

High Performance,
High Density Servers for

Data Center, Virtualization, & HPC

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

http://www.iXsystems.com/e5

Key FeatureS

iXr-1204+10G

Dual Intel® Xeon® Processors e5-2600 Family•	
Intel® C600 series chipset•	
Intel® X540 Dual-Port 10 Gigabit ethernet Controllers•	
up to 16 Cores and 32 process threads•	
up to 768GB main memory•	
Four SaS/Sata drive bays•	
Onboard Sata raID 0, 1, 5, and 10•	
700W high-efficiency redundant power supply with •	
FC and PMBus (80%+ Gold Certified)

iXr-22X4IB

Dual Intel® Xeon® Processors e5-2600 Family per node•	
Intel® C600 series chipset•	
Four server nodes in 2u of rack space•	
up to 256GB main memory per server node•	
One Mellanox® ConnectX QDr 40Gbp/s Infiniband w/QSFP •	
Connector per node
12 SaS/Sata drive bays, 3 per node•	
Hardware raID via LSI2108 controller•	
Shared 1620W redundant high-efficiency Platinum •	
level (91%+) power supplies

MODeL: iXr-22X4IB

768GB
of raM in 1u

e5-2600
High-Density iXsystems Servers powered by the
Intel® Xeon® Processor e5-2600 Family and Intel®
C600 series chipset can pack up to 768GB of raM
into 1u of rack space or up to 8 processors - with
up to 128 threads - in 2u.

On-board 10 Gigabit ethernet and Infiniband for Greater
throughput in less rack Space.

Servers from iXsystems based on the Intel® Xeon® Processor E5-2600
Family feature high-throughput connections on the motherboard, saving
critical expansion space. the Intel® C600 Series chipset supports up to
384GB of raM per processor, allowing performance in a single server to
reach new heights. this ensures that you’re not paying for more than you
need to achieve the performance you want.

The iXR-1204 +10G features dual onboard 10GigE + dual onboard
1GigE network controllers, up to 768GB of raM and dual Intel® Xeon®
Processors e5-2600 Family, freeing up critical expansion card space for
application-specific hardware. the uncompromised performance and
flexibility of the iXr-1204 +10G makes it suitable for clustering, high-traffic
webservers, virtualization, and cloud computing applications - anywhere
you need the most resources available.

For even greater performance density, the iXR-22X4IB squeezes four
server nodes into two units of rack space, each with dual Intel® Xeon®
Processors e5-2600 Family, up to 256GB of raM, and an on-board Mellanox®
ConnectX QDr 40Gbp/s Infiniband w/QSFP Connector. the iXr-22X4IB is
perfect for high-powered computing, virtualization, or business intelligence
applications that require the computing power of the Intel® Xeon® Processor
e5-2600 Family and the high throughput of Infiniband.

IXr-1204+10G: 10GbE On-Board

IXr-22X4IB

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the u.S. and other countries.

http://www.ixsystems.com/

High Performance,
High Density Servers for

Data Center, Virtualization, & HPC

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

http://www.iXsystems.com/e5

Key FeatureS

iXr-1204+10G

Dual Intel® Xeon® Processors e5-2600 Family•	
Intel® C600 series chipset•	
Intel® X540 Dual-Port 10 Gigabit ethernet Controllers•	
up to 16 Cores and 32 process threads•	
up to 768GB main memory•	
Four SaS/Sata drive bays•	
Onboard Sata raID 0, 1, 5, and 10•	
700W high-efficiency redundant power supply with •	
FC and PMBus (80%+ Gold Certified)

iXr-22X4IB

Dual Intel® Xeon® Processors e5-2600 Family per node•	
Intel® C600 series chipset•	
Four server nodes in 2u of rack space•	
up to 256GB main memory per server node•	
One Mellanox® ConnectX QDr 40Gbp/s Infiniband w/QSFP •	
Connector per node
12 SaS/Sata drive bays, 3 per node•	
Hardware raID via LSI2108 controller•	
Shared 1620W redundant high-efficiency Platinum •	
level (91%+) power supplies

MODeL: iXr-22X4IB

768GB
of raM in 1u

e5-2600
High-Density iXsystems Servers powered by the
Intel® Xeon® Processor e5-2600 Family and Intel®
C600 series chipset can pack up to 768GB of raM
into 1u of rack space or up to 8 processors - with
up to 128 threads - in 2u.

On-board 10 Gigabit ethernet and Infiniband for Greater
throughput in less rack Space.

Servers from iXsystems based on the Intel® Xeon® Processor E5-2600
Family feature high-throughput connections on the motherboard, saving
critical expansion space. the Intel® C600 Series chipset supports up to
384GB of raM per processor, allowing performance in a single server to
reach new heights. this ensures that you’re not paying for more than you
need to achieve the performance you want.

The iXR-1204 +10G features dual onboard 10GigE + dual onboard
1GigE network controllers, up to 768GB of raM and dual Intel® Xeon®
Processors e5-2600 Family, freeing up critical expansion card space for
application-specific hardware. the uncompromised performance and
flexibility of the iXr-1204 +10G makes it suitable for clustering, high-traffic
webservers, virtualization, and cloud computing applications - anywhere
you need the most resources available.

For even greater performance density, the iXR-22X4IB squeezes four
server nodes into two units of rack space, each with dual Intel® Xeon®
Processors e5-2600 Family, up to 256GB of raM, and an on-board Mellanox®
ConnectX QDr 40Gbp/s Infiniband w/QSFP Connector. the iXr-22X4IB is
perfect for high-powered computing, virtualization, or business intelligence
applications that require the computing power of the Intel® Xeon® Processor
e5-2600 Family and the high throughput of Infiniband.

IXr-1204+10G: 10GbE On-Board

IXr-22X4IB

Call iXsystems toll free or visit our website today! 1-855-GREP-4-IX | www.iXsystems.com

Intel, the Intel logo, and Xeon Inside are trademarks or registered trademarks of Intel Corporation in the u.S. and other countries.

http://www.ixsystems.com/

4 12/2013

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Contributing:
Michael Shirk, Andrey Vedikhin, Petr Topiarz,

Charles Rapenne, Anton Borisov, Jeroen van Nieuwenhuizen, José B. Alós,
Luke Marsden, Salih Khan,
Arkadiusz Majewski, BEng

Top Betatesters & Proofreaders:
Annie Zhang, Denise Ebery, Eric Geissinger, Luca Ferrari, Imad

Soltani, Olaoluwa Omokanwaye, Radjis Mahangoe, Mani Kanth, Ben
Milman, Mark VonFange

Special Thanks:
Annie Zhang
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak

pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Publisher:
Hakin9 Media SK

02-676 Warsaw, Poland
Postepu 17D

Poland
worldwide publishing
editors@bsdmag.org

www.bsdmag.org

Hakin9 Media SK is looking for partners from all over the world. If you
are interested in cooperation with us, please contact us via e-mail:

editors@bsdmag.org.

All trademarks presented in the magazine were used only for
informative purposes. All rights to trademarks presented in the

magazine are reserved by the companies which own them.

Dear BSD Readers,

I hope that this year was fruitful and prosperous for you and it is my hope
that the next one will be even better. Before the year ends, I would

like to thank all the great people who made the 2013 year beautiful for
me, BSD Team and BSD magazine.

We, the BSD team, would like to wish you continuous prosperity,
development and success as well as good health and happiness to you
and your loved ones.

Let this Christmas be a good time to think about our past and future
projects to make them even better in the forthcoming year.

Spread the happiness all around you!
Merry Christmas and A Happy New Year,
Ewa & BSD Team

mailto:mailto:editors%40bsdmag.org?subject=

www.bsdmag.org 5

Contents

FreeBSD OS
Configuring a Highly Available Service
on FreeBSD – part 2: CARP and devd
Jeroen van Nieuwenhuizen

In the first part of this series, we learned how to make
high availability (HA) storage on FreeBSD using HAST.
We learned how to control HAST and how to recover
from failures. However, all those actions were still manual
actions. In this second part of the series, Jeroen will teach
how two basic building blocks, CARP and devd, work and
how we can use them in the final part of our series to
automate the failover of our NFS server.

FreeBSD Programming Primer – Part 11
Rob Somerville

In the penultimate part of our series on programming, Rob
will look at using the Netbeans Integrated Development
Environment to debug and edit our CMS.

Unix
Unix Basics – for Security Professionals
Ramkumar Ramadevu

Unix is the widely known multi-user and multitasking
operating system that exists in many variants (e.g. Solaris,
Linux, UX, AIX ...etc), and for serves mission critical server
environments around the world. Ramkumar provides the
basics of Unix Operating systems while discussing how
UNIX addresses the above security challenges.

Introduction to Unix Kernel
Mark Sitkowski

It is usually a source of wonderment to PC users that the
whole of the Unix operating system is in one executable.
Instead of a hodge-podge of DLL’s, drivers, and various
occasionally-cooperating executables, everything is done
by the Unix kernel. When Unix was first introduced, the
operating system was described as having a ‘shell’, or user
interface, which surrounded a ‘kernel’ which interpreted
the commands passed to it from the shell.

Let’s Talk
OpenBSD 5.4 as a Transparent HTTP/
HTTPS Proxy
Wesley MOUEDINE ASSABY

Wesley in his article will teach you how to configure Relayd
for URL Blocking with https inspection and how to use and
understand Packet Filter.

GhostBSD: A User-friendly, Lightweight
BSD Alternative
Adrian J. Panunzio

GhostBSD is an open source desktop operating system
based on FreeBSD which aims for a secure, user-friendly
experience out of the box. GhostBSD comes with most
common software choices already configured, giving the
user a solid BSD installation out of the box. Adrian will tell
you why he chose FreeBSD OS.

Security
How Secure Can Secure Shell (SSH) Be?
Arkadiusz Majewski

To begin, let’s concentrate on the One Time Password
(OTP). We are going to achieve our already secure SSH
in conjunction with OTP for remote system connections.
At first, in algorithmic meaning, OTP is a character string
which should never repeat. Arkadiusz, in his article,
demonstrates configurations as well as tricks that make
using the protocol more secure.

Column
OPINION: With the UK government
in collusion with the major search
engines to censor 100,000 search
terms to prevent child abuse, is the UK
joining the ranks of the technological
fascists?
Rob Somerville

06

36

44

34

10

14

20

30

12/20136

FreeBSD OS

CARP stands for common address redundan-
cy protocol and makes it possible to share an
IP (IPv4 and/or IPv6) address between multiple

hosts in so called ‘redundancy groups’. The IP that is
shared between the hosts in the redundancy group re-
sides on the master host for that group. In case the mas-
ter goes down, the other members (backups) in the re-
dundancy group will elect a new master. This master will
then ’take’ the shared IP.

That, of course, sounds nice, but how does that help
us? Well, to implement our failover NFS service, we need
an IP address for this service to reside on the host that
will service the NFS requests. The host that will service
the NFS request would be the primary HAST node. Also,

in case of a HAST failover, we would like the service IP to
switch to the new primary HAST node. So, if we are able
to keep the CARP master state and the HAST primary
state in sync with each other, we would always have the
shared IP, which we can use for the NFS service, on the
host that is the primary HAST node.

How to configure CARP
CARP can be configured by using the ifconfig command
as described in listing 1. Note that in our example, setup
nfs-01 will have the IP 192.168.254.1 and nfs-02 will have
the IP 192.168.254.2. Both with a /24 netmask.

The first command for nfs-01 in Listing 1 creates a carp
interface called carp0 on that host. The second command

Configuring a Highly
Available Service on
FreeBSD
– Part 2: CARP and devd

In the first part of this series, we learned how to make high
availability (HA) storage on FreeBSD using HAST. We learned
how to control HAST and how to recover from failures.
However, all those actions were still manual actions. In
this second part of the series, we will learn how two basic
building blocks, CARP and devd, work and how we can use
them in the final part of our series to automate the failover
of our NFS server.

What you will learn…
• 	 How to configure CARP on FreeBSD
• 	 How to use devd to take action on kernel events

What you should know…
• 	 How to login to FreeBSD
• 	 How to edit files on FreeBSD
• 	 Basic understanding of network configuration
• 	 The nfs-01 and nfs-02 machines from part 1

www.bsdmag.org 7

Configuring a Highly Available Service on FreeBSD

configures this newly created carp0 interface with the cor-
rect parameters. The first parameter vhid is the virtual
host ID, which uniquely identifies the redundancy group
on the network and therefore should be the same on all
hosts in the same redundancy group. In our example, we
use a vhid of 1. The second parameter pass is used to au-
thenticate the carp advertisements and is in our case set
to bsdmag. This parameter should also be the same on all
hosts in the same redundancy groups. Although the pass
parameter is optional, it is wise to set it, otherwise ma-
chines not part of the redundancy group can easily send
out bogus carp traffic to disrupt our redundancy group.
The third parameter is advbase, which specifies the base
advertisement interval in seconds. These advertisements
are needed to determine if the master is still up and if
not to elect a new master. The fourth parameter advskew
is closely related to the advbase parameter; when set, it
adds a small amount of time to advbase so that adver-
tisements are sent out a little less frequently than speci-
fied by advbase. This fourth parameter differs in our ex-
ample for nfs-01 and nfs-02. It is higher for nfs-02 so that
nfs-01 will become the master if both hosts come online
at the same time, because nfs-01 will send out its adver-
tisements more frequently. The last parameter specifies
the shared IP to use and the network it resides on. In our
case, the shared IP is 192.168.254.100 with a /24 net-
mask. This IP will become active on the master on the
interface that is in the same network as specified for the
carp0 interface. If, for example, nfs-01 is the master, the
shared IP 192.168.254.100 will become available on the
same interface as 192.168.254.1 as that interface is in the
same network.

