

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-
art features:

8-core 2.4GHz Intel® Atom™ processor •	
Up to 16TB of storage capacity•	
16GB of ECC memory (with the option to upgrade •	
to 32GB)
2 x 1 Gigabit network controllers•	
Remote management port (IPMI)•	
Tool-less design; hot swappable drive trays•	
FreeNAS installed and configured•	

with over six million downloads,
Freenas is undisputedly the most
popular storage operating system
in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

Custom built and optimized for your use case »
Installed, configured, tested, and guaranteed to work out »
of the box
Supported by the Silicon Valley team that designed and »
built it
Backed by a 3 years parts and labor limited warranty »

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u
Intel® Xeon® Processor E3-1200v2 Family •	
Up to 16TB of storage capacity•	
16GB ECC memory (upgradable to 32GB)•	
2 x 10/100/1000 Gigabit Ethernet controllers•	
Redundant power supply•	

Freenas 2u
2x Intel® Xeon® Processors E5-2600v2 Family •	
Up to 48TB of storage capacity•	
32GB ECC memory (upgradable to 128GB) •	
4 x 1GbE Network interface (Onboard) - •	
(Upgradable to 2 x 10 Gigabit Interface)
Redundant Power Supply•	

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

http://www.iXsystems.com/mini

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-
art features:

8-core 2.4GHz Intel® Atom™ processor •	
Up to 16TB of storage capacity•	
16GB of ECC memory (with the option to upgrade •	
to 32GB)
2 x 1 Gigabit network controllers•	
Remote management port (IPMI)•	
Tool-less design; hot swappable drive trays•	
FreeNAS installed and configured•	

with over six million downloads,
Freenas is undisputedly the most
popular storage operating system
in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

Custom built and optimized for your use case »
Installed, configured, tested, and guaranteed to work out »
of the box
Supported by the Silicon Valley team that designed and »
built it
Backed by a 3 years parts and labor limited warranty »

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u
Intel® Xeon® Processor E3-1200v2 Family •	
Up to 16TB of storage capacity•	
16GB ECC memory (upgradable to 32GB)•	
2 x 10/100/1000 Gigabit Ethernet controllers•	
Redundant power supply•	

Freenas 2u
2x Intel® Xeon® Processors E5-2600v2 Family •	
Up to 48TB of storage capacity•	
32GB ECC memory (upgradable to 128GB) •	
4 x 1GbE Network interface (Onboard) - •	
(Upgradable to 2 x 10 Gigabit Interface)
Redundant Power Supply•	

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

http://www.iXsystems.com/storage/freenas-certified-storage/

08/20154

EDITORS’ WORD

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Contributing:
Michael Shirk, Andrey Vedikhin, Petr Topiarz,

Solène Rapenne, Anton Borisov, Jeroen van Nieuwenhuizen,
José B. Alós, Luke Marsden, Salih Khan,

Arkadiusz Majewski, BEng, Toki Winter, Wesley Mouedine
Assaby, Rob Somerville

Top Betatesters & Proofreaders:
Annie Zhang, Denise Ebery, Eric Geissinger, Luca

Ferrari, Imad Soltani, Olaoluwa Omokanwaye, Radjis
Mahangoe, Mani Kanth, Ben Milman, Mark VonFange

Special Thanks:
Annie Zhang
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak

pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Publisher:
Hakin9 Media SK

02-676 Warsaw, Poland
Postepu 17D

Poland
worldwide publishing
editors@bsdmag.org

www.bsdmag.org

Hakin9 Media SK is looking for partners from all over the
world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org.

All trademarks presented in the magazine were used
only for informative purposes. All rights to trademarks

presented in the magazine are reserved by the
companies which own them.

Dear Readers,

We would like to introduce a new issue made by
the BSD Team. This time you will deal with Unix

and FreeBSD topics. You will learn more about the
basic semantics of Unix United and you will learn
how to start terminal in Unix. Reading our step-by-
step tutorials will give you professional expertise in
the subjects presented. You will get to know how to
use the FreeBSD’s procstat API in a web context.
David will present this topic to you in his article which
can be found on page 14.

Most of you are very familiar with FreeNAS, and
I would like to invite you to read the Expert Says col-
umn to check out “What’s the Difference Between
TrueNAS and FreeNAS? Is TrueNAS Just FreeNAS
Installed on a Server?” All your questions will be cov-
ered in this article written by Brett Davis.

In this issue we also continue to write about the
Raspberry Pi and I hope those of you who need and
want to expand the knowledge on this topic will find
the article by Jerry Craft very useful and interesting.

Finally, please do not forget to see the next column
by Rob Somerville. This time you will also find two
new materials prepared especially for you. We de-
cided to start publishing the monthly news from the
BSD world for you. We selected the best news about
products, OSes and events from the last month and
we announced the upcoming conferences to keep
you up-to-date. The second one is a Quiz prepared
by Rob Somerville. You will find the quiz next to the
News column and the answers are published on the
last page of the issue. This way you can test your
knowledge. Have great fun!

As always, I would like to thank you all for really
great articles and your willingness to help me create
this issue of BSD magazine.

Enjoy reading!
Ewa and BSD Team

mailto:mailto:editors%40bsdmag.org?subject=

08/20156

NEWS
BSD World Monthly News 08
BSD Team
This column is to presents the latest news coverage of breaking
news events, products releases and trending topics of the BSD
world news stories.

The BSD Magazine Summer Quiz 12
Rob Somerville

FreeBSD Corner
Using the FreeBSD’s Procstat API
in a Web Context 14
David Carlier
Among the numerous specific features of FreeBSD, there is a
famous command line to dump the statistics of the various current
processes, procstat. Its internal API is fortunately exposed via the
well named libprocstat library. Let’s imagine we want to display
it via a web page so for this article, we‘re going to use CppCms,
one of the good quality C++ web development frameworks with
the current FreeBSD 10.2 release version.

Expert Says…
“What’s the Difference Between TrueNAS
and FreeNAS? Is TrueNAS Just FreeNAS
Installed on a Server?” 20
Brett Davis
If you look at the software feature list, there aren’t a ton of
differences. So really....what’s the difference?

Unix
UNIX Basics 22
Samanvay Gupta
UNIX United is the architecture for a distributed system based
on UNIX. Any program written for a normal UNIX system can
be transparently extended to exploit the richer environment of
UNIX United. As it relies on having a UNIX system beneath
it, the implementation of UNIX United, is called the Newcastle
Connection. Samanvay explains the basic semantics of UNIX
United and is followed by that of the architecture implied by the
protocol between components in a UNIX United system, network

CONTENTS

basics and of a software structure appropriate to the architecture
and the protocol.

UNIX – How To Start Terminal? 30
Nitin Kanoija
UNIX is a multiuser operating system which is available in many
flavours, like Oracle Solaris, HP UNIX, IBM AIX, Free BSD, and
MacOS. It was developed by Ken Thompson and Dennis Ritchie
at AT&T Bell Laboratories in the late 1960′s. In 1978, AT&T’s
UNIX seventh edition was split off into Berkeley Software
Distribution (BSD). This version of the UNIX environment was
sent to other programmers around the country, who added tools
and code to further enhance BSD UNIX.

Security
How About Some Raspberry Pi? 34
Jerry Craft
The love for figuring out how a computer functioned wasn’t
part of the college application. Eben discovered kids were no
longer writing programs and taking apart circuit boards. Instead,
they were playing video games or using the family computers
to update MySpace/Facebook posts. Kids didn’t have access
to a computer they could blow up or really get into and discover
how a computer functions. The hacking instinct was gone.
Instead, kids going into college for computer science were
“..consumers of computers.” (Mann)

Column
With the latest successful hacking attempt
on the edgy Ashley Madison dating site,
what are the ethical and security implications
as a new thinking infiltrates the deeper
and darker sides of human nature? 46
Rob Somerville

Review
How to Use eEye Retina
On Red Hat/UNIX/Linux Systems 48
Rebecca Wynn
You can use eEye Retina on Red Hat/UNIX/Linux systems. In
the article below, you can find some details how to make it.

September 9-10-11, 2015
Rio, Las Vegas

www.InterDrone.com

A BZ Media Event

Meet with 80+ exhibitors!
Demos! Panels! Keynotes!

The Zipline!

For Builders
More than 35 classes,
tutorials and panels for
hardware and embedded
engineers, designers and
software developers building
commercial drones and the
software that controls them.

For Flyers and Buyers
More than 35 tutorials and
classes on drone operations,
flying tips and tricks, range,
navigation, payloads, stability,
avoiding crashes, power,
environmental considerations,
which drone is for you, and more!

For Business Owners,
Entrepreneurs & Dealers

Classes will focus on running a drone
business, the latest FAA requirements
and restrictions, supporting and
educating drone buyers, marketing
drone services, and where the next
hot opportunities are likely to be!

InterDrone is Three Awesome Conferences:

NEWS

08/20158

FreeBSD 10.2 Released

The FreeBSD Team announced that the FreeBSD
10.2 is available now. This is the stable ver-
sion which improves on the stability of FreeBSD

10.1-RELEASE and has the new features. The most rel-
evant features are:

•	 The resolvconf(8) utility has been updated to version
3.7.0, with improvements to protect DNS privacy.

•	 The ntp suite has been updated to version 4.2.8p3.
•	 A new rc(8) script, growfs, has been added, which will

resize the root filesystem on boot if the/firstboot file
exists.

•	 The Linux® compatibility version has been updated
to support Centos™ 6 ports.

•	 The drm code has been updated to match Linux® ver-
sion 3.8.13, allowing running multiple X servers simul-
taneously.

•	 Several enhancements and updates for improved
FreeBSD/arm support.

•	 Several ZFS performance and reliability improve-
ments.

•	 GNOME has been updated to version 3.14.2.
•	 KDE has been updated to version 4.14.3.
•	 And much more...

FreeBSD 10.2-RELEASE is available now for the
amd64, i386, ia64, powerpc, powerpc64, sparc64, and
armv6 architectures and it can be installed from bootable
ISO images, or it can be installed from a USB memory
stick. The required files can be downloaded via FTP.

https://www.freebsd.org/releases/10.2R/announce.html

PC-BSD 10.2-RC1 Released

The PC-BSD team announced that RC1 images for
the upcoming 10.2 release is available now to down-
load. The new improvements of PC-BSD 10.2 are

•	 FreeBSD 10.2 base system
•	 Many bugfixes and enhancements to installer to dual-

boot setups
•	 New CD-sized network installation media, with WiFi

Configuration via GUI
•	 Switched to “iocage” for jail management backend
•	 Disk Manager GUI now available via installer GUI
•	 Bug-fixes and improvements to Life-Preserver repli-

cations
•	 Improved localization options for login manager
•	 Options to Enable / Disable SSHD or IPv6 at installation
•	 New “Plugins” system for AppCafe, allowing down-

load of pre-built jail environments

https://www.freebsd.org/releases/10.2R/announce.html

www.bsdmag.org 9

•	 Improvements to look-n-feel of AppCafe for package
management

•	 Improved fonts and better support for 4K monitor set-
ups

•	 Enterprise package repo, which only has security up-
dates, allowing users to run a server / desktop or jail
with fairly consistent package versions.

•	 FireFox 39.0

•	 Chromium 43.0.2357.134
•	 Thunderbird 38.1.0
•	 Lumina 0.8.6

10.2-RC1 DVD/USB media can be downloaded from the
following URL via HTTP or Torrent.

http://download.pcbsd.org/iso/10.2-RELEASE/edge/amd64/

The New “FreeBSD Mastery: ZFS” Book

ZFS, the fast, flexible, self-healing file system, revolutionized data storage.
Leveraging ZFS changes everything about managing FreeBSD systems.

With FreeBSD Mastery: ZFS, you’ll learn to:

•	 understand how your hardware affects ZFS
•	 arrange your storage for optimal performance
•	 configure datasets that match your enterprise’s needs
•	 repair and monitor storage pools
•	 expand your storage
•	 use compression to enhance performance
•	 determine if deduplication is right for your data
•	 understand how copy-on-write changes everything
•	 snapshot file systems
•	 automatically rotate snapshots
•	 clone file systems
•	 understand how ZFS uses and manages space
•	 do custom FreeBSD ZFS installs

Whether you’re a long-term FreeBSD administrator or a new user, FreeBSD Mastery: ZFS will help you simplify storage.

https://www.michaelwlucas.com/nonfiction/freebsd-mastery-zfs
https://www.freebsdmall.com/cgi-bin/fm/bsdmzfs?id=UGkGF4io&mv_pc=194

vBSDcon 2015: September 11-13

vBSDcon will be held on September 11-13, 2015
at the Sheraton in Reston, Virginia. This event will
bring together all the BSD community members for

a series of roundtable discussions, educational sessions,
best practice conversations, and exclusive networking op-
portunities. You will meet the speakers: Brian Callahan,
Bryce Chidester, Michael Dexter, Allan Jude, George Nev-
ille-Neil, Pierre Pronchery, Jim Thompson, Willem Toorop,
Chang-Hsien Tsai, Shawn Webb, Christos Zoulas and the
topics for this year are:

http://download.pcbsd.org/iso/10.2-RELEASE/edge/amd64/

NEWS

08/201510

•	 Supporting a BSD Project
•	 FreeBSD Virtualization Options
•	 Made to Measure: Network Performance Analysis

in FreeBSD
•	 What is EdgeBSD?
•	 blacklist’d: A NetBSD Project
•	 getdns, A New Stub Resolver
•	 Interesting things you didn’t know you could do with ZFS

EuroBSDcon 2015

EuroBSDcon is the
premier Europe-
an conference on

the open source BSD op-
erating systems attracting
about 250 highly skilled
engineering professionals,
software developers, com-
puter science students and
professors, and users from
all over Europe and other
parts of the world. The goal
of EuroBSDcon is to ex-
change knowledge about
the BSD operating sys-
tems, facilitate coordination and cooperation among us-
ers and developers.

Tutorials will be held in the main conference hotel on
Thursday 1st and Friday 2nd of October. The EuroBSD
Conference will be on Saturday 3rd and Sunday 4th of
October at Stockholm University. You will be able to take
the BSD Administration Certificate Exam at the EuroBS-
DCon 2015. Dru Lavigne has offered to run examinations
for people wanting to take the exam. You can see now the
list of accepted talks.

Brandon Mercer Why OpenBSD matters in the
Healthcare Industry

Vadim Zhukov Raceless network configuration

Henning Brauer OpenBSD sucks

Tommi Pernilä & Arto
Jonsson

Attacking FreeBSD network
protocols – Why, How and the
Results

Ted Unangst Cryptography in OpenBSD: Another
Overview

George Neville-Neil, Jim
Thompson

Measure Twice, Code Once

Kirk McKusick A Brief History of the BSD Fast
Filesystem

Andrew Turner FreeBSD on Arm64

John-Mark Gurney FreeBSD TLS and crypto
performance

Jasper Lievisse Adriaanse Portroach, OpenBSD distfile scanner

Marc Espie Faster and more secure packages in
OpenBSD

Scott Long Multiqueue I/O in FreeBSD using LSI
and NVME

Ingo Schwarze Mandoc talk

Stefan Sperling OpenBSD softraid boot

Mateusz Kocielski BSD-licensed SASL library

Ed Schouten CloudABI

Sevan Janiyan Synchronisation of userland source
among BSDs

Jordan Hubbard Making FreeBSD more dynamic:
A year of hacking on asynchronous,
centralized interfaces

Masao Uebayashi config – Rethinking kernel build

François Tigeot State of the graphics stack in
DragonFly

Baptiste Daroussin Poudrière: efficient package
building

Arun Thomas RISC-V: Berkeley Hardware for Your
Berkeley Software (Distribution)

Anders Magnusson A vacuum-tube computer (that runs
BSD)

Taylor R. Campbell Tricky issues in file systems

Taylor R. Campbell Protobufs for kernel/user interface

https://2015.eurobsdcon.org/

•	 HardenedBSD Internals
•	 Improving MemGuard Support for UMA on FreeBSD
•	 Devio.us, the Free OpenBSD Shell Provider and On-

line *BSD User Group: Technical and Social Lessons
Learned from Half a Decade of Service

www.vBSDcon.com

https://2015.eurobsdcon.org/tutorials/
http://www.su.se/english/
http://www.vbsdcon.com

08/201512

The BSD Magazine
Summer Quiz
1.	 What does OWASP stand for?

2.	 What does an IP flag of 0x40 stand for?

3.	 Under the USB 3.1 specification is link power management synchronous?

4.	 Is a netmask of 255.255.255.255 valid?

5.	 Is 10.2 the latest production release of FreeBSD?

6.	 When was ZFS incorporated in FreeBSD?

7.	 Has FreeBSD 10.0-RELEASE reached end of life yet?

8.	 What is octal 167 in binary?

9.	 What does BOFH stand for?

10.	 Are all Android devices vulnerable to a MMS attack that do not require user intervention?

11.	 What is Bill Gates middle name?

12.	 Did IBM clear $100,000 million revenue in 2014?

13.	 What file-system designer was convicted of 2nd degree murder?

14.	 �What is the maximum recommended length of CAT6 cable in an 10GBASE-T electrically
noisy environment?

15.	 If a file starts with 0xFFE or 0XFFF what file type is it likely to be?

16.	 Is the word volatile a reserved C keyword?

17.	 What mainframe helped regularise the standard of 8 nits to a byte?

18.	 What does FIFO stand for?

19.	 What IBM network protocol supports identical MAC addresses?

20.	 What does IETF stand for?

21.	 Where does Theo de Raadt live?

22.	 What Stanford professor eschewed silicon transistors?

23.	 What computer was developed by Tommy Flowers?

24.	 When was PC DOS version 1.0 shipped?

25.	 What 16 bit microcomputer did BSD originally run on?

QUIZ

www.balabit.com

Among clouds
 Performance and

 Reliability is critical

syslog-ng log server
The world’s first High-Speed Reliable LoggingTM technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second
zero message loss due to the
Reliable Log Transfer ProtocolTM

trusted log transfer and storage

Download syslog-ng Premium Edition
product evaluation here

Attend to a free logging tech webinar here

The High-Speed Reliable LoggingTM (HSRL) and Reliable Log Transfer ProtocolTM (RLTP) names are registered trademarks of BalaBit IT Security.

FREEBSD CORNER

08/201514

Among the numerous specific features of FreeBSD,
there is a famous command line to dump the sta-
tistics of the various current processes, procstat.

Its internal API is fortunately exposed via the well named
libprocstat library. Let’s imagine we want to display it via
a web page so for this article, we‘re going to use CppC-
ms, one of the good quality C++ web development frame-
works with the current FreeBSD 10.2 release version.

Procstat API
The list of the available functions can be viewed in this
page https://www.freebsd.org/cgi/man.cgi?query=libpr
ocstat&sektion=3&apropos=0&manpath=FreeBSD%20
10.0-RELEASE.

We just need to include the necessary headers and link
our application to the shared library libprocstat, simply.
For our basic procstat service, we will expose the pids,
the paths of the processes and the owners of those.

CppCms
We could have used a usual full PHP solution, calling proc-
stat utility via a system call, possibly parsing the output
and displaying it. However, doing web development via
low level languages is also possible especially in the em-
bedded environments where the resources usage count.

CppCms has a package, so pkg install cppcms (or via the
ports) is sufficient. This framework has a lot of useful fea-
tures; session handling, caching, native encoding handling.
For our basic usage, we’ll use their advanced template sys-
tem with the addition of jQuery to make it more appealing.

Content
Let’s start with the template’s content. For this purpose we
need a C++ prototype and a CppCms template file.

 proclist.h :
#include <cppcms/view.h>

Using the FreeBSD’s
Procstat API in a Web
Context
DAVID CARLIER

“The procstat utility displays detailed information about
the processes identified by the pid arguments, or if the
-a flag is used, all processes. It can also display information
extracted from a process core file, if the core file is specified
as the argument.”

Source: http://www.freebsd.org/cgi/man.cgi?procstat

What you will learn… What you should know…

•	 FreeBSD’s procstat API
•	 C++ web development frameworks

•	 Programming basics
•	 PHP Language

http://www.freebsd.org/cgi/man.cgi?procstat

www.bsdmag.org 15

#include <vector>

// Just a plain struct to hold a specific process data

struct Procinfo {

 pid_t pid;

 std::string pathName;

 std::string args;

 std::string userName;

 std::string userFullName;

 std::string userHome;

};

// This class will be used by the template’s file

// The main CppCms app will fill in the list of processes

before the template’s rendering

namespace content {

 struct ProcinfoContent : public cppcms::base_content {

 std::vector<Procinfo> pinfos;

 };

}

 ProcinfoContentSkin.tmpl

// For who has experienced various templates solution for

Java, PHP and so on, some parts seem pretty familiar

<% c++ #include „proclist.h” %> => We include simply our

C++ prototype here

<% skin ProcinfoContentSkin %> => Useful when the template

are shared libraries

<% view ProcinfoContent uses content::ProcinfoContent %>

<% template render() %>

<html>

 <head>

 <link rel=”stylesheet” href=”//jqueryui.com/

jquery-wp-content/themes/jquery/css/base.css?v=1”>

 <link rel=”stylesheet” href=”//jqueryui.com/

jquery-wp-content/themes/jqueryui.com/style.css”>

 <script src=”//code.jquery.com/jquery-

1.10.2.js”></script>

 <script src=”//code.jquery.com/ui/1.11.4/jquery-

ui.js”></script>

 <script type=”text/javascript”>

 $(function() {

 $(„tbody”).sortable();

 $(„tbody”).disableSelection();

 });

 </script>

 </head>

 <body class=”jquery-ui page-template-default”>

 <h1>Processes statistics</h1>

 <div class=”container”>

 <div id=”content-wrapper”>

 <div id=”content”>

 <table class=”ui-sortable”>

 <tr>

 <th>PID</th>

 <th>PATH</th>

 <th>ARGUMENTS</th>

 <th>OWNER</th>

 </tr>

 <tbody>

 <% foreach info in pinfos %> => Iterate through

the pinfos member of the content’s class ...

 <% item %>

 <tr> => ... then ‚echoing’ each field of a Procinfo struct

 <td class=”ui-state-default ui-sortable-

handle”><%= info.pid %></td>

 <td class=”ui-state-default ui-sortable-

handle”><%= info.pathName %></td>

 <td class=”ui-state-default ui-sortable-

handle”><%= info.args %></td>

 <td class=”ui-state-default ui-sortable-

handle”><%= info.userName %> (<%= info.userFullName %>)

<%= info.userHome %></td>

 </tr>

 <% end %>

 <% end %>

 </tbody>

 </table>

 </div>

 </div>

 </div>

 </body>

</html>

<% end template %>

<% end view %>

<% end skin %>

Application

 cppcms_procstat.cc :
// And finally the most important, the CppCms’s application ...

#include <cppcms/application.h>
#include <cppcms/applications_pool.h>
#include <cppcms/service.h>
#include <cppcms/http_response.h>

#include <iostream>

#include <sstream>

#include <stdlib.h>

#include <kvm.h>

#include <sys/param.h>

#include <sys/queue.h>

#include <sys/socket.h>

#include <sys/sysctl.h>

#include <sys/types.h>

#include <sys/user.h>

FREEBSD CORNER

08/201516

#include <pwd.h>

#include <libprocstat.h>

#include „proclist.h”

class Procstat : public cppcms::application {

private:

 procstat *ps;

 content::ProcinfoContent pc;

public:

 Procstat(cppcms::service &srv) :

cppcms::application(srv) {

 // We’re opening the processes info via the inter-

nal sysctl system

	 // There are other ways, via a kernel’s core dump file

or via kvm ...

 ps = procstat_open_sysctl();

 }

 ~Procstat() {

 procstat_close(ps);

 }

 virtual void main(std::string url);

};

int

kp_compare(const void *a, const void *b) {

 const kinfo_proc *ka = reinterpret_cast<const

kinfo_proc *>(a);

 const kinfo_proc *kb = reinterpret_cast<const

kinfo_proc *>(b);

 if (ka->ki_pid < kb->ki_pid)

 return -1;

 else

 return 1;

}

void

Procstat::main(std::string) {

 unsigned int ct;

 int i;

 // we just get the processes information w/o their

thread IDS though ...

 // We could get also only a specific group of processes

per TTY or user etc ...

 kinfo_proc *kp = procstat_getprocs(ps, KERN_PROC_

PROC, 0, &ct);

 if (kp == NULL)

 return;

 pc.pinfos = std::vector<Procinfo>();

 qsort(kp, ct, sizeof(*kp), kp_compare); // As the

processes list is not ordered, we do per PID

 for (i = 0; i < ct; i ++) {

 char path[PATH_MAX];

 procstat_getpathname(ps, &kp[i], path,

sizeof(path));

 if (strlen(path) > 0) {

 Procinfo pi;

 pi.pid = kp[i].ki_pid;

 pi.pathName = std::string(path);

 std::stringstream ss;

		 // Here we get the possible arguments the process

were called with ...

		 // args NULL terminated list pointer will be freed

by procstat_close later

 char **args = procstat_getargv(ps,

&kp[i], 0);

 char **pargs = args;

		 // pargs[0] == path here, so it is bypassed (hence

we could have just used 		 procstat_getargv ...)

 while (*++pargs)

 ss << “ “ << *pargs;

 pi.args = std::string(ss.str());

 passwd pw, *res;

 memset(&pw, 0, sizeof(pw));

 char buf[1024];

		 // Just to get more “human readable” process’ user info

 if (getpwuid_r(kp[i].ki_ruid, &pw,

buf, sizeof(buf), &res) == 0) {

 pi.userName =

std::string(pw.pw_name);

 pi.userFullName =

std::string(pw.pw_gecos);

 pi.userHome =

std::string(pw.pw_dir);

 }

 pc.pinfos.push_back(pi);

 }

 }

 procstat_freeprocs(ps, kp); // Important to free

the processes information

 render(„ProcinfoContent”, pc); // Finally render-

ing the related template ...

}

int

main(int argc, char *argv[]) {

 try {

 cppcms::service srv(argc, argv);

 srv.applications_pool().mount(

 cppcms::applications_factory<Procstat>()

);

www.bsdmag.org 17

	 // Now our server is listening to client’s requests ...

 srv.run();

 } catch (std::exception const &ex) {

 std::cerr << ex.what() << std::endl;

 }

 return 0;

}

Configuration
CppCms uses the popular JSON format for the configura-
tion file as follows for our example ...

config.json :
{
 „service”: {
 „api:: „http,”,
 „ip: „ip address to listen,”,
 „port:”: 8180
 },
 „http”: {
 „script_names”: [„/procstat”]
 }
}

The possibilities of configuration are pretty rich, here
we’re using the internal web server, but in production it
might be preferable to configure in FastCGI mode and
allowing a genuine web server, like Nginx, handling the
client’s connections ...

{

 „service”: {

 „api:”: „fastcgi,

 socket:”: „” <path of the unix socket>,

 },

 „http”: {

 „script_names”: [„/procstat”]

 }

}

If we planned to compile the template as a shared li-
brary, we would need also to declare it in our config.
For more precise information, please read this page:
http://cppcms.com/wikipp/en/page/cppcms_1x_config.

Compilation
First, we need to “compile” the template file into a C++
code via a CppCms utilily.

cppcms_tmpl_cc ProcinfoContentSkin.tmpl -o

ProcinfoContentSkin.cc

Then compiling our CppCms’ application with this tem-
plate. Indeed, for the sake of simplicity and as we have
only one template, we compile it statically.

c++ -g -O2 -I/usr/local/include -L/usr/local/lib -o

cppcms_procstat cppcms_procstat.cc ProcinfoContentSkin.

cc -lcppcms -lbooster -lprocstat

I would advise to use at least a Makefile. The booster’s
library is necessary for the template’s system otherwise
it is also possible to render HTML content directly at the
application level via an usual C++ stream like here:

void

Procstat::main(std::string) {
...
response().out()<<
 „<html>\n<body>\n”
 „ <h1>Processes statistics</h1>\n”;
...
}

Test
Once compiled, we can finally launch our CppCms’s application.

./cppcms_procstat -c config.json

Figure 1. Our sortable list of processes

Conclusions
This is it, we can now read the processes list and rear-
range the order in a fancy manner. There is a lot of room
for improvements, hopefully, that might give some ideas
to you, Readers. I hope at least, that will give you also the
curiosity to dig more into the procstat’s API.

ABOUT THE AUTHOR

David Carlier has been working as a software developer since 2001.
He used FreeBSD for more than 10 years and starting from this year,
he became involved with the HardenedBSD project and performed
serious developments on FreeBSD. He worked for a mobile product
company that provides C++ APIs for two years in Ireland. From this,
he became completely inspired to develop on FreeBSD.

Enroll to BUILD YOUR OWN PENTEST LAB online course and learn how to create your own
pentest lab.

This course covers various virtualization software and penetration testing tools like Kali Linux,
Nessus, Metasploit, Metasploitable, Nmap, and others.

Through practical hands-on labs, you will be able to not only identify systems but also identify
their vulnerabilities.

All in pure practice.

In case of any questions please contact:

joanna.kretowicz@eforensicsmag.com

Course Plan:
Pre-Course Material

«« Why Do I Need a Pen Test Lab
«« Definitions
«« Creating Directory Structure For the Course
«« Download Virtual Images
«« Acquire Nessus Licenses

Module 1 The Build

«« Definitions
«« Some Basic Linux Commands You Need to Know

Software

«« Installation of VMPlayer and Virtual Box.
You Decide, We Will Cover Both.

«« Setup of Our Penetration Testing System –
Kali Linux Distribution

«« Setup a Linux Client as a Virtual Machine
«« Setup Our First Vulnerable Machine

Metasploitable2
«« Setup Our Second Vulnerable Machine Bee-box

(BWAMP)

Exercises

«« Overview of Virtual Machine Settings
«« Run the Basic Linux commands
«« Upgrade Kali Linux Distribution

Module 2 Port Scanning

«« Nmap and Zenmap Installation
«« Nmap Basic Scanning
«« ZenMap Basic Scanning
«« Metasploitable Dnmap Scanning

Exercises

«« Run Nmap Scans against Ubuntu
«« Run Zenmap Scans Against Metasploitable2
«« Run Dnmap Scans Against Host

Module 3 Vulnerability Scans

«« Installation and Licensing of Nessus Vulnerability
Scanner

«« Installation of Netsparker Web Vulnerability
Scanner

«« Basic Nessus Scanning
«« Basic Netsparker Scanning
«« Intermediate Nmap Scans

Exercises

«« Run a Nessus Scan Against Metasploitable2
«« Run a Netsparker Scans Against Bee-Box

(BWAMP)
«« Run a Nessus Scan Against Ubuntu

Module 4 Advanced Scanning and Reporting

«« Nessus Advanced Scans
«« Netsparker Advanced Scans
«« Nmap Advanced Scans
«« Metasploit Reporting
«« Review Other Resources Available to You…
«« Where Do I Get Virtual Machines

Exercises

«« Create a Metasploit Report Combining Nessus
and Dnmap Scans

«« Run an Advanced Nessus Scan Against
Metasploitable 2

«« Run an Advanced Netsparker Scan Against
Bee-Box (BWAMP)

If you have any questions or just want to get to know us better feel free to contact

me at joanna.k@eforensicsmag.com or just answer this email

Get 10% discount on our magazines and online courses. Insert the code and use it at check-out

10eForSe07
Code is valid till the end of July

UNIX

08/201520

EXPERT SAYS ...

FreeNAS vs TrueNAS

The first difference is the software delivery method:
TrueNAS is a purpose-built storage appliance
while FreeNAS is freely-downloadable software

that requires the user to understand storage well enough
to select the correct hardware that is appropriate for their
application.

1.	 TrueNAS is commercially-supported, while FreeNAS
is community-supported.

2.	 There are performance and usability optimizations
in TrueNAS that are specific to the hardware we use
and therefore aren’t included with FreeNAS.

3.	 High-Availability (failover) is hardware-dependent and
only available in TrueNAS.

But, perhaps more critical to understand than the “what”
is the “why”:

We make FreeNAS for when storage
is non-critical
There are certainly many storage applications that don’t
require professional support. Applications like home stor-
age, simple office file servers, tertiary backups, home
streaming media servers, scratch space, storage experi-
mentation, or any other application where data is fungible;
FreeNAS can be the perfect solution for all of them.

We make TrueNAS for when storage is critical
Storage downtime can equal an instant loss of revenue,
making reliable storage a painstaking process – a process
that requires careful consideration, deep hardware and
storage knowledge, and countless hours of testing – cer-
tainly eons more difficult than the Software Defined Stor-
age crowd would want you to believe. It took us nearly two
years to select, design, test, and qualify the myriad hard-

BRETT DAVIS

“What’s the difference between TrueNAS and FreeNAS?
Is TrueNAS just FreeNAS installed on a server?” If you look
at the software feature list, there aren’t a ton of differences.
So really….what’s the difference?

www.bsdmag.org 21

EXPERT SAYS ...

ware components that go into TrueNAS, which is a pur-
pose-built appliance – meaning software coupled with
custom hardware – designed for its one specific applica-
tion: critical storage. Compared to a user-built system that
your software vendor knows nothing about, the appliance
platform is inherently easier to support when things don’t
go your way, because your software vendor is your hard-
ware vendor as well. And, when storage is this important
to your business, it’s imperative to have a Support Team
at arm’s length who can resolve any issue that may arise
without having to first wrap their heads around the hard-
ware platform you’ve built.

We make FreeNAS for Open Source flexibility
For those that have the expertise and the spare time to build
and support their own solutions, or for those that want to
tinker and learn about storage, FreeNAS is freely-available
and unencumbered by license restrictions. The FreeNAS
Project has a mature community and a team of developers
dedicated to providing the best (open-source) software de-
fined network file storage solution in the world. All we ask
in return is that you enjoy the software and contribute when
and where you can, which can be as simple as providing
feedback, filing bugs, and making feature requests, or as
involved as helping us write code.

We make TrueNAS for enterprise stability
Where FreeNAS is the bleeding edge, TrueNAS is the sta-
ble handle. FreeNAS is where technologies are tested and
refined; therefore the software undergoes an often rapid
and frequent release cycle. TrueNAS, by contrast, contains
only the most stable and vetted code, keeping software up-
dates to a minimum and the release cycle methodical.

We make FreeNAS for people who want to “DIY”
Some folks like to do it themselves. Some folks only get
satisfaction when building things on their own. Some folks
don’t mind downtime when there’s an issue and enjoy
perusing the FreeNAS forums for help. Some folks have
limited budgets yet still want powerful storage software.
And, some folks are storage experts themselves. You’re
welcome, guys :)

We make TrueNAS because businesses don’t
want to “DIY”
Instead of buying a fleet of delivery trucks, I suppose
we could purchase all the components separately, build

the trucks ourselves, and fix them when things break.
But, we’re not a car dealership, we’re a storage company.
We’d probably save money up front on the cost of the
bare parts but would certainly come out way behind with
the time spent figuring out how to put them all together
and build a functioning car, let alone the costs to maintain
it! Most businesses don’t have the time, available hard-
ware, or internal support expertise for a do-it- yourself
storage solution – they’re busy focused on their own mis-
sions and business models. But, with a 100% software
solution, you must build the server yourself. If there is
a problem with the server hardware, you can’t look to the
software vendor for support, and vice-versa if you have
hardware problems. With TrueNAS, you get one throat
to choke….ours :)

We make FreeNAS because many are turning
to virtualization
FreeNAS is known to work well with all major virtualization
platforms, but due to the nature of the decoupled hard-
ware, we aren’t able to officially certify the software with
the virtualization vendors. Therefore, if something goes
haywire, the user cannot turn to the virtualization ven-
dor for assistance and instead must rely on the FreeNAS
community.

We make TrueNAS because many are turning to
virtualization…and need Support
With a software-only solution you must verify that every
component is on the virtualization vendors’ compatibility
list and when your configuration changes (such as up-
grading to a new network card) you need to validate the
configuration again. Most businesses can’t afford the risk,
so TrueNAS is officially certified to support Citrix XenServ-
er, VMware ESXi, and Microsoft Hyper-V.

FreeNAS and TrueNAS both have their rightful
places
FreeNAS is the world’s most popular software defined
storage OS, with more downloads and installs than any
other storage software on the planet. The sheer magni-
tude of interest speaks volumes about its myriad applica-
tions. And, as its enterprise counterpart, TrueNAS has the
performance, high-availability, functionality, and profes-
sional software support that mission-critical storage ap-
plications require.

ABOUT THE AUTHOR

Brett Davis
iXsystems Executive Vice President

UNIX

08/201522

UNIX United and the Newcastle Connection were first
described in [1], which contained a quite extensive
survey of work on UNIX-based distributed systems

and comparisons of the different approaches that have been
adopted. No attempt is made to repeat such a survey in
the present paper. Since that time, the two notions of UNIX
United as an architecture and the Newcastle Connection as
an implementation have become more distinct in our own
minds, and both have evolved considerably in response to
our continuing design and implementation efforts.

The purpose of this paper is twofold: to describe the
semantics and architecture of UNIX United in some
detail and to discuss the current state of our design and
implementation. A UNIX United system is composed of
a number of component UNIX systems connected by one
or more communications media. In architectural terms,
UNIX United is a loosely coupled collection of components
for a number of reasons: it should be feasible to use both
fast and slow communications media, administrators
of a component should retain their autonomy in the
distributed system, and any given UNIX United system
should be capable of encompassing an arbitrary number
of components. While UNIX United is intentionally loosely

coupled in the senses described above, it paradoxically
presents an extremely integrated view to its users; that of
a single, albeit very large, UNIX system in which all of the
normal UNIX system calls and programs exhibit exactly
the same behavior when executed in the UNIX United
environment as when executed in the environment of a
single, isolated component. The result is that UNIX United is
recursively structured [2]: the functionality of the distributed
system as a whole is identical to that of its components.
This not only has some interesting consequences in terms
of the design of distributed computing systems, but it also
implies that all existing software investments in UNIX can
be retained in UNIX United, without necessarily requiring
any modification to their source code or that of the UNIX
kernels on the component machines. (As distributed
commercially, the Newcastle Connection consists
essentially of a replacement for the C language system call
library, and thus programs only need to be relinked to be
used in the UNIX United environment. However, we and
others have also created UNIX United systems by installing
the Newcastle Connection software below the physical
machine kernel boundary, just “on top of” the essentially
unmodified kernel. In this case, no change whatever is

UNIX Basics
SAMANVAY GUPTA

UNIX United is architecture for a distributed system based
on UNIX. Any program written for a normal UNIX system can
be transparently extended to exploit the richer environment
of UNIX United. As it relies on having a UNIX system beneath
it, the implementation of UNIX United, called the Newcastle
Connection. This paper explains the basic semantics of UNIX
United and is followed by that of the architecture implied by
the protocol between components in a UNIX United system,
network basics and of a software structure appropriate to
the architecture and the protocol.

www.bsdmag.org 23

required to existing programs. Clearly, this also implies
that the user’s perception of UNIX United is identical to his
perception of UNIX itself; the advantages of this cannot be
overstated. In Section II, we discuss the motivation and
basic semantics of UNIX United in more detail. Section
III discusses the architecture of UNIX United, or precisely
how the semantics of UNIX are extended in UNIX United.
Section IV describes the software structures associated with
the architecture, both in terms of our implementation (the
Newcastle Connection), and in terms of the remote system
call protocol which is used between various processes on
UNIX machines in a UNIX United system.

History Of Unix
The Unix operating system found its beginnings in MUL-
TICS, which stands for Multiplexed Operating and Comput-
ing System. The MULTICS project began in the mid-1960s
as a joint effort by General Electric, Massachusetts Institute
for Technology and Bell Laboratories. In 1969, Bell Labo-
ratories pulled out of the project. One of Bell Laboratories
people involved in the project was Ken Thompson. He liked
the potential MULTICS had, but felt it was too complex and
that the same thing could be done in simpler way. In 1969,
he wrote the first version of Unix, called UNICS. UNICS
stood for Uniplexed Operating and Computing System. Al-
though the operating system has changed, the name stuck
and was eventually shortened to Unix.

Ken Thompson teamed up with Dennis Ritchie, who
wrote the first C compiler. In 1973, they rewrote the Unix
kernel in C. The following year, a version of Unix known
as the Fifth Edition was first licensed to universities. The
Seventh Edition, released in 1978, served as a dividing
point for two divergent lines of Unix development. These
two branches are known as SVR4 (System V) and BSD.

Ken Thompson spent a year’s sabbatical with the Uni-
versity of California at Berkeley. While there he and two
graduate students, Bill Joy and Chuck Haley, wrote the
first Berkeley version of Unix, which was distributed to
students. This resulted in the source code being worked
on and developed by many different people. The Berke-
ley version of UNIX is known as BSD, Berkeley Software
Distribution. From BSD came the vi editor, C shell, virtual
memory, Sendmail, and support for TCP/IP.

For several years SVR4 was more conservative, com-
mercial, and well supported. Today, SVR4 and BSD look
very much alike. Probably the biggest cosmetic difference
between them is the way the ps command functions.

What Is Unix?
UNIX is a powerful computer operating system originally
developed at AT&T Bell Laboratories. It is very popular

among the scientific, engineering, and academic com-
munities due to its multi-user and multi-tasking environ-
ment, flexibility and portability, electronic mail and net-
working capabilities, and the numerous programming,
text processing and scientific utilities available. It has also
gained widespread acceptance in government and busi-
ness. Over the years, two major forms (with several ven-
dor’s variants of each) of UNIX have evolved: AT&T UNIX
System V and the University of California at Berkeley’s
Berkeley Software Distribution (BSD). This document will
be based on the SunOS 4.1.3_U1, Sun’s combination of
BSD UNIX (BSD versions 4.2 and 4.3) and System V be-
cause it is the primary version of UNIX available at Rice.
Also available are Solaris, a System V based version, and
IRIX, used by Silicon Graphics machines.

Figure 1. Structure

Unix Basics – Structure
The main concepts that unite all versions of UNIX are the
following four basics:

•	 Kernel: The kernel is the heart of the operating sys-
tem. It interacts with hardware and most of the tasks
like memory management, task scheduling and file
management.

•	 Shell: The shell is the utility that processes your re-
quests. When you type in a command at your termi-
nal, the shell interprets the command and calls the
program that you want. The shell uses standard syn-
tax for all commands. C Shell, Bourne Shell and Korn
Shell are most famous shells which are available with
most of the UNIX variants.

UNIX

08/201524

•	 Commands and Utilities: There are various command
and utilities which you would use in your day to day
activities. cp, mv, cat and grep, etc. are a few exam-
ples of commands and utilities. There are over 250
standard commands plus numerous others provided
through 3rd party software. All the commands come
along with various optional options.

•	 Files and Directories: All data in UNIX is organized
into files. All files are organized into directories.
These directories are organized into a tree-like struc-
ture called the file system.

Directory Structure
The UNIX system is set up as a tree hierarchy. At the
top of the tree is the root. The root is represented by
the slash character. Off of the root are branches of the
tree. The branches are directories.

Files or directories can be off the tree.

Figure 2. Tree hierarchy

Design: An Extensible Kernel
Early in its development, UNIX supported the notion
of objects represented as file descriptors with a small set
of basic operations on those objects (e.g., read, write and
seek) [3]. With pipes serving as a program composition
tool, UNIX offered the advantages of simple implemen-
tation and extensibility to a variety of problems. Under
the weight of changing needs and technology, UNIX has
been modified to provide a staggering number of different
mechanisms for managing objects and resources. In ad-
dition to pipes, UNIX versions now support facilities such
as System V streams, 4.2 BSD sockets, pty’s, various
forms of semaphores, shared memory and a mind-bog-
gling array of IOCtl operations on special files and devic-
es. The result has been scores of additional system calls
and options […]

Figure 3. Network scheme

[…] with less than uniform access to different resources
within a single UNIX system and within a network of UNIX
machines. As the complexity of distributed environments
and multiprocessor architectures increases, it becomes in-
creasingly important to return to the original UNIX model of
consistent interfaces to system facilities. Moreover, there
is a clear need to allow the underlying system to be trans-
parently extended to allow user-state processes to provide
services which, in the past, could only be fully integrated
into UNIX by adding code to the operating system kernel.
Mach takes an essentially object-oriented approach to ex-
tensibility. It provides a small set of primitive functions de-
signed to allow more complex services and resources to be
represented as references to objects. The indirection thus
provided allows objects to be arbitrarily placed in the net-
work (either within a multiprocessor or a workstation) with-
out regard to programming details. The Mach kernel ab-
stractions, in effect, provide a base upon which complete
system environments may be built. By providing these ba-
sic functions in the kernel, it is possible to run varying sys-
tem configurations on different classes of machines while
providing a consistent interface to all resources. The actual
system running on any particular machine is a function of
its servers rather than its kernel.

The Mach kernel supports four basic abstractions:

•	 A task is an execution environment in which threads
may run. It is the basic unit of resource allocation.
A task includes a paged virtual address space and
protected access to system resources (such as pro-
cessors, port capabilities and virtual memory). The
UNIX notion of a process is, in Mach, represented by
a task with a single thread of control.

•	 A thread is the basic unit of CPU utilization. It is
roughly equivalent to an independent program coun-
ter operating within a task. All threads within a task
share access to all task resources.

www.bsdmag.org 25

•	 A port is a communication channel – logically
a queue for messages protected by the kernel. Ports
are the reference objects of the Mach design. They
are used in much the same way that object referenc-
es could be used in an object oriented system. Send
and Receive are the fundamental primitive operations
on ports.

•	 A message is a typed collection of data objects used
in communication between threads. Messages may
be of any size and may contain pointers and typed
capabilities for ports.

Operations on objects other than messages are per-
formed by sending messages to ports which are used
to represent them. The act of creating a task or thread,
for example, returns access rights to the port which rep-
resents the new object and which can be used to ma-
nipulate it. The Mach kernel acts in that case as a serv-
er which implements task and thread objects. It receives
incoming messages on task and threads ports and per-
forms the requested operation on the appropriate object.
This allows a thread to suspend another thread by send-
ing a suspend message to that thread’s thread port even
if the requesting thread is on another node in a network.

The design of Mach draws heavily on CMU’s previous
experience with the Accent [4] network operating system,
extending that system’s facilities into the multiprocessor
domain:

•	 The underlying port mechanism for communication
provides support for object-style access to resourc-
es and capability based protection as well as network
transparency,

•	 All systems abstractions allow extensibility both to
multiprocessors and to networks of uniprocessor or
multiprocessor nodes,

•	 • 	 Support for parallelism (in the form of tasks with
shared memory and threads) allows for a wide range
of tightly coupled and loosely coupled multiproces-
sors and

•	 Access to virtual memory is simple, integrated with
message passing, and introduces no arbitrary restric-
tions on allocation, deallocation and virtual copy op-
erations and yet allows both copy-on-write and read-
write sharing.

The Mach abstractions were chosen not only for their
simplicity but also for performance reasons. A perfor-
mance evaluation study done on Accent demonstrated
the substantial performance benefits gained by integrat-
ing virtual memory management and interprocess com-

munication. Using similar virtual memory and IPC primi-
tives, Accent was able to achieve performance compara-
ble to UNIX systems on equivalent hardware [5]

Accessing A Unix System
There are many ways that you can access a UNIX sys-
tem. If you want the fullest possible access to the com-
puter’s commands and utilities, you must initiate a login
session. The main mode of initiating a login session to
a UNIX machine is through a terminal, which usually in-
cludes a keyboard, and a video monitor. When a terminal
establishes a connection to the UNIX system, the UNIX
kernel runs a process called a tty to accept input from the
terminal, and send output to the terminal. When the tty
process is created, it must be told the capabilities of the
terminal, so it can correctly read from, and write to, the
terminal. If the tty process receives incorrect information
about the terminal type, unexpected results can occur.

The Unix Processes
A process is the flow of execution of a set of program instruc-
tions and owns, as a system entity, the necessary resources.
Some operating systems, such as z/OS, call the basic unit of
execution a job or task. In UNIX, it is called a process. In the
UNIX kernel, anything that is done, other than autonomous
operations, is done by a process that issues system calls.
Processes often spawn other child processes, using, for in-
stance, the fork() system call, which usually run in parallel
with their parent process. These are usually subtasks which,
when they are finished, terminate themselves. All UNIX
processes have an owner. Typically, the human owner of
a process is the owner of the account whose login process
spawned the initial process parent of the process chain cur-
rently executing. The child process inherits the file access
and execution privileges belonging to the parent.

Signals
Signals are designed for processes to communicate with
each other and with the kernel. The signalling capabili-
ty is provided by the operating system and is used, for
instance, to inform processes of unexpected external
events, such as a timeout or forced termination of a pro-
cess. A signal consists of a prescribed message with a de-
fault action embedded in it. There are different types of
signals in UNIX, and each type is identified with a number.

Console
Every UNIX system has a main console that is connect-
ed directly to the machine. The console is a special type
of terminal that is recognized when the system is start-
ed. Some Unix system operations must be performed at

UNIX

08/201526

the console. Typically, the console is only accessible by
the system operators and administrators.

Dumb Terminals
Some terminals are referred to as “dumb” terminals be-
cause they have only the minimum amount of power re-
quired to send characters as input to the UNIX system,
and receive characters as output from the UNIX system.
Personal computers are often used to emulate dumb ter-
minals, so that they can be connected to a UNIX system.
Dumb terminals can be connected directly to a UNIX ma-
chine, or may be connected remotely, through a modem,
a terminal server, or other network connection.

Smart Terminals
Smart terminals, like the X terminal, can interact with
the UNIX system at a higher level. Smart terminals have
enough on-board memory and processing power to sup-
port graphical interfaces. The interaction between a smart
terminal and a UNIX system can go beyond simple charac-
ters to include icons, windows, menus, and mouse actions.

Network-Based Access Modes
UNIX computers were designed early in their history to be
network-aware. The fact that UNIX computers were prev-
alent in academic and research environments led to their
broad use in the implementation of the Department of
Defense’s Advanced Research Projects Administration
(DARPA) computer network. The DARPA network laid the
foundations for the Internet.

FTP
The FTP (File Transfer Protocol) provides a simple means
of transferring files to and from a UNIX computer. FTP ac-
cess to a UNIX machine may be authenticated by means
of a username and password pair, or may be anony-
mous. An FTP session provides the user with a limited set
of commands with which to manipulate and transfer files.

TELNET
Telnet is a means by which one can initiate a UNIX shell
login across the Internet. The normal login procedure
takes place when the telnet session is initiated.

HTTP
The HTTP protocol has become important in recent years
because it is the primary way in which the documents that
constitute the World Wide Web are served. HTTP servers
are most often publicly accessible. In some cases, access
to documents provided by HTTP servers will require some
form of authentication.

HTTPS
A variation of HTTP that is likely to become increasingly
important in the future. The “S” stands for “secure.” When
communications are initiated via the HTTPS protocol, the
sender and recipient use an encryption scheme for the in-
formation to be exchanged. When the sending computer
transmits the message, the information is encrypted so
that outside parties cannot examine it. Once the mes-
sage is received by the destination machine, decryption
restores the original information.

SHELLS
Processes operate in the context of a shell.

The shell is a command interpreter which:

•	 Interprets built in characters, variables and com-
mands

•	 Passes the results on to the kernel. The kernel is the
lowest level of software running. It controls access to
all hardware in the computer.

sh: Bourne Shell
_ Developed by Stephen Bourne at AT&T Bell Labs
csh: C Shell
_ Developed by Bill Joy at University of California, Berkeley
ksh: Korn Shell
_ Developed by David Korn at AT&T Bell Labs
_ backward-compatible with the Bourne shell and includes
many features of the C shell
bash: Bourne Again Shell
_ Developed by Brian Fox for the GNU Project as a free
software replacement for the Bourne shell (sh)
_ Default Shell on Linux and Mac OSX
_ The name is also descriptive of what it did, bashing
together the features of sh, csh and ksh tcsh: TENEX
C Shell
_ Developed by Ken Greer at Carnegie Mellon University
_ It is essentially the C shell with programmable command
line completion, command-line editing, and a few other
features

There are many shells! Common features that all shells
have:

•	 Command execution.
•	 Redirection of input and output.
•	 Piping.
•	 Wildcard expansion.
•	 Process control.
•	 Command recall and editing.
•	 Turing-complete (except for the memory part).

www.bsdmag.org 27

Shell scripts
The basic concept of a shell script is a list of commands,
which are listed in the order of execution. A good shell script
will have comments, preceded by a pound sign, #, describ-
ing the steps. There are conditional tests, such as value
A is greater than value B, loops allowing us to go through
massive amounts of data, files to read and store data, and
variables to read and store data, and the script may include
functions. We are going to write a lot of scripts in the next
several hundred pages, and we should always start with
a clear goal in mind. By clear goal, we have a specific pur-
pose for this script, and we have a set of expected results.
We will also hit on some tips, tricks, and, of course, the
gotchas in solving a challenge one way as opposed to an-
other to get the same result. All techniques are not created
equal. Shell scripts and functions are both interpreted. This
means they are not compiled. Both shell scripts and func-
tions are ASCII text that is read by the Korn shell command
interpreter. When we execute a shell script, or function,
a command interpreter goes through the ASCII text line by
line, loop by loop, and test by test and executes each state-
ment, as each line is reached from the top to the bottom.

Shells contain:

•	 Variables
•	 Loops
•	 Conditional statements
•	 Input and Output
•	 Built in commands
•	 Ability to write functions

Specifying the shell to be used:
On the first line of the file:

•	 Implicitly
•	 blank line – Bourne shell
•	 # in column 1 – C shell

•	 Explicitly
•	 #!/bin/sh – Bourne shell
•	 #!/bin/csh – C shell

Directory Commands
After logging into the system, the current directory is your
home directory. So for the account stu01 the current di-
rectory would be /home/students/stu01. To view what the
current directory is, use the pwd command:

$ pwd

To create a new directory off of the home directory uses
the command mkdir.

$ mkdir newdir

To view a listing of the contents of the current directory
use the command ls.

$ ls

For a directory listing that gives more information use the
command:

$ ls -l

To view hidden files those don’t normally show up with
an ls use the command:

$ ls -la

To change the current directory to the new directory that
was just created use the change directory command cd.

$ cd newdir

The newdir directory is down one level in the tree from the
home directory for stu01. Check to see what directory is current:

$ pwd

In this directory, files could be stored or additional sub
directories could be created.

To move back up one directory use the command:

$ cd ..

The dot dot represents the current directory.
To rename a directory use the move command mv.

$ mv newdir newname

The Unix File System
The UNIX file system hosts the collection of files accessed
by the processes running in the system and is in charge
of the logical representation of the data to the requesting
entities. The file system has therefore both a logical and
physical dimension.

The logical file system
The logical file system is in charge of the hierarchy of con-
nected directories and files as they are shown to the users.
The UNIX file system is logically arranged as a tree, ac-
tually inverted with the root, named “/”, at the top. All files
are logically contained within the root directory. See the

UNIX

08/201528

example shown in Figure 4, where the shaded boxes
represent directories, while the unshaded boxes repre-
sent files. A file or directory is located in the file system
tree using a “path name”; /etc/profile or /u/dirA/dirA1/
Dominique are path names. Note that UNIX is a case-sen-
sitive operating system; therefore a file called “ABC” is dif-
ferent from a file called “abc”.

Figure 4. Logical File System

The physical file system
The physical file system, as the name implies, is in charge
of the physical arrangement of data and control informa-
tion about the physical media. The physical file system
operates with control blocks such as the superblock, in-
odes, and data blocks. The superblock holds the control
information for the system. Inodes contain similar informa-
tion for individual files. The data blocks hold the data that
makes up the information in the files.

Conclusion
UNIX provides bothappropriate semantics for a general-pur-
pose distributed system and appropriate mechanisms and
interfaces for this system to be constructed merely by add-
ing a comparatively simple transparent subsystem to UNIX.
The design philosophy we employed was, at the outset, lit-
tle more than an active concern for structure and generality,
and, more particularly, a liking for recursive constructs (dating
back to work at Newcastle on recursive virtual machines [6],
if earlier). However, as a result of our work on the Connec-
tion, these ideas on recursive system structuring have be-
come much more well defined, in our own minds at least, and
have enabled us to separate carefully issues concerned with
constructing a distributed system from those concerned with
taking advantage of the fact that it is distributed, for example,
in order to provide increased reliability, availability, and/or se-
curity. This is not to say that we have simply ignored all such
issues. Rather we have investigated, and in several cases al-

ready implemented, various separate but complementary re-
liability and security mechanisms, each of which can simply
be added to a UNIX United system, without requiring modifi-
cations to the code of either UNIX or the Connection [7], [8],
and [9]. (This work is surveyed in [10], as part of a general
account of our ideas on recursive structuring.)

It would be inappropriate to end these concluding remarks
without an explicit acknowledgment of our debt to UNIX and
its original creators–it has its deficiencies, of course, both as
a centralized system, and as the basis of a general-purpose
distributed system. Nevertheless, we have found its facilities,
particularly at the system call level, and the style of system
design that it exemplifies a veritable inspiration. Such sim-
plicity and generality of mechanism as we have been able to
achieve undoubtedly owes much to this source.

Reference
[1]. �D. R. Brownbridge, L. F. Marshall, and B. Randell, “The Newcastle

Connection-or UNIXes of the world unite!” Software–Practice
and Experience, vol. 12, no. 12, pp. 1147- 1162, Dee. 1982.

[2]. B. Randell, “Recursively structured distributed computer sys-
tems,” in Proc. Symp. on Reliability in Distributed Software and
Database Systems, pp. 3-11, Oct. 1983.

[3]. D. M. Ritchie and K. Thompson. The Unix time sharing system.
Communicationsof the ACM, 17(7):365–375, July 1974.

[4]. R. F. Rashid and G. Robertson. Accent: A communication oriented net-
work operating system kernel. pages 64–75. ACM, December 1981.

[5]. R. Fitzgerald and R. F. Rashid. The integration of virtual memory
management and interprocess communication in accent. ACM
Transactions on Computer Systems, 4(2), May 1986.

[6]. H. C. Lauer and D. Wyeth, “A recursive virtual machine architec-
ture,” in Proc. ACM Workshop on Virtual Computer Systems, pp.
113-116, Mar. 1976. Also available at University of Newcastle up-
on Tyne, Computing laboratory, Tech. Rep. TR54.

[7]. J. A. Anyanwu, “A reliable stable storage system for UNIX,” Software–
Practice and Experience, vol. 15, no. 10, pp. 973-990, Oct. 1985.

[8]. J. A. Anyanwu and L. F. Marshall, “A crash resistant UNIX file sys-
tem,” SoftwarePractice and Experience, vol. 16, no. 2, pp. 107-
118, Feb. 1986.

[9]. �J. M. Rushby and B. Randell, “A distributed secure system,” IEEE
Computer, vol. 16, no. 7, pp. 55-67, July 1983. Also available at
University of Newcastle upon Tyne, Computing laboratory,
Tech. Rep. TR182.

[10]. �B. Randell, “Recursively structured distributed computer sys-
tems,” in Proc. Symp. on Reliability in Distributed Software and
Database Systems, pp. 3-11, Oct. 1983.

ABOUT THE AUTHOR

Samanvay Gupta Security Researcher and
Analyst in Hicube InfoSec, Cyber Security Expert,
Ethical Hacker, MCITP professional, Information
Security Expert, Author of 6 International
Journals, Delivered workshops, seminars and
trainings in different parts of the country.

People are talking about BigData TechCon!
Great for quickly coming up to speed in the big data landscape.

—Ben Pollitt, Database Enginee, General Electric

There was a large quantity and variety of educational talks
with very few sales lectures. It was just informative and inspir-

ing. This was the best conference ever! Get a ticket for 2015!
—Byron Dover, Big Data Engineer, Rubicon Project

November 2-4, 2015
CHICAGO
Holiday Inn Chicago Mart Plaza River North

Choose from 55+
classes and tutorials!

Attend Big Data TechCon to get practical training
on Hadoop, Spark, YARN, R, HBase, Hive,
Predictive Analytics, and much more!

Take a Big Data analytics tutorial, dive deep into
machine learning and NoSQL, learn how to master
MongoDB and Cassandra, discover best practices for
using graph databases such as Neo4j and more. You’ll
get the best Big Data training at Big Data TechCon!

www.BigDataTechCon.com
A BZ Media Event Big Data TechCon™ is a trademark of BZ Media LLC.

Learn How To Master Big Data

UNIX

08/201530

The most important enhancement made to the OS
by the programmers at Berkeley was adding net-
working capability. This enabled the OS to operate

in a local area network (LAN). In 1988, AT&T UNIX, BSD
UNIX, and other UNIX OSs were folded into what became
System V release 4 (SVR4) UNIX. This was a new gen-
eration OS, which became an industry standard. The new
SVR4 UNIX became the basis for not only Sun and AT&T
versions of the UNIX environment, but also IBM’s AIX and
Hewlett-Packard’s HP-UX.

UNIX was constructed with following mechanisms:

Kernel
Kernel is the core/heart of an OS and is responsible for all
the processing in a computer. It manages all the physical
resources of the computer, including filesystems, CPU,
memory, etc.

Shell
Shell is a command interpreter and acts as an interface
between the system and the user. Shell accepts the com-
mand and passes it to the kernel, which further executes

the command. In Oracle Solaris 11 and Oracle Enterprise
Linux, the default shell is Bourne Again Shell, which is
also known as bash.

File System
A file system is a logical collection of a files and directories
on a partition or a disk. It has a root directory, which fur-
ther contains all files and directories in an operating sys-
tem. The root directory is identified as /. Each file or direc-
tory is identified by its name and a unique identifier known
as Inode number.

Process
Every program you run or execute in UNIX/Linux cre-
ates a process. When you log in to the system and start
the shell, several processes will be started, depending on
the associated programs in login shell. Whenever you ex-
ecute a command in the shell, it will start a process, which
can further start another process. In that case, the process
which has started another process will be known as a par-
ent process. You can use the following commands in UNIX/
Linux to monitor and manage the process: Ps, top, prstat,

UNIX – How To Start
Terminal?
NITIN KANOIJA

UNIX is a multiuser operating system which is available in
many flavours, like Oracle Solaris, HP UNIX, IBM AIX, Free
BSD, and MacOS. It was developed by Ken Thompson and
Dennis Ritchie at AT&T Bell Laboratories in the late 1960’s.
In 1978, AT&T’s UNIX seventh edition was split off into
Berkeley Software Distribution (BSD). This version of the
UNIX environment was sent to other programmers around
the country, who added tools and code to further enhance
BSD UNIX.

www.bsdmag.org 31

pgrep.
Solaris and HP UNIX are widely used flavours of UNIX.

Since UNIX was developed, many features and tools
have been added to different flavours of UNIX, like Journ-
aling file system, ZFS, DTrace, enhanced packaging sys-
tem like IPS, Solaris Volume manager (which was earlier
know as Solstice Disk Suite).

Who should use UNIX/Linux?
Companies, or system administrators, who have big serv-
ers in their environment and need stability, scalability, se-
curity and high performance for their servers should use

UNIX/Linux operating systems. UNIX/Linux operating
system uses much less resources in comparison to any
other operating systems. UNIX/Linux has many enhanced
security features, like SELinux, IP tables, TCP wrappers,
ACLs, Dtrace and many more.

How to start terminal in Oracle Solaris 11?
To open a terminal window in Oracle Solaris 11, right click
on the Desktop and left click onthe ”Open Terminal” option
in the menu.

Figure 1. Directory structure

Figure 2. Oracle Solaris 11 Desktop Menu Figure 3. Terminal window

UNIX

08/201532

An Oracle Solaris 11 Terminal window will then appear
with a $ prompt, and you can start entering the commands.

Oracle Solaris 11 Desktop:

Figure 4. Oracle Solaris 11 Desktop

Installation Options for Oracle Solaris 11
(Flavour of UNIX)
You have several alternatives for where to install Oracle
Solaris 11:

•	 Inside a virtual machine on top of your existing oper-
ating system

•	 On the bare metal (physical machine) as a stand-
alone operating system

•	 On the bare metal alongside your existing operating
system(s) (multiboot/dual boot scenario)

Installing Oracle Solaris 11 inside a Virtual
Machine with Live CD
The easiest way to start using Oracle Solaris 11 is to in-
stall it into a virtual machine on top of the host operating
system running on the physical machine. The figure below
shows Oracle Solaris 11 installed on Apple OS X using
Oracle VM Virtual Box.

Oracle Solaris 11 will recognize the virtualized devices
that the virtual machine provides. If you run Oracle So-
laris 11 in full-screen mode, you might actually forget that
there’s another operating system running in the back-
ground. The one drawback to this approach is that you
need enough memory to run two operating systems si-
multaneously – a minimum of 2 GB is recommended for
good performance. You should also allow a minimum of
7 GB of disk space to install the operating system in vir-
tual machine.

Oracle VM VirtualBox is a free-to-download virtualiza-
tion application that can run on Microsoft Windows, Apple
OS X, Linux, and Oracle Solaris x86 as host platforms,
and supports most of the flavours of Linux, like Redhat
& Oracle Enterprise Linux as guest OS. It also supports
Oracle Solaris as one of its many guests. Oracle makes
it easy to try this approach by offering a number of pre-in-
stalled virtual machines for Oracle VM VirtualBox as appli-
ances and VM templates that are focused towards a spe-
cific use, for example, to evaluate the developer tools that
are available on Oracle Solaris 11.

Figure 5. Oracle Solaris on Apple OS X

After you have booted off the Live Media, the installation
process is straightforward. Simply click the Install Oracle
Solaris icon on the desktop to launch the graphical install-
er, shown in Figure 6.

Figure 6. The Oracle Solaris 11 Graphical Installer

www.bsdmag.org

As you can see from the above Figure, the installation
process is simple and asks some basic questions before
installing a fixed set of packages. After Oracle Solaris has
successfully been installed, you can easily customize the
installation by using the Package Manager. After the in-
stallation process is complete, you can reboot into your
new Oracle Solaris environment or review the Oracle So-
laris installation log, as shown in Figure 7.

Figure 7. Reviewing the Installation Log

Now you are ready to launch your work.

ABOUT THE AUTHOR

Nitin Kanoija has 8+ years of experience in IT
industry with core expertise in Unix/Linux and
Veritas. He is currently working as Senior
Corporate Trainer with Koenig Solutions Ltd.
Nitin possesses vast experience on Unix/Linux,
Oracle Virtualization & Clustering technologies

and has also handled several projects which demand in-depth
knowledge of Unix/Linux and clustering. Nitin is Sun Certified
System Administration Certification (SCSA) & Sun Certified Network
Administration Certification (SCNA).

https://register.bsdcertification.org//register/payment
http://www.bsdcertification.org/
https://register.bsdcertification.org//register/get-a-bsdcg-id

UNIX

08/201534

SECURITY

Eben decided that, in order to change this, there
needed to be a simple low cost alternative for kids
to use and discover a different side of comput-

ing, the side of computers that Eben, and anyone prior
to 1995, grew up discovering. Eben wanted to help kids
learn about programming, circuitry, and the basics they
had been missing in the applications he was reviewing.
Eben decided to build a cheap single board computer
called Raspberry Pi to facilitate that discovery. During his
growing up, he discovered how to take apart computers,
build programs, and discover how the systems work from
machine language to basic electronics (Figure 1).

Figure 1. Eben Upton

How About Some
Raspberry Pi?
JERRY CRAFT

In early 2006, Eben Upton was working with undergraduate
admissions in computer science as a PhD Candidate for the
University of Cambridge. Working in admissions, he was
hoping to find kids who were used to playing around with
computers, but instead discovered something different.
The love for figuring out how a computer functioned wasn’t
part of the college application. Eben discovered kids were
no longer writing programs and taking apart circuit boards.
Instead, they were playing video games or using the family
computers to update MySpace/Facebook posts. Kids didn’t
have access to a computer they could blow up or really get
into and discover how a computer functions. The hacking
instinct was gone. Instead, kids going into college for
computer science were “..consumers of computers.” (Mann)

www.bsdmag.org 35

I too had a similar experience growing up. I personally
came to computers in the 80’s when I was 16. My first
computer was a Commodore VIC 20. It had no hard drive
because at that time they were too expensive. Likewise, it
had no floppy drive, tape drive, and it would only boot to
ROM BASIC. My family was too poor to buy the computer
so I spent a year working to save up enough money to buy
this $100 system. But I did it, and when I brought it home
my mother wondered what I was doing. I quickly connect-
ed the RCA video connector to my black and white TV and
booted it up for the first time. I watched everything go and
for the next few months I would sit in front of that computer
and learn BASIC programming. Likewise, as time would
go on I would tear that small computer apart and discover
a world of chips, circuit boards, and amazing technology.
That large purchase would lead me to get a job at a hobby
shop repairing circuit boards and building RC cars for cus-
tomers. My whole life was surrounded by computers from
that point forward and every waking moment was spent
hunched over a computer figuring out how it worked and
how I could use it to do what I needed.

Figure 2. Commodore VIC 20

That type of drive to learn computers is what Eben felt
was missing in today’s students and it drove Eben to build
the Raspberry Pi. Eben wanted to see kids have a sim-
ple low cost computer they could build, use, and break.
In 2009, he put together the Raspberry Pi Foundation,
a charity built to promote the study of computer science in
schools. The one goal of the Raspberry Pi Foundation is
to help give the spirit of the hobbyist back to kids so they
can create a computer from the ground up and discover
the world that both Eben and I discovered as kids.

Remember the joy of opening up new computer equip-
ment or discovering how to use a new OS? What about
the first time you successfully compiled your program to
do some great thing and it actually compiled without er-
rors? Today, I am a Security Consultant and I get the op-
portunity to work in an environment where my hobbyist
tendencies allow me to take neat tools like this and build
something to make my life easier. I too have taken the
Raspberry Pi and used it to create a small device I use in
my own security engagements. In my Penetration Test-
ing reports, I call it “The Raspberry Pi Test”. The whole
goal of this test is to see how my customer’s enterprise
will react to a small computer placed on their network.
It’s a fear all Blue Team security engineers dread and
something all Red Team penetration testers should use
in their bag of tricks.

It is in that spirit that I bring you this tutorial. I spent a few
weeks perfecting my installations, as I am sure you will as
well. But here is the basic tutorial regarding how to con-
struct a Raspberry Pi into a penetration testing tool.

Purchasing your Raspberry Pi
In order to start this endeavor you will need to purchase
a Raspberry Pi. The recommended site to purchase the
Raspberry Pi is http://www.farnell.com/pi/. Choose your
country, or if you are from the United States you can go to
http://www.newark.com/. The country you choose will set
the language, shipping and the currency option for you.
Be aware that the site you choose will setup some default
values and set you up for success (Figure 3).

Figure 3. Newark Website

Assembled or Unassembled
There are many options when choosing your Raspber-
ry Pi. You can choose to get an unassembled board or
an assembled board. My soldering skills have not stood

UNIX

08/201536

SECURITY

the test of time and in so doing, I was not confident that
I wanted to rely on my ability to solder the first time out of
the gate. So, I purchased an assembled board. But if you
are one of those people where you feel confident in your
ability to solder then feel free to order an unassembled
board. I have since done so and I can say the experience
was great. The smell of the solder is something that sticks
with you forever.

Raspberry Pi Model A or Model B
The next choice to make is what model to purchase.
There are two different models called Model A or Model B.
Most will want to purchase the Model B version because
you will want the latest and greatest. But some on a bud-
get may want the Model A for some sort of pet project.
Model A is normally a $25 (US) investment; Model B is
a $35 (US) investment. The specification differences are
listed below:

Figure 4. Raspberry Pi Model B

Specifications (Figure 4)

•	 SoC: Broadcom BCM2835 Multimedia Processor,
comprised of:

•	 CPU: Single-Core ARM1176JZ-F (ARMv6 ISA) at
700 MHz

•	 GPU: Broadcom Dual-Core VideoCore IV Media Co-
Processor

•	 RAM: 256MB (Model A & B)
•	 USB: 2x USB 2.0
•	 Video: 1x HDMI, 1x RCA Analogue Video
•	 Audio: 1x HDMI, 1x 3.5mm Analogue Jack
•	 Storage: SD Card

•	 Networking: None (Model A) or 10/100 Ethernet
(Model B)

•	 Additional Connectivity: GPIO, UART, I2C, SPI, CSI,
DSI, JTAG

•	 Actual Size: 85.6mm x 53.98mm
•	 Costs: Model A = $25.00; Model B = $35.00 USD

Shopping List
Of course you are going to select and purchase your Pi
but, you will need a few accessories as well. Use this list
to identify those items.

Figure 5. Class 10 and Class 4 SD Cards

Hard Drive
You will need to purchase a Hard Drive for your new Pi.
Notice on the basic schematic there is no hard drive listed.
The hard drive in the unit is the SD card so if you have
one around for another project you can use it. But here is
a note about the cards, it is recommended you get a card
that is minimally a Class 4. I have had problems with cards
under a Class 4 card. One problem I would experience is
that even though I would shut down the Linux operating
system correctly, the card would still have errors on it and
a few times I lost the entire partition. So stick with experi-
ence and use a Class 4 or better. I am currently running a
Class 10 Lexar card with 16GB of space. This is a great
card and it has been rock solid (Figure 5).

Power Supply
You will need a power supply. No giant black brick will be
shipped with your Raspberry Pi, you will need to purchase
one or you will need to “find” one. If you are a technologist
like me, you have a few power supplies lying around for
the different gadgets you use. You can buy a power sup-
ply from Element 14 or you can use any power supply that

www.bsdmag.org 37

is 5V at 700mA. Many mobile phone chargers fit these
criteria. I personally use my iPhone charger shown below.
It makes the entire penetration testing platform nice and
compact (Figure 6).

Figure 6. Raspberry Pi and iPhone Charger

Charging Cable
Of course, your iPhone cable is not a micro-USB power
supply but, I had one of those for another accessory. So if
you do not have a micro-USB supply you should get one
from Element 14 (Figure 7).

Figure 7. All Necessary Items Together

Video
If you want to SEE your Raspberry Pi boot up you will
need to plug it into an HDMI compatible resource like a TV
or into a RCA video jack. I used my home TV for my test-
ing. Again, I had spare RCA cable from an old TV project
that helped me out. You may need to purchase an HDMI
or RCA cable.

Raspberry Pi Case
Yes, you can purchase a case to go with your Raspberry
Pi. You can make it pretty or you can make it stealth either

way the cases can be found on the site, so make sure you
get one that fits you. It is also a good investment because
you never know where you will be placing your Pi. So,
a case is a good investment to protect your new toy, which
cost anywhere from $7 and up (Figure 8).

Figure 8. Raspberry Pi Case

Raspberry Pi Bundles
Now, if all of this is scary and you just want to click and
buy a bundle, feel free to do so. Newark and others have
Raspberry Pi bundles you can buy that take all the guess
work out of it. In fact, they have bundles that are the com-
plete kit including a mouse and keyboard. Because this
is PenTest Magazine, I felt we would not use a keyboard
and mouse. After all, we are all experienced testers who
understand SSH and how to remotely connect to a Linux
system. But if you want to get a complete kit to build your
Raspberry Pi those are available as well.

Kits come at a cost, however. The graphic below will
show you that a complete kit costs almost $85 US, where-
as I spent $35 for my Pi and $7 for my case. The other
items I had lying around the house being unused.

Figure 9. Two Kits for Raspberry Pit

UNIX

08/201538

SECURITY

Shopping Conclusion
So with those parts you are done shopping! Simply pur-
chase and ship your new toy and feel free to unbox it with
the joy you use to have during Christmas or Birthdays.

Unboxing your Raspberry Pi
Your Raspberry Pi will come in an antistatic bag with all
your other goodies. As you will see, it’s only a single board
computer with no moving parts (Figure 10).

Figure 10. Unboxed Raspberry Pi

Figure 11. Scale picture for the Raspberry Pi

Raspberry Pi Tour
It’s often hard to understand scale when you read arti-
cles. However, the Raspberry Pi is very small. I am in-
cluding screenshots for readers to see and get an idea as
to how tall and small the Raspberry Pi is when it arrives.
As a contrast, I am using my iPhone and iPhone power
supply as scale references. The iPhone used for these
pictures is an iPhone 4S (Figure 11-16).

Figure 12. Using the bottom of my Case you can see the Raspberry Pi
is as tall as the iPhone charger

Figure 13. SD Slot with Mini-USB power on the right

Figure 14. HDMI side view

www.bsdmag.org 39

Figure 15. RJ-45 Ethernet and two standard USB ports

Figure 16. Serial Audio and RCA jack with the GPIO expansion port on
the right

Walk Through Conclusion
Overall, the Raspberry Pi is a very small single board
computer with more power than most of us had when we
were kids. Next we will format our SD card and create
a hard drive for our Raspberry Pi. Then we will load some
cool tools onto the card and setup our pentesting Rasp-
berry Pi.

Setting up our Raspberry Pi
If we plug our Raspberry Pi into its video resource and pow-
er it on, all you will get is a red light on the power. I plugged
mine into RCA and power and there is no CMOS boot
screen or any indication that something is happening out-
side of the red light. I wanted to show this to you because
this is the only interface you have if something goes wrong
with your Raspberry Pi or SD Card hard drive. If your parti-

tions are damaged, or you are not giving enough power to
the Pi, you will want to review these lights for an indication
of what has gone wrong (Figure 17).

Figure 17. Raspberry Pi Diagnostics

Many sites document the lights on the main board and
they also document the causes of each problem. I have
used http://elinux.org/R-Pi_Hub as a troubleshooting re-
source and it has worked well.

Figure 18. SD Formatter

Setting up the Hard Drive
The Raspberry Pi Foundation has put together a great tuto-
rial on how to setup an SD Hard Drive for the Raspberry Pi.
I will be following the guide at http://www.raspberrypi.org
using a Windows OS in this demonstration. Obviously, if
you run Linux it is easy to natively fdisk and format an SD
card. The same can be said for MacOSX for that matter.
However, if you want to use Windows, you want to use

UNIX

08/201540

SECURITY

an SD formatter. I have had problems using the normal
format feature for a hard drive in Windows. Sometimes it
just does not recognize the capacity of the entire SD Card.
The Raspberry Pi Foundation mentions using this tool as
well https://www.sdcard.org/downloads/formatter_4/eula_
windows/.

Once you accept the EULA, a zip file will be sent to your
system. Simply unzip and install the SETUP.EXE file and
run the install. I ran the exe and clicked Next, Next, Next,
Finish (Figure 18). When finished it is installed on your
hard drive (Figure 19).

Figure 19. Location of SD Formatter

Figure 20. SD Formatter Launched

Figure 21. Completed SD Format

Double click the shortcut and launch the file. A simple
user interface is launched (Figure 20).

You will notice in the previous graphic that my drive,
size, and name of the disk were already picked up from
before. You can name it anything you desire, and click
format to begin erasing the drive. This will not repartition
the SD Card. If you want to repartition the card you will
want to use DISKPART. See the following link to partition
a SD Card in Windows http://www.winability.com/delete-
protected-efi-disk-partition/ (Figure 21).

Once my format wizard is up and ready, I simply clicked
Format and my SD Card was formatted and ready to go.

Prepare your Pentesting Hard Drive
Today there are a few small pentesting distributions for
the Raspberry Pi. You can choose a few different flavors
depending on what you want your Raspberry Pi to do. Or
if you are really adventurous, you can build your own ver-
sion. After all, building a pentesting system is just a mat-
ter of creating a Linux workstation and compiling some
tools. But some people may like pentesting distributions
because it gets you going quickly. In my review, I will talk
about Linux distributions for the Raspberry Pi and show
you how to install my favorite Raspberry Pi Pentesting
Distro. Personally, I have a few SD cards with different
distributions and “options” available. I have a special dis-
tribution that I use for WIFI cracking. I also have a special
distribution for reconnaissance or “phone home” connec-
tivity. No matter which way you want to go, you need to
figure this out now so you can identify the method you will
use to install an operating system.

Since my favorite distribution wants me to use the
Raspberry Pi Debian version, we will move forward in
that direction.

Figure 22. Index of http://downloads.raspberrypi.org

https://www.sdcard.org/downloads/formatter_4/eula_windows/
https://www.sdcard.org/downloads/formatter_4/eula_windows/

www.bsdmag.org 41

Linux Distributions – ARM
To start, remember that your Raspberry Pi is an ARM
based computer. This means anything you use must use
ARM architecture. The Raspberry Pi Foundation has put
together a few different distributions ready to image at
http://downloads.raspberrypi.org (Figure 22).

In some cases you can simply use a distribution from
here. Remember, your new Raspberry Pi has some inter-
esting connections, including that GPIO interface that will
need drivers. If you do choose to build a hard drive using
Red Hat Fedora, or some other Linux version, you may
need to build proper drivers for your hardware. In this ar-
ticle, we will use the Debian version from the Raspberry
Pi Foundation.

DEBIAN version for Raspberry Pi
Simply click the Debian link and choose a download type
you desire. The Wheezy-armel version will work great for
what we are doing (Figure 23).

Figure 23. Choosing the download

My personal download times run at about 7 minutes for
the zip file. I never torrent for something so small, and like
a good security engineer, I am going to download from a
place I trust and check hashes. When the download com-
pletes, unzip your image (Figure 24).

Figure 24. Unzipper Wheezy

Imaging your SD Hard Drive
Now that you have your Debian Image for Raspberry Pi,
we can image it to your SD Card. The image will only take
up 4gb of space, so I am glad I have a 16gb card. To im-
age my SD card, I am going to use WINDISKIMAGER
(Figure 25).

Figure 25. Drive with Win32DiskImager and my Wheezy image

Figure 26. Creating a SD Card Image

Double click on Win32DiskImager if you have it, other-
wise, you can get it from source forge at http://source-
forge.net/projects/win32diskimager/. Once it opens, se-
lect your image file using the folder icon, then check that

UNIX

08/201542

SECURITY

the image is going to the right drive, which in my case is
the F drive. Once you are ready, click on the WRITE but-
ton and your SD Card will be imaged (Figure 26).

This process can take a few minutes depending on the
speed of your SD Card. Here is a brief discussion about
a Class 10 vs. Class 4 SD Cards. A Class 10 card can
write at 10mb per second which means faster image ex-
panding. A Class 4 card can read/write at 4mb/s. So again,
a faster card could give you better results. When the write
is finished you will get a “Done” message.

Image is done, now what?
Since we are using Windows, let’s check out our SD Card
and see what’s on it (Figure 27).

Figure 27. Booting SD card

Right away, you will see that the card now registers
less than the full size of the SD Card. I am using a 16gb
card but it reads that the F drive is 56mb and 37.5 is free.
This is because the card was reformatted for the image
so there are two partitions on this card. One is the Linux
boot 56mb drive, and the second drive is the remainder of
the 4GB image. That remainder will be your root partition
once the Raspberry Pi boots up. We will expand this 4GB
to my full 16GB a little later in this demo.

Figure 28. First Boot

Safely eject your card from the system and plug it into
your Raspberry Pi. I am going to let it boot up and ob-

tain an IP address on my network that is running DHCP
through the Ethernet port. So that means I will need to
cable up my RJ45 prior to boot.

Here you can see my Raspberry Pi ready for its first
boot (Figure 28).

As you can see, my Raspberry Pi is running RCA vid-
eo, RJ45 cable, power, and my SD Card is put in upside
down. It only goes one way so you will figure that out.
But also note that the lights on the Raspberry Pi are all
lit. I have good power, it has booted, and the NIC activity
lights are running. IT’S ALIVE! What do we see from my
TV? (Figure 29)

Figure 29. Working Raspberry Pi on TV

Figure 30. First Boot Screen

If you were to view it from the TV, you would see a nor-
mal Linux style boot up with a Raspberry Pi logo in the
top left; when it’s done, it goes right into the Raspberry Pi
Software Configuration tool (raspi-config). This means it
booted up correctly and it’s ready to configure. But I don’t

www.bsdmag.org 43

have a keyboard or mouse on mine. I need to SSH into my
Raspberry Pi. Since I am in my office network, I can sim-
ply get the IP from my DHCP logs. If you can’t identify the
DHCP address, then maybe a USB keyboard is an option
for you (Figure 30).

When you first SSH into your Raspberry Pi using the
Wheezy image the username will be “pi” and the pass-
word is “raspberry”. Take a quick look around and you will
see that it’s a normal Linux Debian installation. If you per-
form the command “df” you will see you are not using your
full SD card. You need to expand the operating system
to fill the full size of the SD card if you have a card larger
than 2gb.

Figure 31. Screen after using Disk Free command

RASPI-CONFIG – Setup your Raspberry Pi
Now that you are in the console you should run “sudo ras-
pi-config” to configure your Raspberry Pi. First we will ex-
pand the filesystem to use all the space on our SD card.
Use the arrow keys in your SSH connection to select op-
tion 1 and expand the file system. When you are done,
feel free to reboot your Raspberry Pi so it can finish ex-
panding the filesystem. Here are some other features you
may want to change:

•	 Change User Password: After all, we did just publish
your username/password.

•	 Enable boot to desktop if you are going to use this
Raspberry Pi as a desktop.

•	 Internationalisation Options as necessary.
•	 Enable Camera? Yes if you buy an Arduino connec-

tion for GPIO interface.
•	 Overclock – yes you can overclock your little Rasp-

berry Pi! Use caution there is no heat sync.
•	 Advanced options – Check them out, easy stuff, but

there is an update feature there!
•	 Update if you are inclined.

Normal Raspberry Pi to Penetration Testing
Raspberry Pi
At this stage you have a normal Raspberry Pi using stan-
dard Linux Debian. But you don’t want a regular Rasp-
berry Pi, you want a Pi that has cool tools on it. Again, you
can start here to install Header files and GCC to build your
tools; or you could use a Pentest distribution. I am going
to opt for a distribution so you can see how that works.

Figure 32. APT update

Figure 33. PWNIE Express installation

There are two core distributions I like for Penetration
Testing. PWNPI from http://www.pwnpi.net has a great
distribution that has some good tools. However, I really
love the PWNIE Express distribution that is available in
both a purchased tool and a community version. Since
I see many Pentesters love Backtrack and Kali, I will opt
for PWNIE Express in this demo. It’s more involved to set-
up than others, but it does bring a bunch of great tools
including SET, kismet, aircrack, netcat, and a bunch of

UNIX

08/201544

SECURITY

others ready to go. You can get PWNIE Express at http://
blog.pwnieexpress.com.

Figure 34. GIT installation

PWNIE Express Installation
Once you go to the blog site for PWNIE Express, you can
simply follow the steps for installing GIT and running the
install.

•	 First do the basics, ping out to confirm you have ac-
cess to the internet from your Raspberry Pi and then
update APT by running an “sudo apt-get update”

•	 After this, run “sudo apt-get install git” to install GIT.
•	 Finally, run the GIT command to get the PWNIE Ex-

press installer. “git clone https://github.com/pwnieex-
press/Raspberry-Pwn.git” (Figure 32)

After the installer is installed simply run the installation
command (Figure 33).

Note that you will need to change directory into Rasp-
berry-Pwn that was created in the folder you ran the GIT
command. I ran my GIT command in the home folder for

Figure 35. PWNIE Express update

https://github.com/pwnieexpress/Raspberry-Pwn.git
https://github.com/pwnieexpress/Raspberry-Pwn.git

www.bsdmag.org 45

Pi. Once you change into the Raspberry-Pwn directory,
execute the command ./INSTALL_raspberry_pwn.sh.

This command will install the GIT repository for PWNIE
Express (Figure 34).

You will see the PWNIE Express installation begin up-
dating/installing packages to support the PWNIE Express
distribution (Figure 35).

This process will continue until the installation is com-
plete. Depending on the speed of your internet connec-
tion, and class level of the SD Card, your install may take
some time. My install took half an hour.

Cleaning up
At this stage of the installation you have a Raspberry
Pi setup ready to perform penetration testing. Much like
a BackTrack installation, many of the testing tools are
placed in the /pentest folder (Figure 36). As you can see,
my 16gb SD Card has 12gb of space remaining on the
root partition (Figure 37). And I have a lot of free memory
to use for the next engagement (Figure 38).

Overall, this new Raspberry Pi is set and ready to go.
All that needs to be done is turn it on and tell it what to do.

Extending the power of the Raspberry Pi for
automated attacks
In my engagements, I have programmed a script to do
many things. Setup in the /etc/init.d folder, my script auto
launches on boot up and performs recon scanning of an
enterprise for my engagement. Then it opens up two SSH
tunnels, one standard SSH reverse shell and another
HTTP reverse shell. The first thing I do on an engagement
is turn on my Raspberry Pi and let it work. It does a lot of
the basic Recon work and simple exploitation. Fully pro-
grammable, and ready to go, a Raspberry Pi is a great
tool to use on my penetration tests and, with this how-to,
you can build your own in minimal time.

ABOUT THE AUTHOR

Security Consultant at Nth Generation Computing.

Figure 38. Free Memory

Figure 37. Root

Figure 36. Pentesting Tools

UNIX

08/201546

COLUMN

With the latest successful hacking attempt
on the edgy Ashley Madison dating site,
what are the ethical and security implications
as a new thinking infiltrates the deeper
and darker sides of human nature?

When the news of the Ashley Madison hack
reached the public domain, there are three
words that describe the emotions and mental

state of a large number of their subscribers. Raw, unadul-
terated, fear. One member admits to being so overcome
with the threat of exposure, and the corresponding shame
that could entail, that he was physically sick. While much
has been made over the years about the potential physical
harm that technology can subject our bodies to – from re-
petitive strain injury and microwave radiation to poor eye-
sight and short attention spans amongst the social me-
dia addicted – this must be one of the first admissions in
the mainstream press that the Internet can literally make
you ill. Of course, it is easy to take the moral high ground
and say “If you don’t want the time – don’t do the crime”
but this ignores the inherent cognitive dissonance that
goes along with all human interaction with technology. We
seem to have lost that thin membrane of ethical and mor-
al judgement that insulates us from making catastroph-
ic decisions normally present in our day to day interac-
tions with colleagues, friends and neighbours. To some,
this is an excellent opportunity for exploitation, riches and
the furthering of certain ideologies. To others, though, ac-
cess via this dark portal will be costly indeed.

Unfortunately, the problem extends well past singu-
lar examples such as Ashley Madison, porn sites, drug
deals on Tor, or whatever particular moral poison takes
your fancy. The technology sector, like many other pro-
fessional and business sectors, has swallowed whole
the concept of situation ethics, where rules are based on
context rather than absolutes. This is incredibly ironic,
as we all know that the current generation of comput-
ers have a brutal form of logic that is simplistic in the

extreme – 1 or 0, on or off, true or false. For all the ab-
straction, the layers of programming and intelligence, it
all boils down to binary. And here lies the quandary –
do we live in a universe of absolutes, good versus evil,
ying versus yang, or is there a grey area in between? No
matter whether the underlying architecture of technology
is a true representation of moral value or not, the cor-
responding integration of hyper-efficiency into a society
where inefficiency is de rigour spells trouble. All humans
have feet of clay. Like a man walking along a cliff edge,
each step is one based on faith that the ground will sup-
port his weight, yet the fool-hardy race along as if step-
ping on reinforced concrete.

Somewhere along the way, our institutions, our nations,

our society, have turned a blind eye to the revolution that
is taking place beneath our feet. We are now so much
more accountable to the system, to the established order,
that the slow constriction of our liberties and choices –
like the frog being boiled in water – has become a regular
part of life to be met with the shrug of our shoulders and
a pragmatic acceptance that all will end well. In America,
while there still resides a strong movement that is fiercely
independent and self sufficient, the cashless, computer
based society has virtually consumed society, unlike the
rest of the world, where electricity and clean water could
be considered a luxury. 85% of Americans are now online,
and it is becoming clearer that those who are not digitally
engaged will be at a major loss. Irrespective of our online
status, the current mantra of efficiency, connectedness
and online presence has taken root in management cul-
ture to such an extent that anyone suggesting a consid-
ered approach rather than one based on hype and stake-
holder value is regarded as a heretic.

ROB SOMERVILLE

www.bsdmag.org 47

Even as far back as the 1960’s, the alarm bells were ring-
ing in popular culture as to the ramifications of computing.
The Moody Blues, with the track “In The Beginning”, warned
us of the potential risk of becoming magnetic ink. The cor-
responding loss of identity, the tools of dehumanisation
and calculated or perceived value under measurement
(metrics) always presents a grave danger when handed
to those distanced from society and real life. The psycho-
logical pathologies which drive dictatorships and fascists

naturally cause
them to embrace the leverage of

control. And so there may
be a silver lining to this

incident that has
morally shaken ma-
ny. First of all, the

hacking group may
well have done the IT

community a huge favour
by exposing the Achilles heel of

data security in terms that the general populace can relate
to. In the 1800’s, the Luddites were a force to be reckoned
with – the British army faced down more rebellions over
the mechanical loom than Napoleon’s troops on mainland
Europe. Hopefully, society will begin to address the cog-
nitive dissonance that runs throughout our culture when
it comes to technology, it’s innovation, management and
application for the greater good. Secondly, along with the
other high profile attacks that have plagued the US re-
cently, maybe the government and law enforcement will
start taking the issue a bit more seriously. Assuming that
50% of the compromised records belong to US citizens,
it is estimated that over 60,000 government employees
will have been targeted, the same number again with
top security clearance. This is a major security risk that
makes the likes of the Philby and Maclean or the Pro-
fumo affairs pale into minor significance.

While the bean counters, HR drones and PR spin-
meisters still have executive privilege, a comfort-
able window seat and the willing ear of corporate
leadership, while engineers and technologists are
seconded to dusty basements, out of sight, this
trend will continue. Data and information security
may not be at the top of the agenda quite yet,
but I will be very surprised if there are not more
than a few CEOs and CTOs who, after this inci-
dent, will be having a private and corporate re-
think about the serious matters of risk, strategy
and security.

ABOUT THE AUTHOR

Rob Somerville has been passionate about technology since
his early teens. A keen advocate of open systems since the mid-
eighties, he has worked in many corporate sectors including finance,
automotive, airlines, government and media in a variety of roles
from technical support, system administrator, developer, systems
integrator and IT manager. He has moved on from CP/M and nixie
tubes but keeps a soldering iron handy just in case.

REVIEWS

08/201548

When auditing Red Hat/UNIX/Linux systems,
Retina will attempt to remotely access the tar-
get system using Secure Shell (SSH). The cre-

dential, used by Retina, must be allowed to login using
SSH. The SSH server can use v1 or v2 of the SSH proto-
col. The authentication method must be Password based.

When configuring Retina to audit UNIX/Linux systems,
a credential that is allowed to login using SSH should be
added to the Retina credential manager. Usually, the cre-
dential is added as \, the typical format for win32 or win64
systems. For the UNIX/Linux systems, you do not need to
add the domain part of the credential. For example:

Win64 Credential: MYDOMAIN\Administrator

Win32 Credential: MYDOMAIN\Administrator

UNIX credential: Administrator

Linux credential: root

When creating a scan job in Retina, you can select
the stored credentials which allow Retina to have both
a win32 credential or win64 and a UNIX/Linux creden-
tial. When the target system is scanned, the stored cre-

dentials will be tried until one is found to allow access or
none are allowed.

There are some configuration settings for the SSHD dae-
mon that must be considered. Retina will only perform Pass-
word Authentication. This means the Password/Authentica-
tion option in the SSHD config file must be set to Yes.

To use the root account for access, you must also allow
this in the SSHD configuration as well by setting Permit-
RootLogin to Yes. The Protocol can be 1 or 2 or both.

The hosts.allow and host.deny files should be config-
ured to control access from remote systems.

eEye also recommends disabling ‘Reverse DNS Lookup’
configuration within SSH. This setting in SSH (on the tar-
get) can slow down Retina’s scanning performance. By dis-
abling ‘Reverse DNS Lookup’ on the SSH target, the target
will not perform a DNS lookup after each SSH connection.

Most major UNIX/Linux vendors use a version of
OpenSSH. The above referenced settings are typical of
OpenSSH implementations. Specific versions of UNIX
could vary to some degree. The important idea is that Reti-
na doesn’t know or have any preference to one implemen-
tation or the other. You do not need root access. It is gen-

How to Use eEye Retina
On Red Hat/UNIX/Linux
Systems
REBECCA WYNN

You can use eEye Retina on Red Hat/UNIX/Linux systems.
In the article below, you can find some details how to make it.

What you will learn… What you should know…

•	 How to use eEye Retina against Red Hat/UNIX/Linux systems •	 Basic understanding of UNIX or Linux operating systems, SSH/
shell commands, and permissions.

www.bsdmag.org 49

erally a bad practice to allow root access from anywhere
except the console itself. Allowing root to connect using
any means remotely is not recommended. When scanning
remote systems, Retina will attempt to find identifiers for
known vulnerabilities through several methods. One com-
mon method is to review the package database to deter-
mine what patches could be installed. Depending on the
UNIX/Linux system itself, the package database may not
allow a non-privileged user access to it. If this occurs, you
may need to add the user that will be used within Retina to
some specific groups. SUDO support is available.

How to Enable SUDO Support for Retina
In order to provide for more flexibility for scanning of Unix/
Linux targets, Retina additionally supports environments that
implement the SUDO security framework. SUDO support in
Retina is disabled by default and is configured through regis-
try entries. To Enable SUDO perform the following:

1.) Use the Windows Registry Editor (Start > Run > re-
gedit) to view the following registry key, and add the
following value to this key, or modify it if the value al-
ready exists:

For 32-bit systems: HKEY _ LOCAL _ MACHINE\SOFTWARE\

eEye\Retina\5.0\Settings\AuditRemote.

For 64-bit systems: HKEY _ LOCAL _ MACHINE\SOFTWARE\

Wow6432Node\eEye\Retina\5.0\Settings\AuditRemote

Value: EnableSUDO
Value Type: REG_DWORD
Value Data: 0x0 (Hex) – Default (SUDO off)

2.) Set the EnableSUDO data to 1

Value: EnableSUDO
Value Type: REG_DWORD Value
Data: 0x1 (Hex) – SUDO on

Note
When scanning a UNIX system, you will want to look for
this specific audit in the results to indicate if the SSH con-
nection was NOT established during the scan. If you find
this audit in the results, stop and investigate why SSH was
not established and then re-scan. If you use any Audit
Group other than All Audits, please ensure that this audit
is included in the Audit Group before scanning.

Audit ID and Name: 2264 – SSH Local Access not available.
Additional Reference: http://www.eeye.com/Files/Com-

munity/Retina-Best-Practices.pdf.

ABOUT THE AUTHOR

Rebecca Wynn, DHL, MBA, CCISO, CISSP, CRISC, LPT, CWNA, CIWSA,
CIWSP, MCP, MCTS SQL Server 2005, GSEC, CCSK, ITILv3, NSA/CNSS
NSTISSI 4011-4016 is a Lead/ Senior Principal Security Engineer with
NCI Information Systems, Inc. She has been on the Editorial Advisory
Board for Hakin9 Practical Protection IT Security Magazine since
2008 and is a Privacy by Design Ambassador under Ann Cavoukian,
Ph.D the Information & Privacy Commissioner for Ontario, Canada
(www.privacybydesign.ca).

Quiz Answers

1.	 �Open Web Application Secu-
rity Project

2.	 Do not fragment
3.	 No - asynchronous
4.	 Yes – mainly used for direct

connections
5.	 No
6.	 2007
7.	 Yes
8.	 01110111
9.	 Bastard Operator from Hell
10.	 Yes – Stagefright
11.	 Henry
12.	 No – $92,793
13.	 Hans Reiser

14.	 33 metres

15.	 MP3
16.	 Yes
17.	 IBM System/360
18.	 First in First Out
19.	 Token ring
20.	 Internet Engineering Task

Force
21.	 Canada
22.	 William Shockley
23.	 Colossus
24.	 August 1981
25.	 PDP-11

http://www.eeye.com/Files/Community/Retina-Best-Practices.pdf
http://www.eeye.com/Files/Community/Retina-Best-Practices.pdf
http://www.privacybydesign.ca

	Cover
	Dear Readers
	CONTENTS
	NEWS
	The BSD magazine summer quiz
	Using the FreeBSD’s Procstat API in a Web Context
	FreeNAS vs TrueNAS
	UNIX Basics
	UNIX – How To Start Terminal?
	How About Some Raspberry Pi?
	With the latest successful hacking attempt on the edgy Ashley Madison dating site, what are the ethical and security implications as a new thinking infiltrates the deeper and darker sides of human nature?
	How to Use eEye Retina On Red Hat/UNIX/Linux Systems

	http://www:
	iXsystems:
	com/mini: Off

	ixsystems:
	com/ 6: Off

	bsdcertification 24:
	bsdcertification 25:
	bsdcertification 26:

