net.

acl “internal_hosts” {

 254.10.20.10;

 239.10.30.0/24;

};

The use of ACL internal _ hosts in place of the list of
IP addresses/IP prefix in the options and zone statement
given above is as follows:

options {

 allow-query { internal_hosts; };

};

zone “example.com.” {

 type master;

 file “zonedb.example.com”;

 allow-query { internal_hosts; };

};

The address match list parameter in an access control
statement can contain any of the following values:

• 	 An IP address or list of IP addresses
• 	 An IP prefix or list of IP prefixes
• 	 ACLs
• 	 A combination of the above three.

The definition of ACLs forms a critical element in the
configuration of DNS transaction restrictions. Hence, it
is a good operational practice for the DNS administra-
tor to define and create ACLs pertaining to different DNS
transactions.

Checklist #7
It is recommended that the administrator create a named
list of trusted hosts (or blacklisted hosts) for each of the
different types of DNS transactions. In general, the role of

www.bsdmag.org 37

Securing DNS Transactions

the following categories of hosts should be considered for
inclusion in the appropriate ACL: (1) DMZ hosts defined
in any of the zones in the enterprise; (2) All secondary
name servers allowed to initiate zone transfers; (3) Inter-
nal hosts allowed to perform recursive queries.

In addition to IP address, IP prefix, or ACL, the address
match list parameter in the access control statements can
take on any of the following special values:

• 	 none: matches no hosts
• 	 any: matches all hosts
• 	 localhost: matches all IP addresses of the server on

which the name server is running
• 	 localnets: matches all IP addresses and subnet

masks of the server on which the name server is run-
ning.

Following are a few more examples of commands for
creating ACLs and the use of ACLs within options and
zone statements:

acl “local_hosts” {

254.10.20.10;

239.10.30.29/25;

};

acl “fake-net” {

0.0.0.0/8;

1.0.0.0/8;

};

options {

 allow-query { any; };

 blackhole { fake-net; };

};

zone “example.com.” {

 type master;

 file “zonedb.example.com”;

 allow-query { local_hosts; };

};

In the named.conf snippet above, two ACLs, local _

hosts and fake-net, have been specified. DNS queries
from any hosts are allowed at the server level. No trans-
actions are permitted from the hosts included under
fake-net. Queries to the zone example.com can be ini-
tiated only by the hosts included under the ACL local _

hosts because any restriction specified under the zone
(zone-specific) statement overrides the restriction spec-
ified under the options (server-wide) statement.

Key material can also be used in ACL statements. This
would indicate that only hosts knowing (and using) the
shared key (or key pair) would be able to communicate.
How a key is used in an ACL is discussed in “Defining the
Keys in the Communicating Name Servers.”

NSD does not have a feature to define ACLs as a means
of only allowing queries from designated sets of hosts.

Restricting Recursive Queries
Authoritative name servers provide name resolution ser-
vice from their own data and are supposed to provide
this service for any DNS client. Hence, configuring an
authoritative name server to accept queries from a re-
stricted set of hosts does not make sense. The practical
security protection for an authoritative name server is to
turn off the query recursion feature, so that the authorita-
tive name server does not poison its cache by querying
other (possibly compromised) name servers. A local re-
solving/recursive name server can be configured to ac-
cept queries only from internal hosts, to protect it from
denial-of-service attacks as well as cache poisoning.
However, there may be situations in which it is economi-
cally infeasible to dedicate separate servers for authori-
tative service and resolution service, and the resolving
name server has to perform as authoritative server for
one or more zones. In this situation, the following strat-
egies are possible within the BIND 9 and higher name
server:

• 	 Restricting all queries accepted by the server to a
specified set of IP addresses of internal clients and
then overriding this set only for authoritative zones
so that any DNS client can obtain information for re-
sources in that zone.

• 	 Restricting recursive queries to a specified set of IP
addresses of internal clients through a direct configu-
ration option

• 	 Serving different responses (data) to different clients
by defining views.

Restriction at server level with override for authoritative
zones
In this strategy, the allowable set of internal clients who
can submit queries to the name server is specified through
the acl statement as follows:

acl internal_hosts {192.158.43.3; 192.158.43.6;

192.158.44.56;};

The server-wide option would be to restrict all queries to
the list of clients:

Security

08/2012 38

options {

 allow-query { internal_hosts; };

 – or –

 allow-recursion { internal_hosts; };

};

The option can be overridden by specifying zones for
which this name server is authoritative (thus allowing
queries to that zone from all clients):

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 allow-query { any; };

};

Restricting all recursive queries to a specified set of IP
addresses
Server-wide restriction:

options {

 allow-recursion { internal_hosts; };

};

Restricting recursion through views
The purpose of creating views is to create a logical par-
tition made up of a combination of clients (based on
IP addresses) and zones for which recursive queries
will be supported and those for which they will not be
supported.

In the following example, the view recursion_

view is enabled to define the scope of IP address-
es and zones that are permitted to submit recursive
queries; no_recursion_view is meant for disallowing
recursion.

view recursion_view {

 match-clients { internal_hosts; };

 recursion yes;

};

view no_recursion_view {

 match-clients { any; };

 recursion no;

};

It should be noted that NSD (as of the time of writing) is
an authoritative only DNS server.

Therefore, an NSD server will never act as a recursive
server and only serve authoritative information from the
zones it is configured to serve.

Restricting
Zone Transfer Transaction Entities
Authoritative name servers (especially primary
name servers) should be configured with an allow-

transfer access control substatement designat-
ing the list of hosts from which zone transfer requests
can be accepted. These restrictions address the de-
nial-of-service threat and potential exploits from un-
restricted dissemination of information about internal
resources.

Based on the need-to-know principle, the only name
servers that need to refresh their zone files periodical-
ly are the secondary name servers. Hence, zone trans-
fers from primary name servers should be restricted to
secondary name servers. The zone transfer should
be completely disabled in the secondary name serv-
ers. The address match list argument for the allow-
transfer substatement should consist of IP addresses
of secondary name servers and stealth secondary name
servers.

The command to create an ACL valid_secondary_NS
with the IP addresses of three secondary name servers
is as follows:

acl “valid_secondary_NS” {

 224.10.229.5;

 224.10.235.6;

 239.10.245.25;

};

The allow-transfer substatement can be used in a
zone statement and in an options statement. When it is
used in a zone statement, it can restrict zone transfer
for that zone; when it is used in an options statement,
it can restrict zone transfer for all zones in the name
server.

The allow-transfer substatement at the server level is
as follows:

options {

 allow-transfer { “valid_secondary_NS”; };

};

The allow-transfer substatement at the zone level is as
follows:

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 allow-transfer { “valid_secondary_NS”; };

};

www.bsdmag.org 39

Securing DNS Transactions

The foregoing statements apply to primary name serv-
ers. In the secondary and stealth secondary name
servers, zone transfer should be disabled as shown be-
low:

zone “example.com” {

 type slave;

 masters { 224.239.5.1; };

 file “zonedb_bak.example.com”;

 allow-transfer { none; };

};

Restricting Zone Transfer in NSD
NSD has a similar set of tools to restrict zone transfers
to only a chosen set of slave servers. Like BIND, the ad-
ministrator should learn and use the options available in
the NSD configuration file. There is no way to create ac-
cess control lists (ACLs), but an administrator can list the
individual IP addresses of slave servers in the zone state-
ments in the NSD configuration file.

In the configuration file, the provide-xfr statement is
used in the zone statement block of the nsd.conf file,
much like a combined masters statement and allow-
transfer statement in BIND configuration files:

zone:

 #allow transfer from subnet

 provide-xfr: 169.192.85.0/24

 #prevent transfer from specific IP address in block

 provide-xfr: 169.192.85.66 BLOCKED

Only one IP address should appear in a provide-xfr
statement, but the address can be an entire subnet. The
provide-xfr statement allows transfers; all other transfer
requests are rejected by default.

Restricting Dynamic Update Transaction
Entities
Dynamic updates on a zone file can be directed only to
the copy of the zone file that resides on the primary name
server for the zone (i.e., where the master zone file re-
sides). By default, dynamic update is turned off in both
BIND 8 and higher. Dynamic updates are enabled or re-
stricted by using one of the following two statements in
BIND:

• 	 allow-update
• 	 update-policy (available only in BIND 9 and higher).

These statements can be specified only at the zone lev-
el, not at the server level. Hence, these statements are

substatements within the zone statement. The allow-
update substatement enables specification of dynamic
update restrictions based on IP addresses and a shared
secret (also called a TSIG key[1]). The use of the allow-
update statement using IP addresses alone is addressed
in this section. The use of the allow-update statement
using TSIG keys is described in “Securing Zone Trans-
fers using TSIG.”

The update-policy statement enables specification of
dynamic update restrictions based on TSIG keys only, but
it enables specification of update restrictions at a finer lev-
el of granularity. The allow-update substatement implies
update access rights to all records of a zone; the update-
policy substatement can be used to restrict update ac-
cess rights to one or more designated RRTypes (e.g., A
RRs).

To use the allow-update statement, an address match
list must be created. The command to create an ACL DU_
Allowed_List with one IP address is as follows:

acl “DU_Allowed_List” {

 192.249.12.21;

};

The ACL DU _ Allowed _ List (consisting of IP address-
es of hosts allowed to send dynamic update requests for
updating the contents of the zone example.com) is used
within the allow-update substatement of the zone state-
ment as follows:

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 allow-update { “DU_Allowed_List”; };

};

Dynamic update requests generally originate from
hosts such as DHCP servers that assign IP addresses
dynamically to hosts. Once they assign an IP address
to a new host, they need to store the FQDN-to-IP ad-
dress mapping (by creating an A RR) and address-to-
FQDN mapping (by creating a PTR RR) information in
the primary authoritative name servers for the zones.
Creation of this information occurs through dynamic up-
dates.

As of the time of writing, NSD does not support dynamic
update so there are no comparable configuration options
for NSD. All dynamic update messages sent to a DNS
server running NSD will be rejected. Updates to a zone
must be done offline and then then the server signaled to
reload the new modified zone.

Security

08/2012 40

Restricting BIND DNS NOTIFY Transaction
Entities
Once zone transfers have been set up between servers,
it is a good idea to make sure that secondary name serv-
ers are informed about changes to zone file data through
a notification message. By default, a notification message
is sent whenever a primary name server detects a change
in the zone file. It sends a DNS NOTIFY message to ev-
ery name server listed in the NS RRSet in the zone, be-
cause they are the recognized secondary name servers of
the zone. DNS administrators should keep notification on,
as this configuration will allow updates to be propagated
quickly to secondary name servers. If the DNS adminis-
trator wants to turn off the functionality for a specific zone,
however, the notify substatement should be used in the
zone statement of that zone:

zone “example.com” {

 type master;

 notify no;

 file “zonedb.example.com”;

};

If there are any additional servers to which the zone ad-
ministrator wants the DNS NOTIFY message to be sent
(e.g., a stealth slave server), the also-notify substate-
ment should be added to the zone statement, and the IP
addresses of the additional servers should be specified
as its parameter values, as shown below:

zone “example.com” {

 type master;

 also-notify { 192.168.25.2; };

 file “zonedb.example.com”;

};

The receiver of the DNS NOTIFY message, the sec-
ondary name server, allows notify messages only from
the primary name server by default. (Recall that the
secondary name server is made aware of its primary
name server through the masters substatement in the
zone statement.) If the secondary name server wants
to receive notify messages from additional servers,
the allow-notify substatement in the zone statement
must be added, and then the IP addresses of those
servers must be specified in that substatement, as
follows:

zone “example.com” {

 type slave;

 allow-notify { 193.168.25.4; };

 file “zonebak.example.com”;

 masters { 192.168.25.1; };

};

Restricting NSD DNS NOTIFY Transaction
Entities
There are two statements (both placed in the zone: state-
ment block) that a DNS administrator can use to send
DNS NOTIFY messages or restrict listening for DNS NO-
TIFY messages to a particular IP address (a master serv-
er in the case of NSD acting as a slave server).

To configure NSD to send DNS NOTIFY messages to a
particular IP address (either a slave secondary or a stealth
secondary) and a particular TSIG key or the option NOKEY if
no TSIG is used, the following is added to the zone: state-
ment block in the NSD configuration file:

zone:

 notify: 10.0.0.10 NOKEY

The configuration of a slave server, accepting notifica-
tion messages only from specific IP addresses, would
look like the following:

zone:

 allow-notify: 10.11.12.13 NOKEY

Transaction Protection through Hash-Based
Message Authentication Codes (TSIG)
The process of authenticating the source of a message
and its integrity through hash-based message authenti-
cation codes (HMAC) is specified through a set of DNS
specifications known collectively as TSIG. The term
HMAC is used to denote both the message authen-
tication code generated by using a keyed hash func-
tion and the hash function itself. HMAC is specified in
RFC 2104 and generalized in the NIST document FIPS
198-1.

An HMAC function uses two parameters – a mes-
sage input and a secret key – and produces an output
called a message authentication code (MAC) or hash.
The sender of the message uses the HMAC function
to generate a MAC and sends this MAC along with the
message to the receiver. The receiver, who shares the
same secret key, uses the key and HMAC function used
by the sender to compute the MAC on the received mes-
sage. The receiver then compares the computed MAC
with the received MAC; if the two values match, it pro-
vides assurance that the message has been received
correctly and that the sender belongs to the community
of users sharing the same secret key. Thus, message

www.bsdmag.org 41

Securing DNS Transactions

source authentication and integrity verification are per-
formed in a single process.

The hash algorithm, which forms the primitive for the
hash function, generates a fixed-size MAC or hash from a
message of arbitrary size. The HMAC function for TSIG is
specified in RFC 2845 and was extended in RFC 4635 to
support more hash algorithms (SHA-1 and SHA-2 family
of algorithms).

Transaction protection through HMAC, using a shared
secret, is not a scalable solution. This is the reason the
TSIG specification is largely used only for zone transfer
and dynamic update transactions. These DNS transac-
tions are either between servers in the same administra-
tive domain, or between servers in domains with previ-
ously established interactions interconnections.

The MAC, or hash value generated by the sender of the
DNS message, is placed in a new RR called a TSIG re-
cord that is added to the DNS message. The TSIG record,
in addition to the generated hash, contains the following:

• 	 Name of the hash algorithm used
• 	 Key name
• 	 Time the hash was generated (time stamp)
• 	 “Fudge factor” – time in seconds (usually 5 minutes)

to use as delta on either side of the time generated
for which the TSIG signature should be considered
valid; used to account for possible clock skew be-
tween hosts.

The time stamp field specifies the time at which the
MAC was generated. The purpose of this field is to pro-
tect against replay attacks. In a replay attack, the attack-
er could capture the packet containing the MAC, and
send it after a period of time. To ensure that this does
not happen, the recipient reads the MAC generation time
and the current clock time, and verifies whether the MAC
was generated within an “allowable expiry time,” which is
computed using the “Fudge Factor”.

The “Fudge factor” field specifies the duration of time af-
ter the MAC generation time, the message can be consid-
ered valid. It is computed by applying a “fudge factor” on
the MAC generation time (adding or subtracting a small
number of seconds) to allow for clock skew (mismatch)
between the MAC generator and verifier hosts.

To have a secure transaction based on TSIG, a send-
er computes the hash of the entire DNS message and
secret key, and encodes the result in a TSIG RR at the
end of the message. At the recipient end, the TSIG re-
cord is stripped from the DNS message and processed.
The process whereby the recipient uses the TSIG re-
cord to verify the integrity of the received DNS message

is called verification. The verification process uses the
hash algorithm name to identify the hash function, and
the key name to identify the key to be used to validate
the TSIG record. The number of the fudge factor is used
to add to, or subtract from the signing time, to allow for
the possible mismatch of clocks of the signer and veri-
fier. Thus, the fudge factor provides the tolerance limit
for the MAC validity period computed, based on the time
of generation.

The purpose of sending the key name in the TSIG re-
cord is to enable the verifier (recipient) of the DNS mes-
sage to use the right key to verify it. It also enables the
recipient to verify that the key name is indeed one of the
keys shared with the sender. The purpose of the “Time
Signed” or time stamp field in the TSIG record is to inform
the message recipient about the time of MAC generation.
The recipient compares this value with the current clock
time at the recipient system to ensure that the MAC was
generated within the allowable time specified as part of
the TSIG record itself. The purpose of using a time stamp
is to prevent replay attacks. For correct verification of the
generation time against the current time, it is essential
that the system clocks of the transaction participants to be
synchronized. Protocols such as the Network Time Proto-
col (NTP) are available for this purpose.

The verification process consists of the recipient retriev-
ing the appropriate secret key, generating its own hash
of the received DNS message, and comparing it with the
received hash (in the TSIG record). In this verification pro-
cess, the receiving name server has performed the follow-
ing validations:

• 	 The message has been verified as coming from an
authenticated source (with whom it shares the secret
key).

• 	 The message has not been altered in transit (verified
by matching hash values).

Source authentication counters identify spoofing, and
data integrity checking helps to counter corruption and
modification of data in transit.

BIND version 8.2 was the first version to introduce TSIG
features, and is present in every later version. Support for
TSIG in BIND 9 and higher includes features to secure
zone transfer and dynamic update transactions [2].

The following operations are needed to set up the envi-
ronment for enabling DNS transactions to use TSIG:

• 	 The system clocks of the name servers (primary and
secondary) participating in DNS transactions must be
synchronized (e.g., through NTP).

Security

08/2012 42

• 	 There should be a secret key generation utility that
can generate keys of the required length with suffi-
cient entropy. The key file, (the file containing the se-
cret key string), must be securely communicated to
the two servers participating in the transaction.

• 	 The key information should be specified in the con-
figuration file through appropriate statements (e.g., by
the key statement and server statement in the named.
conf configuration file of BIND 9 and higher).

The key generation process is described in “Key Gen-
eration.” The commands needed to define the keys and
instruct the name server to use those keys for all DNS
transactions are outlined in “Defining the Keys in the
Communicating Name Servers” and “Instructing Name
Servers to Use Keys in All Transactions.” The set of
checklists for key file creation and key definition with-
in the name servers is given in “Checklists for Key File
Creation and Key Configuration Process.” Protection of
zone transfer transactions and dynamic update transac-
tions using HMAC, as specified in TSIG, are covered in
“Securing Dynamic Updates Using TSIG or SIG(0)” and
“Configuring Dynamic Update Forwarding Restrictions
Using TSIG Keys.”

Key Generation
To enable zone transfer (requests and responses) through
authenticated messages, it is necessary to generate a key
for every pair of name servers. The key can also be used
for securing other transactions, such as dynamic updates,
DNS queries, and responses.

The binary key string, that is generated by most key gen-
eration utilities used with DNSSEC, is base64 encoded.
The program that generates the key in BIND 9 and higher
is dnssec-keygen. An example of a command that gener-
ates a secret key (as opposed to other types of keys, such
as public keys, which this program can also generate) by
invoking the dnssec-keygen program is as follows:

dnssec-keygen -a HMAC-SHA256 –b 112 -n HOST ns1-ns2.

example.com.

where the various command options (parameters) de-
note the following:

• 	 -a option: the name of the hashing algorithm that
will use the key (HMAC-SHA256 is preferred, but
may not be available in older implementations. Use
of HMAC-SHA1 is allowed, but migration to HMAC-
SHA256 should be done when available)

• 	 -b option: the length of the key (here – 112 bits)

• 	 -n option: the type of key (in this case, the HOST)
• 	 last parameter: the name of the key (ns1-ns2.example.

com)

The dnssec-keygen program generates the following files,
each containing the key string:

Kns1-ns2.example.com.+157+34567.key

Kns1-ns2.example.com.+157.34567.private

When the program is generating a pair of keys (one public
and the other private), the file with the extension key will
contain the public key string and the file with extension
private will contain the private key. Because in this case
only the secret key is being generated, the key strings in
both files will be the same for the TSIG implementation.
The key string from any of these files is then copied to a
file called the key file. This file is then referenced using an
include statement within the key statement.

Defining the Keys in the Communicating Name
Servers
The key generated by using the dnssec-keygen utility has
to be defined within the named.conf configuration file of the
two communicating servers (generally one primary name
server and one secondary name server). This is accom-
plished by using the key statement of BIND:

key “ns1-ns2.example.com.” {

 algorithm hmac-sha256;

 include “/var/named/keys/secretkey.conf”;

};

where the file secretkey.conf will contain the keyword
secret and the actual key string (in this example):

secret “MhZQKc4TwAPkURM==”;

Defining the Keys in an NSD Configuration File
In NSD, declaring a TSIG key is very similar to the exam-
ple above, with some minor syntax changes:

key:

 name: ns1-ns2.example.com.

 algorithm: hmac-sha256

 secret: “MhZQKc4TwAPkURM==”

Instructing Name Servers to Use Keys in All
Transactions
The command to instruct the server to use the key in all
transactions (DNS query/response, zone transfer, dynam-
ic update, etc.) is as follows:

www.bsdmag.org 43

Securing DNS Transactions

server 192.249.249.1 {

 keys { ns1-ns2.example.com.; };

};

The same statement can be used as an entry in an acl
statement as well:

acl key_acl {

 ns1-ns2.example.com.;

};

Checklists for Key File Creation and Key
Configuration Process
In each of the configuration files of the pair of servers
that share a secret key in a zone, the name of the key
to be used for all communication between them must be
specified (via the server statement in BIND configura-
tion files).

Checklist #8
The TSIG key should be a minimum of 112 bits in length,
if the generator utility has been proven to generate suf-
ficiently random strings. The generated TSIG key may
have to be longer to insure at least 112 bits of security.

Checklist #9
A unique TSIG key should be generated for each pair of
communicating hosts (i.e., a separate key for each sec-
ondary name server to authenticate transactions with the
primary name server, etc.).

Checklist #10
After the key string is copied to the key file in the name
server, the two files generated by the dnssec-keygen pro-
gram should either be made accessible only to the server
administrator account (e.g., root in UNIX) or, better still,
deleted. The paper copy of these files also should be de-
stroyed.

Checklist #11
The key file should be securely transmitted across the
network to name servers that will be communicating with
the name server that generated the key.

Checklist #12
The statement in the configuration file (usually found at /
etc/named.conf for BIND running on UNIX) that describes
a TSIG key (key name (ID), signing algorithm, and key
string) should not directly contain the key string. When the
key string is found in the configuration file, the risk of key
compromise is increased in some environments where

there is a need to make the configuration file readable by
people other than the zone administrator. Instead, the key
string should be defined in a separate key file and refer-
enced through an include directive in the key statement
of the configuration file. Every TSIG key should have a
separate key file.

Checklist #13
The key file should be owned by the account under
which the name server software is run. The permission
bits should be set so that the key file can be read or
modified only by the account that runs the name server
software.

Checklist #14
The TSIG key used to sign messages between a pair of
servers should be specified in the server statement of
both transacting servers to point to each other. This is
necessary to ensure that both the request message and
the transaction message of a particular transaction are
signed and hence secured.

Securing Zone Transfers using TSIG
The pair of servers participating in zone transfer transac-
tions must be instructed to use the key defined using the
key statement (see “Defining the Keys in the Communi-
cating Name Servers”). This pair generally consists of a
primary name server and a secondary name server. The
primary name server is configured to accept zone trans-
fer requests only from secondary name servers that send
MACs using the named key along with a zone transfer re-
quest message.

The configuration is accomplished by using the allow-
transfer substatement of the zone statement. A sam-
ple allow-transfer substatement that specifies that
the primary name server should only allow zone trans-
fer requests for the example.com zone from name
servers that use the ns1-ns2.example.com key is as
follows:

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 allow-transfer { key {ns1-ns2.example.com.}; };

};

The secondary name server is instructed to use the key
ns1-ns2.example.com in the zone transfer request to the
primary name server (with IP address 192.249.249.1) us-
ing the server statement shown in “Defining the Keys in
an NSD Configuration File.”

Security

08/2012 44

In NSD, the syntax is similar, but there is a special re-
quirement if no TSIG key is to be used. The zone option
provide-xfer is used to indicate which IP addresses can
request a zone transfer for this zone on this server:

zone:

 type: master;

 file “zonedb.example.come”;

 provide-xfer: 192.68.0.1 ns1-ns2.example.com.

 provide-xfer: 192.68.0.1 NOKEY

Securing Dynamic Updates Using TSIG or SIG(0)
Dynamic update restrictions based on TSIG keys can be
specified in BIND 8.2 and higher versions [3] by using the
allow-update substatement of the zone statement. The ar-
guments to this statement are the keyword key followed
by the name of the TSIG key. (See “Defining the Keys in
the Communicating Name Servers” for details on how to
enter in the key statement in a BIND name server configu-
ration file.) Once the key statement has been entered, the
following substatement can be added to the zone state-
ment to make use of the secret key for dynamic updates:

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 allow-update { key dhcp-server.example.com.; };

};

Note that although the string dhcp-server.example.com.
looks like a FQDN, it actually denotes the name of the
TSIG key. The implication of the configuration statement
example is that any hosts that possess the key named
dhcp-server.example.com. can submit dynamic update
requests (adding, deleting, or modifying RRs) to the zone
file (for the zone example.com) that resides in the primary
authoritative name server.

To use SIG(0) to authenticate dynamic update mes-
sages, the key used must first have its public component
stored in the DNS, so a validating client can obtain it.[4]
We’ll discuss publishing public keys and setting up trust
anchors in Part 5. The previous steps above need to be
performed to control access (if desired). After that is done,
the updating name server should be able to obtain the
key and process the dynamic update request (if the name
server supports SIG(0) with dynamic update).

Configuring Dynamic Update Forwarding
Restrictions Using TSIG Keys
Dynamic updates are allowed on the copy of the zone
file in the primary authoritative name server only be-

cause that is the only “writable” copy. This does not au-
tomatically imply that the primary authoritative name
server is the only one allowed to accept dynamic up-
date requests.

In fact, BIND 9.1 and higher versions allow second-
ary name servers to accept dynamic update requests
and forward them to the primary authoritative name
server.

In this scenario, if there are no restrictions on the basis of
the identity of hosts from whom the secondary name server
can forward such dynamic update requests, it is equivalent
to circumventing the dynamic update restrictions specified
in the primary name server because the request can literally
originate from any host to the secondary name server and
be forwarded to the primary name server. To counter this
problem, a new substatement, allow-update-forwarding,
is now available in BIND versions that have the dynam-
ic update forwarding feature. An example of this allow-
update-forwarding statement using TSIG keys is given
below:

zone “example.com” {

 type slave;

 file “backupdb.example.com”;

 allow-update-forwarding { key dhcp-server.example.com.;

};

};

Configuring Fine-Grained Dynamic
Update Restrictions Using TSIG/SIG(0) Keys
The allow-update substatement specifies dynamic up-
date restrictions based on the originators of dynamic
update requests (a specific set of hosts identified by
IP address or holding a TSIG key), but not the con-
tents of the zone records. To specify dynamic update
access (grant or deny) restrictions based on a com-
bination of domain/subdomain names and RR types
(A, MX, NS, etc.), BIND 9 and higher versions provide
the update-policy substatement within the zone state-
ment. The update-policy substatement bases these re-
strictions on the TSIG key. In other words, the update-
policy statement specifies which TSIG keys (or holders
of keys) are allowed to perform dynamic updates on
which domains/subdomains and RR types within that
domain/subdomain.

The general form of the update-policy statement is as
follows:

update-policy {

 (grant | deny) TSIGkey nametype name [type]

};

www.bsdmag.org 45

Securing DNS Transactions

where the semantics of each of the statement compo-
nents are as follows:

• 	 grant/deny – allow/disallow dynamic update for the
combination that follows

• 	 TSIGkey – the name of the TSIG key used to authen-
ticate the update request

• 	 nametype – can be one of the following with the as-
sociated semantics:

• 	 name – restriction applies to the domain name speci-
fied in the following name field

• 	 subdomain – restriction applies to subdomains of the
domain specified in the following name field

• 	 wildcard – restriction applies to the set of domains
specified using the wildcard syntax (i.e., *) in the fol-
lowing name field

• 	 self – restriction applies to the domain whose name
is the same as that in the TSIG key field (i.e., the do-
main name whose records are to be updated has the
same name as the key used to authenticate the dy-
namic update request). In this usage, the contents of
the name field become redundant but still should be
used in the statement (i.e., the name field cannot be
left blank)

• 	 name – used to specify the name of the domain. The
syntax used and the domains it covers are based on
the value used in the nametype field (e.g., if subdo-
main is the value of the nametype field, then all sub-
domains of the domain name used are being covered
under this statement).

• 	 type – an optional field that can contain any valid
RRType (except the NSEC type) or the wildcard type
‘ANY’ (ANY stands for all RR types except the NSEC
type). If it is missing, it denotes all RR types, except
SOA, NS, RRSIG, and NSEC. It also is possible to
put in multiple RRTypes separated by a space (e.g., A
NS).

Examples of update-policy statements and their associ-
ated semantics are given below.

Suppose there is a domain sales.example.com with-
in example.com and that name server uses a TSIG
key that has the same name as its own domain
name (i.e., sales.example.com). All dynamic updates
from sales.example.com could be restricted to all re-
source records of that domain within the zone file as
follows:

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 update-policy { grant sales.example.com. self sales.

example.com.; };

};

All dynamic updates from sales.example.com could be re-
stricted to only A and MX RR types of that domain as fol-
lows:

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 update-policy { grant sales.example.com. self sales.

example.com. A MX; };

};

To allow clients with the TSIG key sales.example.com to
update all records pertaining to subdomains of NEsales.
example.com except the name server records (RR Type
NS):

zone “example.com” {

 type master;

 file “zonedb.example.com”;

 update-policy {

 deny sales.example.com. subdomain NE sales.example.

com. NS;

 grant sales.example.com. subdomain NE sales.example.

com. ANY;

 };

};

For Microsoft Windows, authentication is provided us-
ing GSS-TSIG. System administrators of Windows Serv-
ers should consult their implementation’s documentation
on how to integrate secure dynamic update using GSS-
TSIG.

Summary
Transaction Signature (or TSIG) is a protocol defined in
RFC 2845. It’s used by DNS to provide a means of authen-
ticating updates to a dynamic DNS database, although it
can also be used between servers, and for regular que-
ries. TSIG uses shared secret keys and one-way hashing
to provide a cryptographically secure means of identifying
each endpoint of a connection as being allowed to make,
or respond to a DNS update.

Although queries to DNS may be made anonymously,
updates to DNS must be authenticated, since they make
lasting changes to the structure of the Internet naming
system. The use of a key shared by the client making the
update and the DNS server, guarantees the authentic-

Security

08/2012 46

ity of the update request. However, the update request
may be passing over an insecure channel (the Internet).
A one-way hashing function is used to prevent malicious
observers from learning the secret key and using it to
make their own modifications.

A time stamp is included in the TSIG protocol to prevent
recorded responses from being reused, which would al-
low an attacker to breach the security of TSIG. This plac-
es a requirement on dynamic DNS servers and TSIG cli-
ents to contain an accurate clock. Since DNS servers are
connected to a network, the Network Time Protocol may
be used to provide an accurate time source.

Although TSIG is widely deployed, there are several
problems with the protocol:

• 	 It requires distributing secret keys to each host which
must make updates.

• 	 The HMAC-MD5 digest is only 128 bits.
• 	 There are no levels of authority. Any host with the se-

cret key may update any record.
• 	 As a result, a number of alternatives and extensions

have been proposed.
• 	 RFC 2137 specifies an update method using a pub-

lic key “SIG” DNS record. A client holding the corre-
sponding private key can sign the update request.
This method matches the DNSSEC method for se-
cure queries. However, this method is deprecated by
RFC 3007.

• 	 In 2003, RFC 3645 proposed extending TSIG to al-
low the Generic Security Service (GSS) method of
secure key exchange, eliminating the need for man-
ually distributing keys to all TSIG clients. The meth-
od for distributing public keys as a DNS resource re-
cord (RR) is specified in RFC 2930, with GSS as
one mode of this method. A modified GSS-TSIG –
using the Windows Kerberos Server – was imple-
mented by Microsoft Windows Active Directory serv-
ers and clients called Secure Dynamic Update. In
combination with poorly configured DNS (with no
Reverse Lookup Zone) using RFC 1918 address-

ing, reverse DNS updates using this authentication
scheme are forwarded en masse to the root DNS
servers and increase the traffic to root DNS serv-
ers in the course of doing so [5]. There is an anycast
group which deals with this traffic to take it away
from the root DNS servers [6].

• 	 RFC 2845, which defines TSIG, specifies only one al-
lowed hashing function HMAC-MD5, which is no lon-
ger considered to be highly secure. In 2006, propos-
als were circulated to allow RFC 3174 Secure Hash
Algorithm (SHA1) hashing to replace MD5. The 160-
bit digest generated by SHA1 should be more secure
than the 128-bit digest generated by MD5.

• 	 RFC 2930, which defines TKEY, a DNS Record used
to automatically distribute keys from a DNS server to
DNS clients.

• 	 RFC 3645, which defines GSS-TSIG, uses gss-api
and TKEY to automatically distribute keys in gss-api
mode.

• 	 The DNSCurve proposal has many similarities to
TSIG.

Footnotes
[1]	 The term TSIG Key (while commonly used) is not technically correct, as it refers to a shared secret string and not a cryptographic

key.
[2]	 Some server software such as Microsoft Windows Server 2008 does not implement TSIG, but use lower level transaction security

(such as IPSec). To set this up, see http://technet.microsoft.com/en-us/library/ee649243(WS.10).aspx
[3] 	 As mentioned earlier, Micosoft Server does not use TSIG for dynamic updates, but uses IPSec instead. See: http://technet.microsoft.com/

en-us/library/cc753751.aspx
[4]	 For more information, see the note from the dynamic update howto: http://ops.ietf.org/dns/dynupd/secure-ddns-howto.html
[5]	 http://www.caida.org/outreach/papers/2003/dnsspectroscopy/
[6] 	http://public.as112.net/

Paul Ammann
Paul Ammann is a Communication and Security Engineer for a
utility company. He is currently working on a DNSSEC book for
No Starch Press. He’s a pretty ordinary guy and can be reached
via email at pq (underscore) aq (at) fastmail (dot) com.

http://technet.microsoft.com/en-us/library/ee649243(WS.10).aspx

http://technet.microsoft.com/en-us/library/cc753751.aspx
http://technet.microsoft.com/en-us/library/cc753751.aspx
http://ops.ietf.org/dns/dynupd/secure-ddns-howto.html
http://www.caida.org/outreach/papers/2003/dnsspectroscopy/
http://public.as112.net/

http://www.vx.sk

Work with a vendor that supports the
operating system you love!

iX is the corporate sponsor of the PC-BSD® Project, a major corporate donor to the FreeBSD Foundation,

and leads the FreeNAS™ development team -- all while employing some of the most brilliant minds in

the FreeBSD® community. For BSD hardware and software expertise, look no further.

1-855-GREP-4-IX
http://www.iXsystems.com/community

What has your server vendor done for
 BSD lately? Probably, not much.

http://www.ixsystems.com/

	Cover

	Dear Readers
	Contents
	MaheshaBSD
Server Edition Has Been Just Released
	Tuning ZFS on FreeBSD
	MPD5
VPN Server with FreeBSD Setup and Management
	PostgreSQL
Partitioning (part 1)
	Securing DNS
Transactions