Listing 1. configuring CARP on our hosts

nfs-01# ifconfig create carp0

nfs-01# ifconfig carp0 vhid 1 pass bsdmag advbase 1

advskew 10 192.168.254.100/24

nfs-01# ifconfig carp0

 carp0: flags=49<UP,RUNNING> metric 0 mtu 1500

 inet 192.168.254.1 netmask 0xffffff00

 carp: MASTER vhid 1 advbase 1 advskew 20

nfs-02# ifconfig create carp0

nfs-02# ifconfig carp0 vhid 1 pass bsdmag advbase 1

advskew 20 192.168.254.100/24

nfs-02# ifconfig carp0

 carp0: flags=49<UP,RUNNING> metric 0 mtu 1500

 inet 192.168.254.2 netmask 0xffffff00

 carp: BACKUP vhid 1 advbase 1 advskew 10

The third command not only shows us the configura-
tion of our carp0 interface, but also shows whether the
interface is in the master or in the backup state in the line
starting with carp: Note that the password used is not vis-
ible. The configuration of the carp0 interface on the nfs-
02 is analog to the configuration of the carp0 interface on
the nfs-01 with the earlier mentioned difference of the ad-
vskew parameter.

Making CARP reboot proof
Now that we know how to configure CARP, we want to
make sure that our configuration becomes reboot proof.
This can be done by adding a few lines to /etc/rc.conf.
In Listing 2 you can find the lines we would need to add
to /etc/rc.conf on the nfs-01 server. The first line makes
sure our carp0 device will be created on boot. The second
line configures the carp0 interface and is identical to the
parameters we passed to the ifconfig command for carp0
earlier. It is left as an exercise for the reader to find the
correct configuration for the nfs-02 server.

Listing 2. Making the CARP configuration reboot proof on nfs-01

cloned_interfaces=“carp0”

ifconfig_carp0=”vhid 1 pass bsdmag advbase 1 advskew 10

192.168.254.100/24”

Testing CARP
After we have made our CARP configuration reboot
proof, it is good to perform some basic tests to see
whether the failover of the shared IP works as expect-
ed. First we will force a switch of the shared IP from our
current master (nfs-01) to nfs-02. When that is complete
and nfs-02 has indeed become the new master we will
force the master back to the nfs-01. In addition to testing,
the commands in listing 3 that describe these actions are
also useful in the case when a manual switch has to be
forced. Please be especially aware of the host you have
to execute the commands on to trigger the failover. An
important note to make is that in case you are building
this setup on a virtual platform, broadcast traffic should
be allowed for the virtual machines or CARP won’t work.
Allowing broadcast traffic is not the default setting for all
virtualisation solutions.

What is DEVD?
Devd is the device state change daemon and it is a sys-
tem daemon that runs in the background and hooks in-
to the devctl device driver. When a change occurs in the
device configuration tree, this device driver will pass this

12/20138

FreeBSD OS

information to devd. Devd will parse this message and will
look into its action list for an action to execute. This way
devd provides a way to have userland programs run when
certain kernel events happen. The default configuration
file for devd is /etc/devd.conf. By default this file includes
the options to also scan the /etc/devd and /usr/local/
etc/devd directories for devd configuration files.

Listing 3. Testing the CARP failover

Moving the master from nfs-01 to nfs-02 (commands

executed on nfs-01)

nfs-01# ifconfig carp0 down

nfs-01# ifconfig carp0 up

Checking the status on both hosts (commands executed

on nfs-01 and nfs-02)

nfs-01# ifconfig carp0

nfs-02# ifconfig carp0

Moving the master from nfs-02 to nfs-01 (commands

executed on nfs-02)

nfs-02# ifconfig carp0 down

nfs-02# ifconfig carp0 up

And again checking the status on both hosts (commands

executed on nfs-01 and nfs-02)

nfs-01# ifconfig carp0

nfs-02# ifconfig carp0

Devd syntax
To explain the syntax of devd we will make a slight side
step by looking at the devd configuration shown in Listing
4. What this configuration does is log a message to syslog
when a USB device is attached. Let’s inspect this configu-
ration a little bit further. The first line notify 0 indicates that
an action should be taken when the kernel sends an event
notification to the user land. The priority of this rule is 0.
This priority is used to decide which action to take when
more than one rule matches. If more than one rule match-
es the rule with the lowest number is executed. To restrict
the cases in which our action will be executed we use the
match clauses on line 2 till 4 to restrict it. Line 2 matches
the event message against the system it is coming from,
in this case the USB system. So all events that are not
from the USB system will not trigger the action. The next
line restricts the action to a subsystem of the USB sys-
tem. In this case it is the interface subsystem, so the event
should come from a USB interface to trigger our action.
The last match rule of Listing 4 restricts the type of event,

in this case the attachment of a device. Last but not least,
we have line 5, which specifies the action to execute. In
this case we log a message to syslog to notify us that a
USB device has been attached, but an action line can call
every command you like. More information about all the
systems, subsystems, types and action you can handle
with devd can be found in the devd.conf manual page.

Listing 4. A devd configuration for USB events

notify 0 {

 match “system” “USB” ;

 match “subsystem” “INTERFACE” ;

 match “type” “ATTACH” ;

 action “logger USB device attached” ;

} ;

Listing 5. Configuring devd for CARP

notify 30 {

 match “system” “IFNET” ;

 match “subsystem” “carp*” ;

 match “type” “LINK_UP” ;

 action “logger -t bsdmag $subsystem device is

UP” ;

} ;

notify 30 {

 match “system” “IFNET” ;

 match “subsystem” “carp*” ;

 match “type” “LINK_DOWN” ;

 action “logger -t bsdmag $subsystem device is

DOWN” ;

} ;

Configuring devd for CARP
Now that we have a basic grasp of how to use devd to
take actions on kernel events we can start to configure
devd to handle events originating from our CARP interfac-
es. In listing 5 we see a configuration that will log to sys-
log when we receive a LINK_DOWN or a LINK_UP event
from our carp0 interface. Because a CARP device is a
network system, the system we have to use in our match
rule is IFNET. Noteworthy is the wildcard match we use
in the subsystem, hence the action will run for an event
on any carp interface that matches the type. To separate
between the link going up and the link going down we cre-
ated 2 statements, one for the LINK_UP and one for the
LINK_DOWN event. Also interesting is the action line we
use. Again, we use logger to log a message to syslog,
but we also use the $subsystem variable available to log

www.bsdmag.org 9

Configuring a Highly Available Service on FreeBSD

Q: How highly available is HAST when a
filesystem check can take ages on a large
filesystem?
During the filesystem check HAST is of course unavail-
able. But you really should do this check, to be sure your
filesystem is in a consistent state. Otherwise you might
run into problems later that cause much more downtime
than the filesystem check would take. To reduce the time
spent filesystem checking, it is also good practice to al-
ways use a journaling filesystem on your HAST devices.
One important point to keep in mind is also that highly
available does not mean always available, so yes, in case
of a node failure you probably will have some downtime,
but significantly less than when you would need to rebuild
your machine and restore from backup. Also your data-
loss will probably be significantly less.

Q: But what if I do need my filesystem to always
be available?
In that case you should probably look into gluster (RedHat
Linux), LustreFS or CEPH, which are clustered/distributed
filesystems but all have a focus on Linux unfortunately.

Jeroen van Nieuwenhuizen
Jeroen van Nieuwenhuizen works as a unix consultant for Snow. Be-
sides playing with FreeBSD, his free time activities include cycling,
chess and ice skating.

the exact subsystem that the event came from, so in the
log we will see which interface generated the event. By
putting the configuration from Listing 5 in /etc/devd/hast.
conf and by restarting devd with service devd restart we
make sure it will be used by devd.

Testing our devd configuration
Testing of our devd configuration is more or less analog
to the initial testing of our CARP configuration, so we can
use the commands from listing 3 again. However, to see
if our devd recipe for CARP worked, we should not only
check the status of our carp0 interface with ifconfig carp0,
but also check /var/log/messages to see if the log mes-
sages we configured in listing 5 are indeed written to the
syslog correctly, so we are sure devd is configured cor-
rectly. Take good note of when a CARP interface sends
the LINK_UP type and when it sends the LINK_DOWN

type of event. You will see that the CARP interface sends
the LINK_UP message via devd only when it becomes
the master and the LINK_DOWN message when it goes
down and when it becomes the backup.

Conclusion
In this second part of the series we introduced CARP and
devd. We learned how to configure CARP, and how to
make an IP highly available with it. We also learned what
devd is and how to take actions on kernel events by us-
ing devd. Especially, we learned how to run a script from
devd in case of a CARP failover. Now that we know how
to configure HAST, CARP and devd we can put all these
building blocks together in the final part of our series in
which we will create the highly available NFS server and
the failover script to call from devd.

Questions received from readers

TM

12/201310

FreeBSD OS

Unfortunately, the Internet gremlins have got me
at the moment so this how-to is going to be very
short. My local telco is currently rolling out fibre in

the area, and my ADSL internet connection is very unreli-
able, but hopefully I will be able to wrap up the program-
ming primer in part 12 with a bumper edition.

While debugging at the command line using echo state-
ments or commenting out code is possible, a more fre-
quent scenario is that our project will be residing on a re-
mote server and we will need to see the actual processes
in action. Often developers will have a local copy of the
LAMP stack on their PC or laptop, so that they can de-
bug locally. However, what happens when our develop-
ment environment is on a laptop and the code is on a re-
mote server? A frequent approach is to use an Integrated
Development Environment (IDE) with a built in file trans-
fer utility. Coupled with Xdebug, which supports PHP, we
can download our remote code and debug (step through)
each line, examine variables etc. To do this, we will need
to install Xdebug on our server and install the IDE of our
choice on an available local PC. This can be FreeBSD,
Windows or Linux, but in my case I was using an Ubuntu
desktop. The IDE installation will vary from environment to
environment, full details can be found at https://netbeans.
org. The IP address of of my desktop PC for this exercise
was 192.168.0.123.

Installing Xdebug
Rather than using the FreeBSD provided software, I
downloaded the latest version from http://xdebug.org.
The reason for this is that in the past I have had prob-

lems getting the standard packaged version of Xdebug
working with certain distro’s, where as the latest Xdebug

FreeBSD Programming
Primer – Part 11
In the penultimate part of our series on programming, we
will look at using the Netbeans Integrated Development
Environment to debug and edit our CMS.

What you will learn…
• 	 How to configure a development environment and write HTML,

CSS, PHP and SQL code

What you should know…
• 	 BSD and general PC administration skills

Listing 1. Install Xdebug

tar -xvzf xdebug-2.2.3.tgz

cd xdebug-2.2.3

phpize

./configure –enable-xdebug

make

cd modules

cp xdebug.so /usr/local/lib/php/20100525/

touch /var/log/xdebug.log

chmod 666 /var/log/xdebug.log

touch /user/local/etc/php/xdebug.ini

Listing 2. /user/local/etc/php/xdebug.ini

zend_extension=/usr/local/lib/php/20100525/xdebug.so

xdebug.remote_enable=1

xdebug.remote_host=”192.168.0.123”

xdebug.remote_port=9000

xdebug.remote_handler=”dbgp”

xdebug.remote_mode=req

xdebug.profiler_enable = 1

xdebug.remote_log=/var/log/xdebug.log

Listing 3. Restarting Apache

/usr/local/etc/rc.d/apache22 stop

/usr/local/etc/rc.d/apache22 start

https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
https://netbeans.org/
http://xdebug.org/
http://xdebug.org/
http://xdebug.org/
http://xdebug.org/
http://xdebug.org/

www.bsdmag.org 11

FreeBSD Programming Primer – Part 11

and latest Netbeans IDE always seem to work OK togeth-
er. Once you have downloaded the latest version of the
tarball (Currently xdebug-2.2.3.tgz) into your home direc-
tory, on the remote server (192.168.0.118) as root, per-
form the following (Listing 1).

Add the following to /user/local/etc/php/xdebug.ini
(Listing 2).

Replace 192.168.0.123 with the IP address of your cli-
ent machine.

Restart Apache (Listing 3).
If we now login as admin and visit our PHPinfo page at

http:/192.168.0.118/phpinfo.php, we should see that Xde-

Figure 1. PHP Xdebug installed

Figure 2. Create a new project with PHP application on remote server
Figure 5. Create a new SFTP connection (SSH must be running on Port
22 of your server)

Figure 3. Give the project a name

Figure 4. Create a new remote connection by clicking on Manage

bug is installed and running (Figure 1). If you have not al-
ready done so, download and install Netbeans on a local PC
of your choice. You will need a working Java installation and
Firefox installed for this to work.

http:/192.168.0.118/phpinfo.php

12/201312

FreeBSD OS

Now follow the Figures (Figure 2 – 10). If all goes to
plan, you should be able to step through your code by
pressing F7, and interrogate variables by hovering over
them e.g. $request. While debugging, the breakpoint line
should change colour from pink to green. If it does not,
there is some mis-communication between Netbeans and
the server. See xdebug.log for further details.

Rob Somerville
Rob Somerville has been passionate about technology since his early teens.
A keen advocate of open systems since the mid-eighties, he has worked in
many corporate sectors including finance, automotive, airlines, government
and media in a variety of roles from technical support, system administrator,
developer, systems integrator and IT manager. He has moved on from CP/M
and nixie tubes but keeps a soldering iron handy just in case.

Figure 6. Testing the connection

Figure 9. Download the source tree – disable Adminer and sqlbuddy

Figure 8. The final settings of the remote project. Replace with your
server IP address as required

Figure 7. A successful connection

Figure 10. Load Index.php click on line 52 and start the debug session
by pressing Ctrl F5

Useful links
• 	 Xdebug: http://xdebug.org
• 	 Netbeans: http://php.net/manual

http://xdebug.org
http://php.net/manual

12/201314

Unix

Being a multi-user system, Unix has the responsibil-
ity to provide a secure and reliable environment to
its users. Just like any other multi-user networking

operating system, Unix also has two important Security
Challenges to deal with, and they are:

1. Maintaining UNIX Internal security

Figure 1. Maintaining UNIX Internal security

2. Defending UNIX Server Environment from External
Threats

Figure 2. Defending UNIX Server Environment from External Threats

What can you expect from this article?
This article intends to provide the basics of Unix Operating
systems while discussing how UNIX addresses the above
security challenges. This is not a complete UNIX command
by command tutorial, but rather a bird’s eye view of overall
Unix Operating system functions in simple terms. To begin,
Unix-like operating systems are composed of several core
components that are packaged and function together to
deliver certain services to the Unix end-user. The diagram
below gives you an overall picture of UNIX core compo-
nents and their interconnection with other components.

Unix Basics – for
Security Professionals
Unix is the widely known multi-user and multitasking
operating system that exists in many variants (e.g. Solaris,
Linux, UX, AIX ...etc), and for serving mission critical server
environments around the world.

What you will learn…
• 	 How to provide a secure and reliable environment to the users
• 	 How UNIX addresses the security challenges

What you should know…
• 	 Unix basics
• 	 Unix core components

www.bsdmag.org 15

Unix Basics – for Security Professionals

Kernel
The source code of a Unix system that performs major
operating system functions and also directly interacts with
the server hardware with the help of sub-components like:

• 	 Dev – Contains Device Drivers to control the hardware
• 	 Sys – Handles key Operating system functions like

memory management, process handling and system
calls etc.

User Interface Environment
Users’ interaction with the Unix operating system hap-
pens in several ways as classified below:

Shell Interface: Shell is a programmable command line
interpreter which acts as a primary interface between the
user and the Unix operating system. In the Modern Unix
world there are several types of shell interfaces available,
e.g. BASH, CSH, KSH, etc.

System and User Utilities – These are the tools which are
provided for additional functionality of the Unix operating
system, e.g. disk management tools like format, fdisk, etc.

Development Environment
UNIX provides built-in development tools to recreate the
majority of the operating system from the source code,
e.g. cc, as, ld, make, etc.

Key Functionalities of UNIX Operating systems
Unix Users & Groups
Now it’s time to discuss 6 key functionalities of Unix that
help us understand “How Unix addresses security chal-
lenges” as we discussed earlier in this article. Unix clas-
sifies its users into two categories, the first being super
users who have complete privileges on the entire Unix
operating system and the second being regular us-
ers who have privileges to access their own data and

Figure 3. UNIX core components

12/201316

Unix

resources only. Groups act as containers for users who re-
quire equal privileges on the same set of data and resources.

From the Security point of view, “Unused User accounts”
is one of the areas that we continuously audit and disable if
any unexpected user accounts are found. UNIX maintains
its local user account database in three files: /etc/passwd,
/etc/shadow and /etc/group. When working in an enter-
prise network environment, Unix is used to maintain a cen-
tralized user account database using NIS, NIS+ or LDAP.

Unix Allocates UserID (UID) to every User, and by de-
fault Super user accounts will have the UID of 0. For ex-
ample, UNIX designates some users as system default
users; they will be assigned with the Specific range of
UIDs and normal users with a different range of UIDS. For
example, in the Redhat Linux system default users will get
UIDs < 500 whereas normal users will have a UID > 500.
Here are a few steps to trace out unwanted/unexpected
user accounts.

1. Look in /etc/passwd for new accounts in sorted list by
UID:

sort –nk3 –t: /etc/passwd | less

	 Normal accounts will be there, but look for new, unex-
pected accounts, especially with UID < 500.

2. Also, look for unexpected UID 0 accounts:

egrep ‘:0+:’ /etc/passwd

3. On systems that use multiple authentication methods:

getent passwd | egrep ‘:0+:’

Unix Files, Directory and File Systems
In brief, files are used to store the data (in different for-
mats like ascii format, binary format, etc.), whereas direc-
tories act as containers to group all related files in a single
location, for easy maintenance of data. The File System is
a structure that explains how the information is stored and
retrieved from the Unix system.

Unix users access files for read, write and execute pur-
poses. And Unix gives us the flexibility to assign these per-
missions to the file owners, groups and others individually.

Each file in Unix will have its own access control infor-
mation, called Inode information, along with the actual
data. Inode data (also referred to as file metadata) helps
us to identify file type, file permissions for owner, group
and others, file owner, file group, file size, file modification
date, file modification time, etc. We can see the informa-
tion with the command below:

ls -l unixfile

drwxr-xr-x- 2 unix system 4096 Sep 27 23:38 unixfile

Figure 4. Inode Block Information

In addition to regular access privileges, Unix also pro-
vides two additional ones – SUID and SGID, which allow
users to run executable programs with owner and group
permissions. From the security point of view, it is impor-
tant to audit the system regularly to check if there are un-
expected root owned files that are assigned with these
additional privileges. To find unusual SUID root files, use
the following command:

find / -uid 0 –perm -4000 –print

and also look for files named with dots and spaces (“...”,
the”.. “,”. “, and “ “) used to camouflage files:

find / -name “ “ –print

find / -name “.. “ –print

find / -name “. “ –print

find / -name “ “ –print

Unix Directory Structure
Unix maintains its entire information in a hierarchical tree
form and the base of the tree is called the root (/) direc-
tory. Most Unix variants use this as the home directory of
super user accounts. Unix classifies the files based on
their purpose and places them under different sub-direc-
tories under “/” directory, the most well-known subdirecto-
ries being: /bin (user binaries); /sbin (system binaries);
/etc (customized configuration files); /dev (device files);
/proc (Active process information); /var (system Logs);
/tmp (temporary files); /opt (optional programs); /lib
(system libraries).

www.bsdmag.org

From the security point of view, we need to look into the system logs for suspi-
cious events similar to

• 	 Large number of Authentication failures via sshd, telnetd...etc
• 	 Large number of RPC program logs showing with additional ascii codes
• 	 Large number “Error” logs for – web servers, file servers...etc
• 	 Unexpected application restarts or System Reboots, with truncated or disap-

peared system logs.

Every Unix variant has a security level in its kernel; the higher it is, the more se-
cure the system is. Be aware that having a higher security level might cause per-
formance degradation in the long-term. For example, in Linux, if you change the
attribute of /var/log/auth.log to append mode as given below, then the intruder
getting root privileges can’t delete his root until he exclusively unsets the attribute.
Here is a quick example to set attribute to auth.log:

chattr +a auth.log

Unix Software Management and Patches
Almost all the Unix variants maintain their software components in the form of packag-
es. A package is a collection of files and directories grouped together as per the System
V interface definition. Once a package is developed and released for the installation, if
there is any known potential problem found from the package, then the operating sys-
tem vendor has to develop and release a fix, called a patch, for the problem. Sometimes
patches are also used to provide a new feature or enhancement to a particular software
package. Almost all Unix Variants have their own package and patch manager to per-
form regular package/patch installation, removal and update operations. For example,
Linux variants use dpkg, rpm and yum. Regular patch management is very important
for system security because every UNIX Operating System will have some unknown
built-in security threats that are discovered over time. To run our Unix environment with
the highest level of security, we always have to keep our security patches installed to
up-to-date versions. Most OS variants will have mailing lists and/or other methods of
informing users of important security updates. When installing the packages or patch-
es, one key thing that we should remember is to make sure we are installing the right
package (including version) and make sure none of the installed packages have been
modified by an intruder to trick you to install their own packages. So how do we check
the packages? Simple, just find the checksum for the package/patch, and compare the
result with the original checksum provided with the original patch/package:

#md5sum samba-patch-x.x.x.rpm.bz2

67534a24ca89b76f5ae197ed171bd75e samba-patch-x.x.x.rpm.bz2

One can also check the gpg signature of the program tarball if present:

$ gpg --import samba-pubkey.asc

$ gunzip samba-version.tar.gz

$ gpg --verify samba-release.tar.asc

gpg: Signature made Tue 20 Nov 2007 07:12:04 PM CST using \

 DSA key ID 6568B7EA

gpg: Good signature from “Samba Distribution Verification Key \

 ‹samba-bugs@samba.org›”

mailto:samba-bugs@samba.org

12/201318

Unix

Unix Processes and Services/Daemons
UNIX Process: Any executable program that is running in a
Unix system, and consuming system resources like CPU/
MEM/IO, is called a process. Unix will assign a Unique
process ID (PID) and Process priority to every process
during its initiation and will continue to monitor the pro-
cess using the PID assigned. At any point in time the pro-
cess will stay in any of the following states: running, wait-
ing, sleeping and Zombie/Defunct (i.e. a completed child
process without parent process). The ps command helps
us to find the current active processes:

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

timothy 29217 0.0 0.0 11916 4560 pts/21 S+ 08:15 0:00 pine

root 29505 0.0 0.0 38196 2728 ? Ss Mar07 0:00 sshd: can [priv]

can 29529 0.0 0.0 38332 1904 ? S Mar07 0:00 sshd: can@notty

USER = user owning the process

PID = process ID of the process

%CPU = It is the CPU time used divided by the time the

process has been running.

%MEM = ratio of the process’s resident set size to the

physical memory on the machine

VSZ = virtual memory usage of entire process

RSS = resident set size, the non-swapped physical memory

that a task has used

TTY = controlling tty (terminal)

STAT = multi-character process state

START = starting time or date of the process

TIME = cumulative CPU time

COMMAND = command with all its arguments

For security purposes, if you see any process that is un-
usual or unfamiliar, investigate in more detail using:

lsof –p [pid]

This command shows all files and ports used by the run-
ning process. Unix services: These are the programs
that initiate a set of processes to deliver specific operat-
ing system functionality, for example – print service, net-
work service, back-up service ...etc. If the Services auto-
matically start during the system startup and are running
in the background mode without any user intervention,
then those services are called system Daemons. To ad-
dress security risks, we should be disabling any unused
services that are running on the system and disable any
related network ports. For example, in Linux you can see
all the service information using the command:

#chkconfig –list

Unix Configuration in Network Environment
To configure Unix Systems in an Enterprise Network en-
vironment we have to deal with several components as
described below:

• 	 Functional Network Hardware – Ethernet Cards, Net-
work Links, Network Speed, Network Duplex, etc.

• 	 Functional Network Protocol Configuration – IP Ad-
dresses, Network Routes, Subnet masks, etc.

• 	 Functional Network Service Configuration – Service
Specific Configuration Files, e.g. httpd.conf, smb.
conf, iptables.conf, ftp.conf, sshd.conf, etc.

Sample Commands from Linux:

ifconfig -a to check the current available network in-
terfaces

ethtool -i ethx to check the network link speed and
duplex settings

tcpdump to check the network traffic from the network
interface

netstat -rn to check the network routes available in
the systems

service <servicename> start|stop to stop or start the
network service

You can refer to my article – Linux Networking Trouble-
shooting (http://gurkulindia.com/main/2012/11/redhat-enter-
prise-linux-networking-troubleshooting-quick-reference/) if
you want to know how to use these commands in real time.
For general security, we should also occasionally:

• 	 look for unusual port listeners: # netstat –nap
• 	 get more details about running processes listening on

ports: # lsof –i
• 	 look for unusual ARP entries, mapping IP addresses to

MAC addresses that aren’t correct for the LAN: # arp –a

That’s It. Now you know the overall functioning of Unix,
and if you want expertise in any area, you can directly
jump to that part and fine tune your understanding about
that specific concept.

Ramkumar Ramadevu
Ramkumar Ramadevu, is a well known author at unix-
adminschool.com who regularly writes about enter-
prise UNIX administration articles. Refer to his Unix Ad-
ministration Bookshelf (http://unixadminschool.com/
bookshelf/unixshelf.htm)

http://gurkulindia.com/main/2012/11/redhat-enterprise-linux-networking-troubleshooting-quick-reference/
http://gurkulindia.com/main/2012/11/redhat-enterprise-linux-networking-troubleshooting-quick-reference/
http://unixadminschool.com/bookshelf/unixshelf.htm
http://unixadminschool.com/bookshelf/unixshelf.htm

12/201320

Unix

With the passage of time and the advent of graphi-
cal window systems on Apollo and Sun comput-
ers in 1983, this model became a bit strained at

the edges. However, it still provides a useful mental image
of the system, and window systems can be thought of as
a ‘candy coat’ around the shell. In fact, it isn’t just X-win-
dows, which has a direct path to the kernel, since TCP/IP
also falls into this category.

The following is not intended to be an exhaustive trea-
tise on the inner workings of the Unix kernel, nor is it
specific to any particular brand of Unix. It is essential to
broadly understand certain important functions of the ker-
nel before we can take advantage of some of its features
and improve the way in which it handles our processes.
The Unix kernel possesses the following functions, much
of which is of interest to us, in pursuit of this goal:

System calls
All of the most basic operating system commands are per-
formed directly by the kernel. These include:

• 	 open()

• 	 close()

• 	 dup()

• 	 read()

• 	 write()

• 	 fcntl()

• 	 ioctl()

• 	 fork()

• 	 exec()

• 	 kill()

Since the above commands are executed by the ker-
nel, the ‘C’ compiler doesn’t need to generate any actu-
al machine code to perform the function. It merely plac-
es a ‘hook’ in the executable, which instructs the kernel
where to find the function. Modern third party compilers,
however, are ported to a variety of operating systems,
and will generate machine code for a dummy function,
which itself contains the ‘hook’.

Process scheduling and control
The kernel determines which processes will run, when and
for how long. We will examine this mechanism in detail later.

Networking
That which became networking was originally designed
so that processes could communicate. It is this ability

Introduction to Unix
Kernel
It is usually a source of wonderment to PC users that the
whole of the Unix operating system is in one executable.
Instead of a hodge-podge of DLL’s, drivers, and various
occasionally-cooperating executables, everything is done
by the Unix kernel. When Unix was first introduced, the
operating system was described as having a ‘shell’, or user
interface, which surrounded a ‘kernel’ which interpreted the
commands passed to it from the shell.

What you will learn…
• 	 The Unix kernel functions
• 	 How to improve Unix kernel processes

What you should know…
• 	 Unix basics

12/201322

Unix

to pass information quickly and efficiently from one run-
ning process to another that makes the Unix operating
system uniquely capable of multidimensional operation.
All of the most important communication commands are
system calls.

• 	 socket()

• 	 connect()

• 	 bind()

• 	 listen()

• 	 accept()

• 	 send()

• 	 recv()

Device drivers for all supported hardware
devices
Unlike other operating systems, where device drivers are
separate programs individually loaded into memory, the
Unix kernel inherently contains all of the machine’s driv-
ers. Contrary to what may be supposed, the entries in the
/dev directory are not drivers, but rather are just access
points into the appropriate kernel routine. We will not con-
cern ourselves unduly with the Unix device drivers, as
they are outside the scope of this article.

Anatomy of a process
Single-threaded:

Data segment

Text segment

Stack
Figure 1. Anatomy of the process – single-threaded

Multi-threaded:

Data segment

Text segment

Thread 1

Stack

Thread 2

Stack

Figure 2. Anatomy of the process – multi-threaded

When an executable is invoked, the following events oc-
cur, though not necessarily in this order.

Process Loading
The loader

• 	 Fetches the executable file from the disk
• 	 Allocates memory for all of the global variables and

data structures (‘the data segment’) and loads the
variables into that area of memory.

• 	 Loads the machine code of the executable itself (‘the
text segment’) into memory. With demand-paged exe-
cutables this is not strictly the case, as the amount of
code actually loaded into memory is several 4k pages.
The remainder is put into the swap area of the disk.

• 	 Searches the header portion of the executable for
any dynamically-linked libraries or modules.

• 	 Checks to see if these are already loaded and, if not,
the modules are loaded into memory. Otherwise,
their base addresses are noted.

• 	 Makes available the base addresses of dynamically-
linked modules/libraries to the process.

• 	 Allocates an area of memory for the stack. If the pro-
cess is multi-threaded, a separate stack area is allo-
cated for each thread.

The kernel

• 	 Sets the program counter to the first byte of execut-
able code.

• 	 Allocates a slot in the process table to the new process.
• 	 Allocates a process ID to the new process.
• 	 Allocates table space for any file descriptors.
• 	 Allocates table space for any interrupts.
• 	 Sets the ‘ready to run’ flag of the process.

All of the above resources, allocated to a given process,
constitute the ‘context’ of a process. Each time the ker-
nel activates a new process, it performs a context switch
by replacing the resources of the previously running
process with those of the current one. At this point, the
scheduling algorithm takes over.

The Process Scheduling algorithm
While a process is running, it runs in one of two modes:

Kernel mode
All system calls are executed by the kernel and not by
machine code within the process. Kernel mode has one
very desirable characteristic, and that is the fact that
system calls are atomic and hence, cannot be interrupt-
ed. One of the most important factors in writing code for
high-performance applications, is to ensure that your
process executes as much in kernel mode as possible.

www.bsdmag.org 23

Introduction to Unix Kernel

This way you can guarantee the maximum CPU time for
a given operation.

Kernel threads, such as pthreads, run in kernel mode.
It is sometimes worth using a thread, even when doing so
doesn’t constitute parallel operation, purely to get the ad-
vantage of running in kernel mode. If an interrupt occurs,
while in this mode, the kernel will log the signal in the in-
terrupt table, and examine it after the execution of the cur-
rent system call. Only then will the signal be actioned.

User mode
The ordinary machine code, which makes up much of
the executable, runs in user mode. There are no spe-
cial privileges associated with user mode, and interrupts
are handled as they arrive. It may be seen that, during
the time that a process runs, it is constantly switching
between kernel mode and user mode. Since the mode
switch occurs within the same process context, it is not a
computational burden.

Scheduling
A Unix process has one of the following states:

• 	 Sleep
• 	 Run
• 	 Ready to Run
• 	 Terminated

The scheduling algorithm is a finite-state machine, which
moves the status of the process between states, depend-
ing on certain conditions. Basically, what happens is this.
A process begins to execute. It runs until it needs to per-
form I/O, then, having initiated the I/O, puts itself to sleep.
At this point, the kernel examines the next process table
slot and, if the process is ready to run, it enables its exe-
cution. If a process never performs I/O, such as process-
es which perform long series of floating point calculations,
the kernel permits it to only run for a fixed time period, of
between 20 and 50 milliseconds, before pre-empting it,
and enabling the next eligible process.

When the time comes for a process to run, an addition-
al algorithm determines the priority of one process over
another. The system clock sends the kernel an interrupt
once per second, and it is at this time that the kernel cal-
culates the priorities of each process. Leaving aside the
user-level priority weighting, determined by ‘nice’ the ker-
nel determines priority based on several parameters, of
which the following are significant:

• 	 How much CPU time the process has previously used
• 	 Whether it is waking up from an I/O wait or not

• 	 Whether it is changing from kernel mode to user
mode or not

Swapping and Paging
Of course, the execution of a process is never that straight-
forward. Only a portion of the code is loaded into memory,
meaning that it can only run until another page needs to
be fetched from the disk. When this occurs the process
generates a ‘page fault,’ which causes the pager to go
and fetch the appropriate page. A similar situation occurs
when a branch instruction is executed, which takes the
execution point to a page other than those stored in mem-
ory. The paging mechanism is fairly intelligent and con-
tains algorithms similar to those found in CPU machine in-
struction pipeline controllers and tries to anticipate branch
instructions and pre-fetch the anticipated page, more or
less successfully, depending on the code structure.

Although there are certain similarities, paging, which is
a natural result of process execution, should not be con-
fused with swapping. If the number of processes grows
to the extent that all available memory becomes used up,
the addition of another process will trigger the swapper
and cause it to take a complete process out of memory,
and place it in the swap area of the disk. This is, com-
putationally, an extremely expensive operation. The en-
tire process, together with its context, has to be written to
disk, then, when it is permitted once again to run, another
process must be swapped out to make space for it to be
reloaded into memory.

So, what does all of this have to do with
Performance?
It may be seen from the above that processes, which are
designed for performance-critical applications, should
avoid doing physical I/O until it is absolutely necessary
in order to maximize the amount of contiguous CPU time.
If it is at all possible, all of the I/O operations should be
saved up until all other processing has completed and
then be performed in one operation, preferably, by a sep-
arate thread.

As far as threads are concerned, let us consider what
happens, when we launch a number of threads, to per-
form some tasks in parallel. First, the threads are each al-
located a separate stack, but are not allocated a separate
process table slot. This means that, although there are
several tasks executing in parallel, this only occurs dur-
ing the active time of that slot. When the kernel preempts
the process, execution stops. Multi-threading will not give
your application any more system resources. Further, if
we consider a situation where we have 100 processes
running on a machine and one of them is ours, then we

12/201324

Unix

would expect to use 1% of the CPU time. However, if 25
of them are ours, we would be eligible to use 25% of the
CPU time.

Thus, if an application can split itself into several pro-
cesses, running concurrently, then, quite apart from the
obvious advantages of parallelism, we will capture more
of the machine’s resources simply because each child
process occupies a separate process table slot. This al-
so helps when the kernel assigns priorities to processes.
Even though we may be penalized for using a lot of CPU
time, the priority of each process is rated against that of
other processes. If many of these belong to one applica-
tion, then even though the kernel may decide to give one
process priority over another, the application, as a whole,
will still get more CPU time.

Additionally, if we are running on a multi-processor ma-
chine, then we can almost guarantee to be given a sepa-
rate CPU for each child process. The kernel may juggle
these processes over different CPU’s, as a part of its load-
balancing operations, but each child will still have its own
processor. The incorporation of the above techniques into
our software architecture forms the cornerstone of multi-
dimensional programming.

Process Scheduling, in Summary

• 	 Each child process gets a CPU different to that used
by the parent.

• 	 The more processes contribute to the running of your
application, the more CPU time it will get.

• 	 Multi-threading creates multiple execution paths with-
in one process table slot. It may permit parallel exe-
cution paths, but it will not get the application more
CPU time, or a new CPU.

Therefore:

• 	 Find parallelism within your application. This will
make your software run more efficiently.

• 	 Employ multi-threading where it is not possible to fork
a separate process, or where you need to refer to
global information, as in the parent process.

• 	 Having decided how the children will communicate
the data back to the parent, launch a separate child
process for every possible parallel function, to gain
the maximum CPU time.

System calls
fork()
Under pre-Unix operating systems, starting a process
from within another process was traditionally performed

as a single operation. One command magically placed
the executable into memory, and handed over control and
ownership to the operating system, which made the new
process run. Unix doesn’t do that.

Each process has a hierarchical relationship, with its
parent, which is the process which brought it to life, and
with its child or children which, in turn, are processes
which it, itself, started. All such related processes are
part of a process group. If a kill() signal is sent to the
parent of the process group, it will propagate to the child
processes. Unix also has the concept of a ‘session’
which, essentially, can be thought of as comprising all
of the process groups associated with a login, or TCP/
IP connection.

The basic mechanism that initiates the birth of a new
process is fork(). The fork() system call makes a run-
ning copy of the process which called it. All memory ad-
dresses are re-mapped, and all open file descriptors
remain open. Also, file pointers maintain the same file po-
sition in the child as they do in the parent. Consider the
following code fragment:

pid_t pid;

 switch((pid = fork()){

 case –1:

 printf(“fork failed\n”);

 break;

 case 0:

 printf(“Child process running\n”);

 some_child_function();

 break;

 default:

 printf(“Parent process executes this code\n”);

 break;

 }

At the time that the fork() system call is called there is
only one process in existence, that of the expectant par-
ent. The local variable pid is on the stack, probably un-
initialised. The system call is executed and, now, there
are two identical running processes both executing the
same code. The parent and the new child process both
simultaneously check the variable pid, on the stack.
The child finds that the value is zero and knows, from
this, that it is the child. It then executes some _ child _

function() and continues on a separate execution path.
The parent does not see zero, so it executes the ‘de-

fault’ part of the switch() statement. It sees the process
ID of the new child process, and drops through the bot-
tom of the switch(). Please note that if we do not call

12/201326

Unix

a different function in the case 0: section of the switch,
both parent and child will continue to execute the same
code, since the child will also drop through the bottom of
the switch().

Programmers who know little about Unix will have a
piece of folklore rattling around in their heads which says
‘a fork() is expensive. You have to copy an entire process
in memory, which is slow, if the process is large’. This is
true, as far as it goes. There is a memory-to-memory copy
of that part of the parent, which is resident in memory, so
you may have to wait a few milliseconds. However, we are
not concerned with trivial processes whose total run time
is affected by those few milliseconds. We are dealing ex-
clusively with processes whose run times are measured
in hours, so we consider a one-time penalty of a few mil-
liseconds to be insignificant.

When a parent forks a child process on a multi-processor
machine, the Unix kernel places the child process onto its
own separate CPU. If the parent forks twelve children on
a twelve CPU machine, each child will run on one of the
twelve CPU’s. In an attempt to perform load-balancing, the
kernel will shuffle the processes around the CPU’s, but, ba-
sically, they will remain on separate processors.

The fork() system call is one of the most useful tools, for
the full utilisation of a multi-processor machine’s resources,
and it should be used whenever one or more functions are
called, which can proceed their tasks in parallel. Not only
is the total run time reduced to that of the longest-running
function, but each function will execute on its own CPU.

vfork()
There is a BSD variant of fork(), which was designed
to reduce the memory usage overhead associated with
copying, possibly, a huge process in memory. The seman-
tics of vfork() are exactly the same as those of fork(), but
the operation is slightly different. Vfork() only copies the
page of the calling process which is currently in memory,
but, due to a bug (or feature), permits the two processes
to share the same stack. As a result, if the child makes
any changes to variables local to the function which called
vfork(), the changes will be visible to the parent. Knowl-
edge of this fact has enabled experienced programmers
to make use of the advantages of vfork(), while avoiding
the pitfalls. However, far more subtle bugs also exist, and
most Unix vendors recommend that vfork() only be used,
if it is immediately followed by an exec().

exec()
The original thinking behind fork(), was that its primary
use would be to create new processes, not just copies
of the parent process. The exec() system call achieves

this by overlaying the memory image of the calling pro-
cess with the new process. There is a very good reason
for separating fork() and exec(), rather than having the
equivalent of VMS’s spawn() function, which combines the
two. That reason is because it is sometimes necessary,
or convenient, to perform some operations in between
fork() and exec(). For example, it may be necessary to
run the child process as a different user, like root, or to
change directory, or both. There is, in fact, no such call
as exec(), but there are two main variants, execl() and
execv(). The semantics of execl() are as follows:

execl(char *path, char *arg0, char *arg1…char *argn, (char

*) NULL)

execv(char *path, char *arg0, char **argv)

It may be seen, that the principal difference between the
two variants, is that, whereas the execl() family takes a
path, followed by separate arguments, in a NULL termi-
nated, comma-separated list, the execv() variants take a
path, and a vector, similar to the argv[] vector, passed to
a main() function.

The first variant of execl() and execv(), adds an envi-
ronment vector to the end of the argument list:

execle(char *path, char *arg0, .…char *argn, (char *)

NULL, char **envp)

execve(char *path, char *arg0, char **argv, char **envp)

The second variant replaces the ‘path’ argument, with a
‘file’ argument. If this latter contains a slash, it is used as
a path. Otherwise, the PATH environment variable of the
calling process is used to find the file.

execlp(char *file, char *arg0, .…char *argn, (char *) NULL,

char **envp)

execvp(char *file, char *arg0, char **argv, char **envp)

We can now combine fork() and exec() to execute lpr
from the parent process in order to print a file:

 pid_t pid;

 switch((pid = fork()){

 case –1:

 printf(“fork failed\n”);

 break;

 case 0:

 printf(“Child process running\n”);

 execl(“/usr/ucb/lpr”, “lpr”, “/tmp/file”, (char

*) NULL);

 break;

Introduction to Unix Kernel

 default:

 printf(“Parent process has executed lpr to

print a file\n”);

 break;

 }

The above code only has one problem. If the parent pro-
cess quits, the child process will become an orphan and
be adopted by the ‘init’ process. When lpr has run to
completion, it will become a zombie process and waste
a slot in the process table. The same happens if the
child prematurely exits, due to some fault.

There are two solutions to this problem. We execute
one of the wait() family of system calls. A waited-for child
does not become a zombie, but the parent must suspend
processing, until the child terminates, which may or may
not be a disadvantage. There are options which allow pro-
cessing to continue during the wait, but the parent needs
to poll waitpid(), which makes our second solution, de-
scribed below, a much better option.

If we are waiting for a specific process, the most conve-
nient call is to waitpid(). The synopsis of this call is:

pid_t waitpid(pid_t pid, int *status, int options);

The call to waitpid() returns the process ID of the child
for which we are waiting, whose process ID is passed in
as the first argument, ‘pid’. The second argument, ‘sta-
tus’, is the returned child process exit status and ‘options’
is the bitwise-OR of the following flags:

WNOHANG: prevents waitpid() from causing the par-
ent process to hang, if there is no immediate return.

WNOWAIT: keeps the process, whose status is returned,
in a waitable state, so that it may be waited for again.

The options flags are of no use to us, so we set them
to zero. The status word, however, provides useful infor-
mation on how our child terminated, and can be decoded
with the macros, as described in the man page for ‘wstat’.

pid_t pid;

int status;

 switch((pid = fork()){

 case –1:

 printf(“fork failed\n”);

a d v e r t i s e m e n t

12/201328

Unix

 break;

 case 0:

 printf(“Child process running\n”);

 execl(“/usr/ucb/lpr”, “lpr”, “/tmp/file”, (char

*) NULL);

 break;

 default:

 printf(“Parent process has executed lpr to

print a file\n”);

 if(waitpid(pid, &status, 0) == pid){

 printf(“lpr has now finished\n”);

 }

 break;

 }

If we don’t wish to poll waitpid() repeatedly, but need
to do other processing while the child process goes
about its business, then we need to effectively disown
the child process. As soon as the child has successfully
forked, we must disassociate it from the process group
of the parent.

Process groups and sessions are discussed at the be-
ginning of the fork() section but, to save you the trouble of
looking, a process group is headed by the parent process
whose process ID becomes the group’s process group ID.
All children of the parent then share this process group
ID. The disowning of a child process is accomplished by
executing the system call setpgrp(), or setsid(), (both of
which have the same functionality) as soon as the child is
forked. These calls create a new process session group,
make the child process the session leader, and set the
process group ID to the process ID of the child. The com-
plete code is as below:

pid_t pid;

 switch((pid = fork()){

 case –1:

 printf(“fork failed\n”);

 break;

 case 0:

 if(setpgrp() == -1){

 printf(“Can’t set pgrp\n”);

 }

printf(“Independent child process running\n”);

 execl(“/usr/ucb/lpr”, “lpr”, “/tmp/file”, (char

*) NULL);

 break;

 default:

 printf(“Parent process has executed lpr to

print a file\n”);

 break;

 }

open() close() dup() read() write()
These system calls are primarily concerned with files but,
since Unix treats almost everything as a file, most of them
can be used on any byte-orientated device, including
sockets and pipes.

int open(char *file, int how, int mode)
open() returns a file descriptor to a file, which it opens
for reading, writing or both. The ‘file’ argument is the file
name, with or without a path, while ‘how’ is the bitwise-OR
of some of the following flags defined in fcntl.h:

O_RDONLY	Read only
O_WRONLY	 Write only
O_RDWR	 Read/write
O_TRUNC	 Truncate on opening
O_CREAT	 Create if non-existent

The ‘mode’ argument is optional and defines the permis-
sions on the file, using the same flags as chmod.

Int close(int fd)
Closes the file, which was originally opened with the file
descriptor fd.

Int dup(int fd)
Returns a file descriptor, which is identical to what passed
in as an argument, but with a different number. This call
seems fairly useless at first glance, but, in fact, it permits
some powerful operations like bi-directional pipes, where
we need a pipe descriptor to become a standard input
or output. Also, client-server systems need to listen for
incoming connections on a fixed socket descriptor while
handling existing connections on different descriptors.

Mark Sitkowski
Mark Sitkowski Design Simulation Systems Ltd
http://www.designsim.com.au. Consultant to
Forticom Security http://www.forticom.com.au

http://www.designsim.com.au
http://www.forticom.com.au

12/201330

Let’s Talk

Considering the network on Figure 1. To begin,
please read the following man pages: PF.CONF(5),
PFCTL(8), RELAYD.CONF(5), RELAYCTL(8),

and SSL(8). It is essential to have network cards (/etc/
hostname.xxx), gateway (/etc/mygate), and DNS resolver
(/etc/resolv.conf) configured before starting this How-To.

What do we want to achieve?
Block «File Hosting» websites like 1fichier.com, uptobox.
com, mega.co.nz …

All the urls we want to block are located in a file /etc/
filehosting, as a blacklist.

Here is a sample for the file /etc/filehosting:

mega.co.nz/

uploaded.net/

uptobox.com/

Enable IPv4 Routing

sysctl net.inet.ip.forwarding=1

In order to keep this setting at reboot enter the following:

echo “net.inet.ip.forwarding=1 » >> /etc/sysctl.conf

Interface Group
By default «em0» is part of egress group, and it is the inter-
face connected to the Internet.

At this point we want to add em1 to the lan group, so we
do the following:

/sbin/ifconfig em1 group lan

And to keep this setting at reboot:

OpenBSD 5.4
as a Transparent HTTP/HTTPS Proxy

In this article, we are going to build a firewall using OpenBSD 5.4
embedded with a transparent proxy that disallows some URLs as
as a blacklist. It is not helpful to install squid for that. Relayd did
the trick with the following bonus: HTTPs inspection!

What you will learn…
• 	 How to configure Relayd for URL Blocking with https inspection
• 	 How to use and understand Packet Filter

What you should know…
• 	 Unix commands
• 	 The basics of TCP/IP
• 	 Configure OpenBSD network

Figure 1. A network diagram

www.bsdmag.org

echo “!/sbin/ifconfig em1 group lan” >> /etc/hostname.em1

Packet Filtering
As it shows in the network diagram, we want to allow our
workstations to use only www, https and domain resolu-
tion (Bonus: ping ;-).

By default, PF is enabled and here is the /etc/pf.conf
ruleset:

We declare bad hosts (some RFC like 1918…)

mydns={8.8.8.8, 8.8.4.4}

martians=”{ 127.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12,

10.0.0.0/8, \

	 169.254.0.0/16, 192.0.2.0/24, 0.0.0.0/8, 240.0.0.0/24

}”

We don’t need to load fingerprints

set fingerprints “/dev/null”

No filters on loopback

set skip on lo

NAT

match out on egress inet from lan:network to any nat-to

egress

Normalize packets

match in all scrub (no-df max-mss 1440)

Policy: we block all and log

block log all

Protection antispoof

antispoof for {egress,lan}

We deny bad hosts

block in quick on egress from $martians

We trust out on WAN

pass out on egress

Redirect www traffic from our lan to relayd on port 8080

pass in quick inet proto tcp from lan:network to any port

www \

	 divert-to localhost port 8080

Redirect https traffic from our lan to relayd on port

8443

pass in quick inet proto tcp from lan:network to any port

https \

	 divert-to localhost port 8443

We allow our network to use Google DNS resolution

pass in on lan inet proto udp from lan:network to $mydns

port domain

We allow pings

pass in on lan inet proto icmp from lan:network to any

icmp-type echoreq

SUPP
O

R
T

I
N

G

F
R

E
E

B S D S I N C E 2 0

0
0

!

Support FreeBSD
by donating to
The FreeBSD
Foundation

To find out more,
please visit

our Web site:
www.freebsdfoundation.org

12/201332

Let’s Talk

Load PF ruleset:

 /sbin/pfctl –vf /etc/pf.conf

Relayd: url filtering for http/https
Create CA key and Certificate:

openssl req -x509 -days 365 -newkey rsa:2048 -keyout /etc/

ssl/private/ca.key -out /etc/ssl/ca.crt

I chose «testing _ relayd» as a password. You will need
it in the relayd.conf file, and the «ca.crt» needs to be in-
stalled on all the computers on the network (lan).

Create an SSL server key and certificate for 127.0.0.1:

openssl genrsa -out /etc/ssl/private/127.0.0.1.key 2048

Generate a Certificate Signing Request (CSR):

openssl req -new -key /etc/ssl/private/127.0.0.1.key \

 -out /etc/ssl/private/127.0.0.1.csr

Sign the key yourself:

openssl x509 -sha256 -req -days 365 \

 -in /etc/ssl/private/127.0.0.1.csr \

 -signkey /etc/ssl/private/127.0.0.1.key \

 -out /etc/ssl/127.0.0.1.crt

The /etc/relayd.conf should say:

http protocol “no_ssl” {

	 return error

	 label “File Hosting Websites is banned !”

	 request url filter file “/etc/filehosting”

}

http protocol “with_ssl” {

	 return error

	 label “File Hosting Websites are banned !”

	 request url filter file “/etc/filehosting”

	 ssl ca key “/etc/ssl/private/ca.key” password “testing_

relayd”

	 ssl ca cert “/etc/ssl/ca.crt”

}

relay “no_ssl_proxy” {

	 listen on 127.0.0.1 port 8080

	 protocol “no_ssl”

	 forward to destination

}

relay “with_ssl_proxy” {

	 listen on 127.0.0.1 port 8443 ssl

	 protocol “with_ssl”

	 forward with ssl to destination

}

Start relayd:

echo relayd_flags= >> /etc/rc.conf.local

/etc/rc.d/relayd start

Load Relayd configuration:

/usr/sbin/relayctl load /etc/relayd.conf

Verify that relayd listen on 8080 and 8443:

/usr/bin/netstat -anf inet | grep 127.0.0.1.8	 # This

will give the following:

tcp 0 0 127.0.0.1.8443 *.* LISTEN

tcp 0 0 127.0.0.1.8080 *.* LISTEN

Test the url filtering on a workstation using the Chrome
browser. To have a nicer Forbidden page, you can
change the «label» value in /etc/relayd.conf to:

Figure 2. A sample forbidden page

label “<img src=’http://www.openbsd.org/art/puffy/

puflogv100X65.gif’/>”

Wesley MOUEDINE ASSABY
Wesley MOUEDINE ASSABY lives in Reunion island, near Mauritius, works
as network administrator at AISE-INFORMATIQUE (http://www.aise.re)
where Wesley MOUEDINE ASSABY installs some firewalls (Soekris appli-
ances), mail server, all using OpenBSD system. Wesley MOUEDINE ASSA-
BY used it since 2007 (version 4.1), it became Wesley’s passion.

http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif
http://www.openbsd.org/art/puffy/puflogv100X65.gif

12/201334

Let’s Talk

As a long time BSD user, my search for a distribu-
tion has spanned the course of over 15 years.
I started to use FreeBSD back in 1997 or 1998

when version 2.2 came out. Getting FreeBSD running on
a computer or server was a work intensive experience
that involved a lot of fine tuning and time with my nose in
a manual. I remember expending hours and hours in front
of my computer to get everything working, but at the end
it was something awesome.

As FreeBSD didn’t have good options for Desktop envi-
ronments, with the coming years I started to use Windows
and Linux. They both worked great and were very impres-
sive to see on a desktop system. Windows offered a lot
of functionality out of the box, but had stability issues and
was a relatively bloated operating system. Linux also had
their own system stability issues early on, but the desk-
top environment options were nice. Stability has improved
greatly over the years, but due to the decentralized na-
ture of those distributions, they tend not to be as cohesive
and stable as FreeBSD operating systems and require the
same amount of work in most cases.

When gnome came out for FreeBSD, it started to
make the idea of a nice desktop installation possible.
I remember using Gnome 1.4 for some time and then
jumping to the famous Gnome 2. At that time, it still took
a lot of work to get the desktop environments up and
running. Nonetheless, this development made me fall
“in love” with FreeBSD as it worked better for my needs
than anything else. Fast forward to FreeBSD 9.2 and I

still consider it to be the best distribution for the server
and desktop environment support has been improving
ever since.

Still, FreeBSD offered difficulties, as FreeBSD is tailored
to the server environment, so getting set-up in a desktop
environment can require a lot of command line work just
to get all the services running properly. A friend of mine
then introduced to me to PC-BSD, a desktop oriented op-
erating system based on FreeBSD, which became my so-
lution for some months. PC-BSD works very well and is
great for beginners, but it is still a “heavy” system and
you still have to use the command line to use ports. Their
App Cafe is great for beginners who just want to have it
running and do not have any knowledge about what is
happening, but for advanced users it is less than ideal be-
cause it runs more slowly than straight FreeBSD. It also
is getting to the point where it is difficult to run on older
hardware. Another issue is that if you decide to use ports,
you run the risk of App Cafe applications breaking, which
happened to me on more than one occasion.

This year I also started to use the FreeBSD forums and
meet a lot of very nice and helpful people who post there,
which led me to meet Eric Turgeon. I continued to jump
from FreeBSD to PC-BSD and vice versa until I heard Er-
ic talk about GhostBSD. I refused to even take a look till
Gnome 2.2 started to give me a lot of problems and Free-
BSD does not port to Gnome 3, as the underlying archi-
tecture is not supported. Combined with Gnome 2.2 no
longer being supported, more problems arose.

GhostBSD: A User-
friendly, Light-weight
BSD Alternative
GhostBSD is an open source desktop operating system
based on FreeBSD which aims for a secure, user-friendly
experience out of the box. GhostBSD comes with most
common software choices already configured, giving the
user a solid BSD installation out of the box.

www.bsdmag.org 35

GhostBSD: A User-friendly, light-weight BSD Alternative

From there, I found that the Mate desktop environment
was the project fork for Gnome 2 and it worked very well
at first sight and remembered that GhostBSD already
comes with Mate support. So, I downloaded GhostBSD
3.5-BETA1 and all the coming versions, testing it a lot.
I was pleasantly surprised at how everything I needed
just worked. In fact, GhostBSD worked so well that I got
in contact with Eric and he invited me to become part of
the project.

GhostBSD: The right fit for the desktop
If you want to use FreeBSD on the Desktop, GhostB-
SD is a very strong solution. I recommend it for begin-
ners, normal and advanced users. The GhostBSD in-
staller makes installation a breeze and it has his own
application manager which works well with ports without
any problem. Installing with packages is another option,
but if I have the time, installing via ports is my preferred
method as all proper dependencies are installed along
with the applications.

GhostBSD also comes with a variety of windows man-
agers to choose from. My preference being Mate as it
offers a lot of functionality and runs well even on older
equipment, but Gnome, XFCE, LXDE, and Openbox are
good options as well. GhostBSD pre-configures the most
common software choices users prefer for FreeBSD, fine-
tuning for optimal performance. This allows users to avoid
the process of extensive configuration, building and com-
piling their own FreeBSD system. GhostBSD is config-
ured for low resource consumption and stability, while not
limiting the user’s customization options normally found in
FreeBSD. Also, all of the tutorials, advice, and online con-
tent applicable to FreeBSD apply to our distribution.

While GhostBSD is still early in its development, it
takes advantage of many of the features already found
in FreeBSD. GhostBSD comes with video card and Wi-
Fi support out of the box, which can be a big headache
for inexperienced users. It also supports FreeBSD next
generation package management system, Apache Open
Office, Libre Office, LibreCAD, Eclipse/Anjuta develop-
ment environments and much more. As the project ma-
tures and expands it will continue to add features while
meeting its primary goals of security and useability in a
lightweight installation.

Getting GhostBSD
To try out GhostBSD for yourself, you will first need to en-
ter the GhostBSD web site at http://ghostbsd.org and go
to the download section. From there, just choose the op-
tion you want from the provided list. There are options for
i386 and 64bit, USB or disc images, and default desktop

environments. After downloading to your preferred media,
make sure you have your boot priorities set up correctly
in BIOS and then start up your system. The graphic inter-
face will then load and you will need to click on the icon to
install GhostBSD.

The installation GUI will ask you to choose the parti-
tion to install, whether to use the GhostBSD boot loader
(so when the system starts you can choose what sys-
tem do you want to run), as well as other basic options
like root and user password. After you finish the series
of questions, installation begins and it’s just a matter of
time to finish, usually 10 or 20 minutes. When installa-
tion is over it will ask you to reboot. Make sure to remove
your boot media when rebooting, and you have just in-
stalled GhostBSD.

Post-Installation
Once GhostBSD starts, just log in and you will see why
GhostBSD is very powerful as a desktop. Load times are
very fast, which is immediately noticeable when you click
on an icon or on any application you want to run. Speak-
ing of applications, popular common programs like Libre
Office, Firefox, Brasero and others come pre-installed so
you can get to work right away. GhostBSD also comes
with a wi-fi manager that is very intuitive. Just open it
and you will see all the connections inside your wireless
range. Simply choose what you want to use and you will
see all the options for it. While many of these options are
also available in PC-BSD, you can test for yourself to see
that GhostBSD is faster due to its design.

In addition, GhostBSD comes with a very helpful pack-
age manager. Just select it from the drop down menu, and
then select update from the list and you can choose what-
ever you wish to install from the list and it will download
and install it for you automatically. Also if you like to use
ports like me, you can do it with no fear. You won’t “break
it”, just download and update the port list and use it like
you would do in a FreeBSD system. GhostBSD also pro-
vides community support on the Forum around the clock,
since our team is from several different time zones.

To conclude, GhostBSD offers a secure, stable light-
weight BSD installation with a full set of utilities pre-con-
figured so you can hit the ground running. If you are a
new or advanced user, GhostBSD takes away the has-
sle of configuration while providing all the powerful tools
of a FreeBSD system. With its lightweight, full featured
Desktop Environment options, GhostBSD offers you a
powerful solution regardless of skill level or top of the
line hardware.

Adrian J. Panunzio

http://ghostbsd.org/

12-201336

Security

To begin, let’s concentrate on the One Time Pass-
word (OTP). We are going to achieve our already
secure SSH in conjunction with OTP for remote

system connections. At first, in algorithmic meaning, OTP
is a character string which should never repeat. However,
“never” is a notion near infinity that never achieves it. Sec-
ondly, OTP has a discrete form of existing. The lifetime is
finite and stands unchanged for seconds, minutes, possi-
bly months or years.

Imagine you have a system which generates a new
character string every minute, and let’s name it as our
OTP. The exemplary system uses 26 characters of an
alphabetical array [a, b, …, z] (lower-case letters only)
and 10 characters of digits [0, 1, …, 9]. OTP is 16 char-
acters long and includes characters from the mentioned
arrays. So, we can obtain from the example such char-
acter strings:

rwsyqhz45gtbuwhd

gbmmx5dlcytq60in

t27l5m86yqkslvb0

How many different character strings can we generate?
What is the probability of guessing the correct character
string? Let’s go back to the math.

Count of the number of possible characters to use:
26+10=36 [a, b, …, z, 0, 1, …, 9]

Length of the character string (OTP): 16. Now, step-by-step:

1) 	The first character of the string can be randomly se-
lected as 1 from 36, hence we have 36 options of
that.

2) 	The second character of the string can be random-
ly selected as 1 from 36 as well, and hence we still
have 36 options for this character.

3) 	The third character of the string can be randomly se-
lected as 1 from 36 and have 36 options as well.

…
16)	The last character of the string can be randomly se-

lected as 1 from 36 and we have 36 options.

We assume that the characters can be the same and, in
this particular case, all 16 characters can be the same.
A combination of all characters in our 16 long string is
equal (step-by-step).
1) 	We have a one character string: 36 different charac-

ter strings.
2) 	We have a two character string: 36 multiply 36 is equal

to 1296 (36*36=1296) different character strings.
3) 	We have a three character string: 36*36*36= 46656

(363=46656) different character strings.
…
16)	We have a sixteen character string: 3616= 79586

61109946400884391936 different character strings.

How Secure Can Secure
Shell (SSH) be?
(One Time Password aka OTP)

This article is the second part of the OpenSSH and
demonstrates configurations as well as tricks that make
using the protocol more secure.

What you will learn…
• 	 How to configure OTP for your needs.
• 	 A good base to make up something new and secure on your

own.

What you should know…
• 	 Unix/Linux commands and SHELL environments.
• 	 The basics of TCP/IP.
• 	 Basic configuration of SSH (1st part of the series)
• 	 Understanding of security is necessary.

www.bsdmag.org

Is the number huge? Let’s check.
We will assume that we change our OTP once every

minute and the OTP “never” repeats. There are 1440 min-
utes in one day. There are 365.25 days in one year.

For how many days shall we have different character
strings?

7958661109946400884391936 divided by 1440 is
equal to 5526847993018333947494.4 days.

For how many years shall we have different character
strings?

5526847993018333947494.4 divided by 365.25 is
equal to around 15131685128044719911 years.

Around 15 quintillion years (in short scale) for IT guys,
it’s the same as 15*1018 years (15 ExaYears). If you are in-
terested in learning all the scales, (short and long), look at
the website en.wikipedia.org/wiki/Long_and_short_scales.

To compare that number with something similar, know
that the lifetime of the proton (predicted) is equal to 3*1040
seconds, the age of the universe is equal to 5*1017 sec-
onds, and our number of different OTPs is equal to around
7.95*1024. The probability of guessing the OTP is 1 to
7.95*1024.

The machine, (computer, especially CPU), can work for
one minute to find out the OTP. The probability of guess-
ing the OTP during one minute by the fastest comput-
er in the world (www.top500.org) with a performance of
33.86 petaflops per second (33.86*1015 flops/s) is around
(33.86*1015)*60 / 7.95*1024 = 2,55*10-6 (0,000255%).
Note: it’s a very simple comparison and there are many
searching algorithms which could be used to speed up
finding out the OTP, but the probability of the worst case
scenario shows the scale.

We can argue that our 16 long One Time Password is
secure enough. If we try to use not a 36 character ar-
ray, but the ASCII table of characters, we shall have 12816
OTPs. Try to compute this and compare with the known
universe mass equal to 1*1053!

Let’s go back to our SSH. We will explore a few meth-
ods of generating and using an OTP but first, we shall get
familiar with passwords on Unix systems.

Both FreeBSD and OpenBSD systems keep pass-
words in the /etc/master.passwd file and the user pass-
word is encrypted by one of the algorithms set in the /etc/
login.conf (find string :passwd_format= in FreeBSD and
:localcipher= in OpenBSD).

There are many hash functions that can be used to
calculate the encrypted password: DES, Blowfish, MD5,
SHA256, SHA512 etc. By default FreeBSD uses SHA512
and OpenBSD uses Blowfish with 6 iterations.

It’s good to know more about the content of the master.
passwd file which stores the encrypted user’s passwords.

http://en.wikipedia.org/wiki/Long_and_short_scales
http://www.top500.org
https://register.bsdcertification.org//register/payment
http://www.bsdcertification.org/
https://register.bsdcertification.org//register/get-a-bsdcg-id

12-201338

Security

Look at the command below:

cat /etc/master.passwd | grep John

John:$1$4yQeiBqO$AZOv/r0Q4DcxkF5KvcKN8/:1001:0:admin:0:0:J

ohn Buzz:/home/John:/bin/sh

Special data is separated by the $ sign and the hashed
password $1$4yQeiBqO$AZOv/r0Q4DcxkF5KvcKN8/ is de-
scribed below:

1 means MD5 algorithm.
4yQeiBqO is a salt used to make the password more diffi-

cult to find out. Salt is generated by the first two char-
acters of the encrypted password.

AZOv/r0Q4DcxkF5KvcKN8/ is the encrypted password.

As previously stated, FreeBSD uses SHA512 by de-
fault, (which would display the number 6 behind the first
$ sign), but one can change it to MD5 by adding the fol-
lowing lines to /etc/login.conf.

admin:\

 :passwd_format=md5:

To apply the above changes, run the following command.

cap_mkdb /etc/login.conf

The same command works for OpenBSD as well. Note:
the MD5 hash function is worse than SHA512. Worse
means that it takes less computing to break the hash.
I only showed as an example, how generating a new
password should work and how to change the hash
function. If your system still uses DES, MD5 or other
weak functions, change it.

You could come up with the idea to just replace the
string in the master.passwd file, but it’s not as easy as
coming up with the idea. Let’s use third party applications
to generate our OTP.

For security and information reasons, try to tinker and
change some of the following values for a particular user
or a group in the login.conf file. Are some of them com-
bined with SSH? Yes: “welcome” for sure. The rest of the
options should be clear. Default values from my OpenBSD
and FreeBSD respectively. For more information about the
login.conf file, look at the command man login.conf.

default:\

 :path=/usr/bin /bin /usr/sbin /sbin /usr/X11R6/bin

/usr/local/bin /usr/local/sbin:\

 :umask=022:\

 :datasize-max=512M:\

 :datasize-cur=512M:\

 :maxproc-max=256:\

 :maxproc-cur=128:\

 :openfiles-cur=512:\

 :stacksize-cur=4M:\

 :localcipher=blowfish,6:\

 :ypcipher=old:\

 :tc=auth-defaults:\

 :tc=auth-ftp-defaults:

default:\

 :passwd_format=sha512:\

 :copyright=/etc/COPYRIGHT:\

 :welcome=/etc/motd:\

 :setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\

 :path=/sbin /bin /usr/sbin /usr/bin /usr/games /

usr/local/sbin /usr/local/bin ~/bin:\

 :nologin=/var/run/nologin:\

 :cputime=unlimited:\

 :datasize=unlimited:\

 :stacksize=unlimited:\

 :memorylocked=64K:\

 :memoryuse=unlimited:\

 :filesize=unlimited:\

 :coredumpsize=unlimited:\

 :openfiles=unlimited:\

 :maxproc=unlimited:\

 :sbsize=unlimited:\

 :vmemoryuse=unlimited:\

 :swapuse=unlimited:\

 :pseudoterminals=unlimited:\

 :priority=0:\

 :ignoretime@:\

 :umask=022:

FreeBSD and OpenBSD use different applications to
generate the OTP for us. OpenBSD uses S/Key system
and FreeBSD uses OPIE. Let’s start for FreeBSD.

FreeBSD OTP by OPIE (One-Time Passwords in
Everything)
There is a seed that consists of two letters, five digits and
an iteration count. The OTP is created by concatenating a
secret password with the seed and then applying the hash
function MD5 as many times as the iteration count states.
Then the OPIE turns the result into six words as our OTP.

Let’s assume that we are logged in to our system via
SSH. Here are the step-by-step instructions to run OTP.

Initialization (please be logged on as a standard user
not privileged):

www.bsdmag.org 39

How Secure can Secure Shell (SSH) be?

Listing 1. SSH successful connection screenshot

Using username “John”.

 Access Restricted Equipment
 All Activities are Monitored and Logged
 Unauthorized Use Prohibited

 By Accessing, You Are Agree Your Activities to be Monitored and Logged

Authenticating with public key “imported-openssh-key”
Passphrase for key “imported-openssh-key”:
Further authentication required
Using keyboard-interactive authentication.
otp-md5 498 mo3726 ext
Password:
Last login: Mon Nov 25 18:13:02 2013 from 192.168.0.18
FreeBSD 9.2-RELEASE (GENERIC) #0 r255898: Thu Sep 26 22:50:31 UTC 2013

 MATRIX
--
984653	760500	786864	727064	374556	263648	777138	345072	428465
859924	468676	277695	743340	782600	955084	537264	847652	991796
585728	637052	580840	340080	471782	816764	780728	413452	135408
255580	676208	385216	280644	630136	772460	787592	856622	671164
391144	976716	106548	460668	142948	559468	213668	439140	488332
296764	705276	189176	420836	657904	404196	276900	956540	532012
167180	734240	395928	597428	385632	930436	609388	609700	401492
806624	694304	277345	644072	554320	711256	705692	233896	380380
144508	657488	994344	162396	598468	502344	525037	299676	448136
--

Attempts left: 3.
Unlock key:
Terminal unlocked!
$

Using username “John”.

 Access Restricted Equipment
 All Activities are Monitored and Logged
 Unauthorized Use Prohibited

 By Accessing, You Are Agree Your Activities to be Monitored and Logged

opiepasswd -c

And output (system requests for the pass phrase for us-
er John):

Adding John:

Only use this method from the console; NEVER from remote.

If you are using

telnet, xterm, or a dial-in, type ^C now or exit with no

password.

Then run opiepasswd without the -c parameter.

Using MD5 to compute responses.

Enter new secret pass phrase:

Again new secret pass phrase:

ID John OTP key is 499 mo3726

TACK LOP AN ADEN GIFT BEND

499 – sequence number

mo3726 – seed

12-201340

Security

At this time, if user John tries to log in via SSH, he is
asked to type the OTP. Where is the password?

Password is generated on the other machine using the
following command:

$ opiekey 498 mo3726 ext

Using the MD5 algorithm to compute response.
Reminder: Don’t use opiekey from telnet or dial-in ses-

sions. Enter secret pass phrase:

WAS KURD LOG MONA BONE DRUG

Copy WAS KURD LOG MONA BONE DRUG into the terminal
where you’re trying to log in and asking for a password.
The Listing 1 depicts the result.

If you didn’t read the first article, please be informed that
MATRIX, Attempts, left and Unlock key texts are my own
application prompts. You can try it by downloading from
www.iptrace.pl (go to Download and click on a Download
Locker button). The application is free of charge on the BSD
Licence. Please send any suggestions and bugs found at
the Locker via e-mail to locker@iptrace.pl. If you want to
generate more than one OTP, run the following command.
Option –n and then a value to indicate the number of OTPs.

$ opiekey -n 5 498 mo3726 ext

Using the MD5 algorithm to compute response.
Reminder: Don’t use opiekey from telnet or dial-in ses-

sions. Enter secret pass phrase:

494: LAY REAL RASH JUJU LANG LINE

495: SAIL DOCK TILE MIRE SOY NULL

496: YAM WEAR ROAM FIST TWIN SUE

497: TRAM CANT FOLK AFRO OVA BAND

498: WAS KURD LOG MONA BONE DRUG

Figure 1. MS Windows WinKey One Time Password generator

Please bear in mind that it’s not a good solution to gen-
erate a password on the first system to log into a sec-

ond one. If you want to have all SSH terminals (systems)
blocked by OTP use an MS Windows application to gen-
erate an OTP. See the following screenshot of that ap-
plication. You can download WinKey from ftp://ftp.irisa.fr/
pub/OTP/.

Note: the OTP generated by OPIE doesn’t change the
real UNIX passwords in master.passwd file. To disable us-
ing OPIE run the following command.

$ opiepasswd –d John

To allow logging in for users from specified IP address-
es or networks via UNIX password and bypass OPIE,
change the settings in the /etc/opieaccess file. But you
can still use OTP if needed. So you have two ways to get
the system.

OpenBSD OTP by S/Key (One-Time Passwords in
Everything)
The S/Key uses a secret pass phrase with challenge.
Conceptually, the workings of S/Key are similar to OPIE.

Let’s assume that we are logged in to our system via
SSH. Here are the step-by-step instructions to run the
OTP generator.

Initialization (please be logged on as a privileged user,
root) to create the /etc/skey directory:

skeyinit -E

Re-login as a standard user, for my example the user is
John, then run the following command.

skeyinit

And output (system requests for the pass phrase for us-
er John):

Reminder – Only use this method if you are directly

connected

 or have an encrypted channel. If you are using telnet,

 hit return now and use skeyinit -s.

Password:

[Adding John with md5]

Enter new secret passphrase:

Again secret passphrase:

ID John skey is otp-md5 100 utm167228

Next login password: SEAL TEEN FROG HAWK WADE RID

Yes, you’re right. It’s almost the same as for OPIE. So,
it’s easy to go through the rest of the tour.

http://www.iptrace.pl
mailto:mailto:locker%40iptrace.pl?subject=

www.bsdmag.org 41

How Secure can Secure Shell (SSH) be?

Listing 2. SSH successful connection screenshot

Authenticating with public key “imported-openssh-key”
Passphrase for key “imported-openssh-key”:
Further authentication required
Using keyboard-interactive authentication.
otp-md5 92 utm167228
S/Key Password:
Last login: Tue Nov 26 00:42:41 2013 from 192.168.0.18
OpenBSD 5.3 (GENERIC) #50: Tue Mar 12 18:35:23 MDT 2013

 # #
 # # # # # ###### # ###### #####
 # # ## # # # # # # #
 # # # # # # ##### # ##### # #
 # # # # # # # # # # #
 # # # ## # # # # # #
 ##### # # # # # ###### #####

 #######
 # # # ##### ###### ## ##### ####
 # # # # # # # # # #
 # ###### # # ##### # # # ####
 # # # ##### # ###### # #
 # # # # # # # # # # #
 # # # # # ###### # # # ####

#
#####
#
#
#
#
#

 ### ### #####
 # # # # # #
 # # # # #
 # # # # #####
 # # # # # # #
 # # # # ### # # # #
 ## ### ### ### #####

 MATRIX
--
518760	398556	818784	893601	999198	797949	274554	509382	832707
169866	754128	333099	419526	898398	749124	276210	279414	404874
532629	260586	269505	190323	775116	958446	665856	167031	465210
993285	624825	414144	126333	832734	509823	637713	596691	896436
713673	991665	797661	138420	397791	719703	518040	630180	242181
676926	435033	266652	563229	785772	335277	456669	490824	823554
275486	365419	473229	914166	974439	881991	200709	564075	264825
838161	378396	257517	821394	889425	261360	305919	727308	855540
732159	884286	520020	804681	918837	757737	203904	903870	681444
--

Attempts left: 3.
Unlock key:
Terminal unlocked!

$ su -a passwd -l

Password:

12-201342

Security

skey 100 utm113739

Reminder – Do not use this program while logged in via

telnet.

Enter secret passphrase:

SARA CHIN WATT KNEW CUB SCOT

Once again, if you want to generate more than one OTP,
run the following command. Option –n and then a value
that indicates the number of OTPs.

utm1:~> skey -n 5 100 utm113739

Reminder – Do not use this program while logged in via

telnet.

Enter secret passphrase:

96: DOES BLAT TILT NOLL NARY HUT

97: WARN TWIG FREE TRAY SIGH AIDE

98: LENT BURN GEL GOES CHAD LOOT

99: SHOW AWE TINA LIED WATT WANT

100: SARA CHIN WATT KNEW CUB SCOT

Again, we use WinKey to generate OTP (Figure 2).
The last one change in OpenBSD is to replace one row

in the login.conf file. See what data should be correct.

auth-defaults:auth=skey,passwd:

For security reasons change the second line as well.

auth-ftp-defaults:auth-ftp=skey,passwd:

Figure 2. MS Windows WinKey One Time Password generator

To apply the above changes run the following command.

cap_mkdb /etc/login.conf

If you’re not going to use password authorization in the near
future, delete the password value from the above to enforce
using the OTP only. It does not work for root, who always
can get on the system using a standard Unix password.

Note: we don’t generate the OTP for a privileged user,
root, due to maintenance, to not make the authentication

track more complicated, and for ease of using an account
from the console. You have to know that OpenBSD be-
haves differently than FreeBSD during logging using the
su command. Even though we have not created the OTP
for root, OpenBSD asks for it. To prevent this use the fol-
lowing command when you log in from a standard user.

su –a passwd

Let’s look for the logging successful process (Listing 2).
Remember, if a counter is going to 0 (zero), it’s impor-

tant to reinitialize the counter again. Use the following
commands for OpenBSD and FreeBSD respectively, oth-
erwise you won’t be able to log in.

skeyinit

opiepasswd -c

Conclusions
Using One Time Passwords (OTPs) is a very good ap-
proach to improving system authorization security. In con-
junction with public/private keys, Unix passwords and
some OpenSSH defences, OTP ensures great security
without too much of a decrease in functionality.

In the next series you will find out more about:

• 	 VPN tunnelling – creating Virtual Private Networks
using OpenSSH

• 	 SFTP – known as SSH File Transfer Protocol to op-
posite of a standard FTP

ARKADIUSZ MAJEWSKI, BENG
Arkadiusz Majewski comes from Poland. He has 15 years’ experience with
ICT technologies, including 15 years of IT networks, 10 years of BSD sys-
tems and MS Windows Server solutions. He has also 5 years’ experience
with programming languages and Telco solutions. He’s interested in secu-
rity on all business and ICT levels. In his free time he reads ICT books, and
deepens his knowledge about science (math, physics, chemistry). His hob-
by is cycling and motorization. He’s a graduate of Warsaw Information
Technology under the auspices of the Polish Academy of Sciences. Feel free
to contact the author via e-mail bsd.magazine@iptrace.pl.

References (in order of relevance)
man opiepasswd (FreeBSD)
man opiekey (FreeBSD)
man opieaccess (FreeBSD)
man skeyinit (OpenBSD)
man skey (OpenBSD)
man master.passwd
www.openssh.org; www.openbsd.org; www.freebsd.org

mailto:mailto:bsd.magazine%40iptrace.pl?subject=

IN SOME CASES

nipper studio
HAS VIRTUALLY

REMOVED

MANUAL AUDIT
CISCO SYSTEMS INC.

theNEED FOR a

Titania’s award winning Nipper Studio configuration
auditing tool is helping security consultants and end-
user organizations worldwide improve their network
security. Its reports are more detailed than those typically
produced by scanners, enabling you to maintain a higher
level of vulnerability analysis in the intervals between
penetration tests.

Now used in over 45 countries, Nipper Studio provides a
thorough, fast & cost effective way to securely audit over
100 different types of network device. The NSA, FBI, DoD
& U.S. Treasury already use it, so why not try it for free at
www.titania.com

www.titania.com

U P D A T E
NOW WITH
S T I G
AUDITING

12/201344

Column

OPINION: With the UK government in
collusion with the major search engines to
censor 100,000 search terms to prevent child
abuse, is the UK joining the ranks of the
technological fascists?

David Cameron, while no fool, by his authority
as Prime Minister of the United Kingdom, has
backed the censorship of 100K search terms al-

luding to child abuse in collusion with Google, Bing, and
no doubt other search providers accessible in the UK.
The exact extent of the legal framework is yet to be for-
malised, but it is clear that the UK government is mov-
ing towards a more proactive stance of censorship in a
populist move to assuage the “something must be done
to protect us from the Internet” lobby. Of course, the fact
that political affiliations, terrorism, or whatever the fla-
vour of the day that offends “the powers that be” may be
added to this list has escaped those that promote the
nose of this particular camel that protrudes within the
tent of content delivery. Personally, I cannot think of
100 terms that relate to child abuse let alone 100K, so
my inner skeptic, not unexpectedly, was left incredu-
lous. A classic case of political disconnect in the mak-
ing. How many words do Eskimos have for snow?

Contrary to popular belief, the Internet is a deliv-
ery system, not some monster with an alterna-
tive agenda to deprave and corrupt all from
conceived embryos to the elderly and be-
yond the grave. It is a reflection of soci-
ety. On the surface, triggering an alert if
someone was to type “kiddie porn” in-
to Google, seems a good way to deal
with the totally abhorrent desire of an
individual to have sexual relations with
prepubescent children. What happens if
you are a genuine journalist, researcher,
concerned parent or a medical profes-
sional? Your browser gets an alert and
your IP address is committed to a da-
tabase. Then what? Questions are asked, or worse
case, a visit by your local police force at 5:00AM to seize

all Internet enabled devices, recordable media and a foren-
sic investigation of every detail of your life and moral cen-
sure? The Internet is transient – a page can appear and
disappear within minutes, or in the case of the current Con-
servative governments’ previous election promises – a few
years. Thanks for nothing, Google. What is still unclear is
how much of this data will be passed to other intelligence
services or bodies via the NSA and GCHQ.

Let’s not be under any illusion here, the watchers are
already aware of who the culprits are on both
sides of the Atlantic, so this appears to be a

political move to legitimise censor-
ship on the coattails of moral panic

and not a genuine attempt
to rid society of evil. It will
be interesting to see if these

“banned” keywords are ever
published.

As technologists
we all know

that filter-

www.bsdmag.org 45

Lady Doth Protest Too Much

ing search terms and attempting to categorise them in-
telligently is a pretty pointless exercise unless you throw
massive human resources at it. During the miners’ strike
in the UK during the 80s, the eavesdropping system moni-
toring UK telephone conversations was overloaded due
to the sheer weight of relevant data. I recently installed a
corporate wide messaging system on our Intranet, and as
a precaution to assuage the naysayers, added a swear fil-
ter knowing full well that it was a token gesture. If people
want to do bad things, they will find a way to do them. This
is IT help-desk 101. The fallacy that technology can be a
moral guardian is rife with miscarriages of justice. Just ask
any motorist who has been captured speeding by a badly
aimed or calibrated speed gun or, indeed, a customer on
the wrong end of a customer services “script”. Technology
is digital, black and white, whereas real life is analogue, a
spectrum of colour. Here lies the perpetual paradox and
argument between the spirit and the letter of the law. Un-
fortunately, history has proven that venal individuals can
capitalise on this argument, be they defendants, prosecu-
tors or, notably, governments.

So let’s cut to the chase. Child pornography is evil. Any-
one of sound mind caught manufacturing, distributing

or consenting to such deeds should be quite rightly
and with full weight, condemned not only in a

court of law, but also in society. The basis
of civilisation is innocence, innocent

until proven guilty and the right
to have a childhood of inno-

cence. Anything else is a
travesty.

Unfortunately, the law once again blindly overreaches in
this regard, as possession in the UK of the worst type of
pornography is a strict liability offence (i.e. you got it, you
are guilty). While no cases to my knowledge have reached
the courts here in the UK, the law is cut and dried – if you
have “bad content” on your servers, you are liable. End of
story. No mens rea (state of mind) appeal is allowed under
strict liability cases. So as a system administrator in the
UK, if I find objectionable 3rd party material on my server I
run the risk of prosecution if I attempt to hand this material
over to the authorities. So what should I do? Delete it and
say nothing? In theory, no prosecuting authority would be
so aggressive as to pursue such a case with a co-oper-
ating individual but in this age of febrile condemnation of
the mass media and legalism, who knows? If somebody
wanted to prove a point, all they need do is dump some
images on a competitor’s or political opponent’s hard disk
and make a few phone calls. The rules and ethics that
work in the real physical world (e.g. possession of drugs)
does not work with electronic data.

In reality, the neighbourhood paedophile is protected.
They are either using strong encryption or are part of a
network that is peer to peer, either electronically or social-
ly. The level of social disgust that is associated with this
issue means that it is now the holy grail of the blackmailer
or the foreign government as sexual preferences, politi-
cal alliance and financial corruption are now regarded as
issues that are of little social consequence – unlike dur-
ing the days of the Cold War. To any rational mind, a gov-
ernment or their intelligence services wanting to widely
discredit an individual will aim for smearing with this par-
ticular human frailty. This adds an interesting dimension
to the English phrase “Conspiracy or cock-up”. Blackmail
or media slaughter anyone? So, to truly defeat this evil in
our society, we need a decent whistle-blowing strategy,
and properly resourced root and branch investigations,

not the crude hammer of the law that condemns due
to content possession irrespective of motive. The

recent Jimmy Savile scandal proves this, in
that victims were scared of coming forward

and when they did, they were discred-
ited or ignored often because of

the position of privilege held
by their abusers. Pauper

or king, for justice to
prevail, all need

to be treated
equally

12/201346

Column

under the law. Sadly, this is not the case. God help an in-
nocent ISP or a victim under the current legislation.

David Cameron’s febrile attempt at cleaning up the In-
ternet proves beyond all doubt that he doesn’t under-
stand the issues. Over 90% of child abuse victims know
their abuser socially. Granted, the Internet is a medium
that allows people to build relationships, but to catego-
rise an individual as deviant by what request they sub-
mit to a search engine is not only an abuse of process,
but an abuse of power. And that doesn’t take into account
the malware a reasonably skilled IT engineer could build
to generate a spoof of an individual’s request. This move
plays right into the hands of the spammers and the crimi-
nal underworld, allowing them to blackmail ordinary citi-
zens with false accusations. “You have been looking at
illegal content. Send us your credit card details and £250
or we contact the authorities”. No paedophile is going to
be searching for the type of content they desire using a
search engine – it is more likely to be distributed via peer-
to-peer or stored on a server within the Tor network. The
truly paranoid would send it via snail mail on an encrypted
USB stick or CDROM. So this cure will create more prob-
lems than it solves.

So what can we do about this evil as a community?
First of all, we all need to be aware of and identify all the
different types of low-life that are out there – fraudsters,
sock-puppets, trolls, spammers, bandwidth abusers and
copyright infringers, et al irrespective of whether we are
IT professionals or end users. Birds of a feather flock to-
gether. I am not generally talking about individuals here,
as we are are probably all guilty at some point of commit-
ting some of these actions to a lesser degree. Who hasn’t
filled in a web-form with false details or used the corporate
network to download an MP3 or two? I am talking about
the communities that make a lifestyle, political or commer-
cial choice to do such things en-mass on a regular basis
causing disruption and distress to all.

We need a mechanism to quickly electronically dis-
able and deal with these communities in law. If you get
500 phishing emails a day, that is 500 counts of attempt-
ed fraud, but will law enforcement take it seriously? Due
to the distributed nature of networks, while the malware
causing the problem may be on 500 individuals’ PC’s, it is
not necessarily true that they are guilty of anything other
than bad security hygiene. It is the authors and bot-mas-
ters who are guilty. We need a segregation of legal adult
content into a XXX domain that is easily blocked by paren-
tal controls, backed by legislation that pursues the owner
of the domain (e.g. the content owner) for breach. The
province of the purchaser can then easily be proved in a
court of law, absolving the ISP of responsibility. After all,

like an estate agent or realtor they are only selling space,
they are not responsible for the acts that take place inside
the property. Of course, if the ISP does discover illegal
activity, they have a duty to report it. Still, as mentioned
earlier, in the UK at least it is not that easy. The same
idea could apply for global financial transactions etc., but
of course certain vested interests want to have their cake
and eat it, in that they want global freedom without neces-
sarily any accountability or responsibility.

So a global Internet wide agreement is probably never
going to happen.

Another approach is on a country by country basis.
Once again, this has its dangers. I don’t want some policy
maker deciding if I can visit www.ihatemygovernment.org
(Yes. It exists). China and Google firewalls anyone? Any-
how, any experienced IT user can proxy or tunnel their
way around it.

No, the Internet, like rain, sunshine and death is avail-
able to everyone, including paedophiles. The maxim “I
disapprove of what you say, but I will defend to the death
your right to say it” needs to be revisited and reconsid-
ered as in 2013 we don’t just have words but images and
video available to all as well. While freedom of expres-
sion is vitally important we equally need social, moral and
legal responsibility, from the tramp to the millionaire. We
live in a wonderful age, where barriers are collapsing and
we can connect and understand more than the shallow
political rhetoric that has dominated the last 2000+ years.
What matters most is what people and society values –
in real life and online. Until we get some cohesive action
and the issue of Internet crime is taken seriously just as
it would be on the street, WWW will continue to stand for
Wild Wild West.

Rob Somerville
Rob Somerville has been passionate about technology since his early
teens. A keen advocate of open systems since the mid-eighties, he has
worked in many corporate sectors including finance, automotive, air-
lines, government and media in a variety of roles from technical sup-
port, system administrator, developer, systems integrator and IT man-
ager. He has moved on from CP/M and nixie tubes but keeps a solder-
ing iron handy just in case.

http://www.ihatemygovernment.org

Is your
MISSION-CRITICAL

security strong enough
to stop a

SKILLED ATTACKER?

An ACROS Penetration Test is conducted exactly like a real attack by a skilled,
motivated adversary – only without the damage. We will find the weakest links

in your security and use all our knowledge, skills and capabilities to try to
achieve exactly what your security measures and policies are there to prevent.

If it sounds difficult, we're interested.

Experience the ultimate test of your security.
(After all, the only alternative is to wait for an actual attack.)

ACROS Security – http://www.acrossecurity.com – security@acrossecurity.com

Don't guess
Don't believe

Don't hope KNOW!

http://www.ixsystems.com/perfectmatch?utm_source=BSD%2BAD&utm_medium=Magazine&utm_campaign=BSD%2BMag%2BAd

	Cover
	Dear BSD Readers
	Contents
	Configuring a Highly Available Service on FreeBSD - Part 2: CARP and devd
	FreeBSD Programming Primer - Part 11
	Unix Basics - for Security Professionals
	Introduction to Unix Kernel
	OpenBSD 5.4 as a Transparent HTTP/HTTPS Proxy
	GhostBSD: A User-friendly, Light-weight BSD Alternative
	How Secure Can Secure Shell (SSH) be? (One Time Password aka OTP)
	OPINION: With the UK government in collusion with the major search engines to censor 100,000 search

	http://www:
	ixsystems:
	com/ 2: Off
	com/ 4:

	ixsystems:
	com/ 2: Off
	com/ 4:

	bsdcertification 16:
	bsdcertification 17:
	bsdcertification 18:

