
May/June 2022

Building a Resilient
Private Cloud with FreeBSD

LLDB 14—The New Debugger
for FreeBSD

Pragmatic IPv6

Post-Mortem Kernel Debugging
with netdump(4)netdump(4)

Disaster Recovery

An ambitious company
for ambitious people.
Juniper is changing what’s possible in networking. We’re going beyond
building the networks customers expect—we’re building the networks
customers deserve. And the world is taking note. But to continue to
excel, we have work to do. Change in our industry is accelerating. To
power connections and empower change, we need radical thinkers,
eternal optimists, and energized personalities. We need people like you.

The Junos Core Kernel team is looking for an ambitious Software
Engineer with experience and passion for Kernel/Operating
System technologies Successful candidates will support and
enhance the FreeBSD operating system. The team is responsible
for designing networking/driver domains of our products.

https://juni.pr/FreeBSDEngineering

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President and Treasurer of the FreeBSD
Foundation Board

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo)

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder

•

Kirk McKusick • Lead author of The Design and
Implementation book series

Hiroki Sato • Director of the FreeBSD Foundation
Board, Chair of AsiaBSDCon, and
Assistant Professor at Tokyo
Institute of Technology

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • Member of the FreeBSD Core Team and
Chair of FreeBSD Journal Editorial Board

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company

George Neville-Neil • Past President of the FreeBSD Foundation
Board, and co-author of The Design
and Implementation of the FreeBSD
Operating System

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team

Benedict Reuschling • FreeBSD Documentation Committer
and Member of the FreeBSD Core Team

Mariusz Zaborski • FreeBSD Developer

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • May/June 2022

Welcome to the May/June issue
of the FreeBSD Journal!
Computers are useful tools that can automate many tasks.
Sometimes, however, things can go sideways whether
due to natural disasters, hardware failures, software bugs,
or misconfigurations. (I bear the scars from at least one
of each.) Daniel Bell offers a strategy that can be used to
build a system that is resilient in the face of such failures.

While restoring functionality is typically the first order
of business during or after a disaster, it is also important
to diagnose the causes of the original failure. In the case
of software bugs, a debugger is the primary tool to use.
Michal Górny and Kamil Rytarowski introduce the new-
est version of the LLDB debugger from the LLVM project.
Mark Johnston discusses kernel debugging over network
connections, in particular, how to save crashdumps over a
network connection rather than to a local disk.

In a different vein, Hiroki Sato begins a series of articles
describing the configuration and use of IPv6 on FreeBSD.

Recently, the editorial boards of the Journal met to plan
out issues for the coming year. We had a lively, productive
and far-ranging discussion covering topics in the FreeBSD
universe. Starting with the September/October 2022 issue,
the Journal will be featuring issues focused on Security,
Observability and Metrics, Building a FreeBSD Web Server,
Embedded, FreeBSD at 30, and Containers & Cloud. We
also plan on publishing an issue on FreeBSD 14, timed to
coincide with the release of 14.0.

We love to hear from readers. If you have feedback,
suggestions for a future article, or are interested in writing
for the Journal, please email us at info@freebsdjournal.com.

John Baldwin
Member of the FreeBSD Core Team
and Chair of FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

 3 Foundation Letter
By John Baldwin

 37 WIP/CFT: FreeBSD Boot Performance
By Tom Jones and Mitchell Horne

 42 Practical Ports
Setting up an NFSv4 Fileserver on Open ZFS
By Benedict Reuschling

 47 We Get Letters
Disaster Recovery Plan
by Michael W Lucas

 50 Events Calendar
By Anne Dickison

4FreeBSD Journal • May/June 2022

May/June 2022

 5 Building a Resilient Private Cloud
with FreeBSD
 By Daniel Bell

 15 LLDB 14—The New Debugger
for FreeBSD
 By Michał Górny and Kamil Rytarowski

 22 Pragmatic IPv6 (Part 1)
 By Hiroki Sato

 31 Post-Mortem Kernel Debugging
with netdump(4)netdump(4)
 By Mark Johnston

Disaster Recovery

5FreeBSD Journal • May/June 2022

“Oh yeah, definitely. We’ve had data breaches. I’ve seen clients lose data.” A potential
client was asking about my organization’s track record of data protection, compar-
ing my little IT team of a half-dozen people with much larger providers, and they
weren’t happy with my response. Apparently, “We have never had a breach or

lost client’s data,” is a common and rather silly part of the big managed service providers’ sales
pitches here in Manhattan. I went on to explain that we’ve helped many of my clients recov-
er from data loss, and everyone sees a breach or a failure sooner or later. Never suffering data
loss, as experienced system administrators know, only means you haven’t been around long
enough to deal with one. The most important thing to do is to be prepared.

Being prepared means having a great infrastruc-
ture, which doesn’t mean just blindly flinging all our
workloads in the cloud. Along with the platitude
about never suffering data loss, technical salespeople
will often sing a jingle about how their singular dedi-
cation to the cloud means immunity to both security
and data loss problems. On the contrary, my most
recent examples of client data loss were from popular cloud services, and further destruction
was only mitigated because of our bare metal infrastructure.

For example, one morning I woke up to alarms of heavy disk IO coming from a mid-sized
medical office where we use our FreeBSD infrastructure. A company-wide share on a Windows
fileserver, a bhyve VM on ZFS, was full of ransomware-encrypted files. As I investigated the
servers, my team found the culprit workstations and shut them down to stop the spread. Once
everything was contained, the repair itself took only a few minutes, including the time it took
for the server to reboot. (See the section on Restoration for example commands.) It felt like
a heroic repair, but most of the client’s staff hardly noticed. And that’s exactly what we were
shooting for.

BY DANIEL J. BELL

Everyone sees a breach

or a failure sooner or later.

 Building a
Resilient Private Cloud
 with FreeBSD

1 of 9

A case study of a managed service provider infrastructure using
tools available in FreeBSD base

6FreeBSD Journal • May/June 2022

Unfortunately, one of the infected workstations was a shared machine and contained a
“cloud drive” that we didn’t know about. A medical assistant’s personal files there were dutiful-
ly synced to the cloud, the bits encrypted forever with a text note on how to pay the ransom.
The cloud granted us two perfectly identical directories of garbage. It was a good reminder to
everyone involved that one synced copy, no matter how cloudy, is ever enough.

Running our own servers for our dozen clients means that we have a greater level of cer-
tainty and flexibility, and it didn’t require an enormous server fleet to see both a better de-
fense against data loss and an enormous cost savings versus identical cloud workloads. We use
leased and owned servers running FreeBSD in multiple locations in the U.S. and run nearly ev-
erything our clients need, including databases, fileservers, remote desktop environments, and
complex proprietary web applications. Our host environments are designed to be as simple and
replaceable as possible, requiring nothing outside of the FreeBSD base environment to provide
an effective and resilient private cloud environment. Using jails for UNIX workloads, bhyve for
commercial VMs, and everything organized into ZFS volumes, our network of FreeBSD hosts
was easily tuned to be a secure and redundant cloud alternative right out of the box. Here’s
how we do it.

Preparing Our Infrastructure
Evaluating when [not] to use bare metal

As our client base grew during the early 2010s, we were relying more on the cloud and no-
ticed both ours and our clients’ bills creeping up by thousands of dollars per month. A few
years ago, I became aware that bhyve, the hypervisor in the FreeBSD base system, ran Win-
dows and just about everything else solidly on most new hardware. My organization could
now host almost all of our tenants’ workloads on
bare metal servers running the FreeBSD base—and
FreeBSD has been my weapon of choice since the
90s. Until bhyve was ready for prime time, we still
relied heavily on FreeBSD jail hosts and cloud VPSs,
but most of our hardware infrastructure used VM-
ware eSXI. Our hardware was aging and becoming
tedious to maintain, so it was a perfect time for a
change. We evaluated what we could accomplish
with a FreeBSD hosting plan, along with some in-
vestments in hardware, datacenters, and leased bare
metal providers.

The projected cost savings was immediately obvi-
ous. We compared the three-year total cost of own-
ership of a VPS, such as a DigitalOcean Droplet, against two equivalent leased or purchased
bare metal servers. We estimated that the leased option costs about half as much compared to
equal resources in the cloud, and owning the servers would cost less than a quarter of the pure
cloud options. In this analysis, we were careful to include liberal estimates for hardware main-
tenance labor, kilowatt hours, network equipment (FreeBSD routers, of course), and everything
else our infrastructure needed to provide at least as much juice as we were getting from the
cloud; there really was no contest.

Of course, there are still areas where the mega corporations can effectively compete with
small FreeBSD outfits like ours. Regulatory compliance for specific industries, like the U.S. gov-

2 of 9

It didn’t require an enormous

server fleet to see both

a better defense against

data loss and an enormous

cost savings versus identical

cloud workloads.

7FreeBSD Journal • May/June 2022

ernment’s FedRAMP assessment program, is too expensive to certify. In workloads requiring da-
tacenters with these certifications, we were stuck running VPSs at major providers that can af-
ford those certifications. Also, some shared services would require a pretty huge infrastructure
to create cheaply, such as CDNs, mail delivery, and BIND secondaries (we often use StackPath,
AWS SES, and EasyDNS, respectively, for these services). They’re much cheaper and less labor
intensive to outsource at my organization’s scale, and we’re happy to work with them.

Designing our network
One of the big benefits of large public cloud providers is that it’s easy to create and de-

stroy resources in multiple locations, so everything we self-host needs to be doubled-up and
geographically distributed as well. For example, we keep one rack in a datacenter close to my
home in New York for convenience, and some in Texas where the kilowatts are cheap. The da-
tacenters we use in California, Florida, and Texas have excellent 24/7 remote hands available
and can spin up leased servers, hand us network KVM access, and sell us spare parts when we
need them. With this flexibility, we know that we can recover from some of the worst types
of hardware failures without owning everything we might need in advance. I’ve tested these
teams, and I was able to get a fresh FreeBSD system running in two hours or faster. And of
course, the big cloud guys are still out there in a pinch if we really need them.

We also link all our datacenters, leased servers, and even third-party cloud servers by a man-
agement VPN. We recently switched to a WireGuard mesh, which is a snap to configure, easy
to scale, and a welcome newcomer to the FreeBSD kernel.

To keep track of everything, we link our documentation database to our private DNS so
names of hosts, jails, and VMs are in a predictable unique format, Function##.Client. This
helps us keep all our management, monitoring, and volume naming easy and intuitive. We
store additional information using aliases (CNAME) and text (TXT) records to pull additional in-
formation and feed monitoring and maintenance automations. For example, Function##.Cli-
ent will resolve into Function##.Client.Site, so we can look up any instance’s datacenter
code:

% host host12.dndrmfln
host12.dndrmfln is an alias for host12.dndrmfln.scr1
host12.dndrmfln.scr1 has address 10.10.10.100
% host fs1.waynecorp
fs1.waynecorp is an alias for fs1.waynecorp.gtm2
fs1.waynecorp.gtm2 has address 10.20.20.200

Host configurations
Along with network object names, we try to keep all our hardware and software configu-

rations as consistent as possible between our hosts, which means they’ll be quickly replaceable
without too much worry. The common grim metaphor is that we want our servers to be more
like cattle and less like pets, so we can feel less concerned when one needs to be put out to
pasture. There’s some difference in specific CPU and memory loadouts, which are based on
workload requirements, but as a rule of thumb, we try to optimize performance with SSD mir-
rors for workload-bearing data drives and HDD raidz2 for backup-focused hosts.

We keep zpool names completely unique for a thin additional veneer of safety. For exam-
ple, a bare metal server named host12.bts might have pools named boot12, ssd12, or rust12 to

3 of 9

8FreeBSD Journal • May/June 2022

denote boot, flash, and HDD pools, respectively. It’s a nice sanity check that has prevented me
from copy/paste clobbering the wrong dataset on the wrong server. We always use an SSD
boot mirror with the default zpool root structure from the FreeBSD installer. We avoid installing
guests on our root pool. For our data zpool, we create volumes representing our major host
functions:

• datapool/jail: Our jails usually contain a FreeBSD base, but we sometimes use simpler ch-
root environments or Linux bases.

• datapool/vm: bhyve VMs. Each dataset contains configuration notes and bhyve logs, and
sub datasets include zvols representing the VM’s virtual drives, e.g., datapool/vm/guest.
client/c-drive. This intuitive structure is compatible with vm-bhyve.

• datapool/Backup: These are ZFS replications of a backup partner that are updated at
least daily. We also may contain rsync and rclone backups, e.g., from Microsoft OneDrive
or other non-ZFS environments, which we snapshot as well.

• datapool/Archive: We move a dataset to “Archive” if there are no active replications. For
example, if an instance is retired, we’ll use zfs rename to move it here.

All other configuration is as simple as possible and as identical as possible with the goal that
all our VMs and jails will boot quickly on their backup hosts. We limit our usage of packages
to monitoring, management, networking, and quality-of-life packages like shells that won’t sig-
nificantly complicate management if a package were to break. For example, we sometimes use
the vm-bhyve package to simplify execution of our bhyve and bhyvectl commands, but we
have a contingency plan to do without them in a pinch.

The most frustrating wrench in a fast recovery of an instance is a mismatch between net-
work object names, which is easy to break with or without jail/vm managers. For example,
we’ve had several recovery hiccups because bridge0 connected to a LAN interface on one
server and WAN on its recovery host. We used to rename our bridges and epairs to descrip-
tive names such as lan0 or vm22a but found that to be tedious and ultimately unhelpful as our
fleet grew. Finally, we settled on a fixed structure for virtual network objects such as:

• Bridge names:
bridge0: LAN
bridge1: WAN
bridge2: Virtual network
bridge3: Client VPN

• epair and tap device names: We try to keep these documented but have been most suc-
cessful using the number to match their last ipv4 octet, e.g., epair201 or tap202. vm-bhyve,
the jail jib command, and other tools can help with managing these, but we still find it
helpful to reliably know which interface belongs to which instance.

Of course, if an off-site backup partner has a different network infrastructure or IPs need to
change on recovery, some of this preparation will have to be adapted and documented. We do
our best to break and test our recoveries regularly so we can meet our recovery objectives.

Server for durability and redundancy
As the old saying goes, “two is one and one is none,” so most of our bits are on four phys-

ical machines at any one time. We keep at least two ZFS replicated backups of everything, plus
hot or warm application-level backups depending on the type of workload and our recovery
point and recovery time objectives. Of course, the warm backups are provisioned with enough
resources to operate all of the failovers they’re responsible for (or else they could not be consid-

4 of 9

9FreeBSD Journal • May/June 2022

ered particularly balmy). Lastly, we keep an additional copy of everything kept on big old rust
buckets with a much more conservative pruning strategy.

Thankfully, we can trust that ZFS replication will ensure everything is backed up with cryp-
tographic certainty, but beyond additional copies we also need to make sure a successful attack
on one server can’t cascade damage to others. To help protect ourselves, we always use zfs
allow to run limited-privileged automatic replication processes. We practice the most extreme
security measures for tertiary backups to the aforementioned rust-bucket. There is no direct In-
ternet or VPN access allowed to this machine at all; it can only be managed locally at the office.

Maintenance of Our Cloud Environment
Snapshots

Of the myriad excellent ZFS snapshotting utilities, I prefer the simplest ones like zfs-peri-
odic. More recently, we’ve been mimicking the zfsnap2 readable snapshot naming format,
which tells us everything we need to know right from zfs list: @Timestamp--TimeToLive.
A zfsnap2 snapshot name for right now with a one-week (suggested) retention policy is just
the following:

TTL=1w
NOW=`date -j +%Y-%m-%d_%H.%M.%S`
SNAPNOW=$NOW--$TTL

For me right now, that’s 2022-04-08_16.49.48--1w”, which is easy to read in a zfs list.
zfsnap2 saves us a few keystrokes for snapshotting, and it also has good pruning features
based on the TTL values. One of the first things I do when I set up a host is jam these com-
mands right into root’s crontab.

VOLS=”boot02 rust02/vm rust02/jail”
0 0 * * * echo $VOLS | xargs zfsnap snapshot -ra 1w
10 0 * * 0 echo $VOLS | xargs zfsnap snapshot -ra 1m
20 0 1 * * echo $VOLS | xargs zfsnap snapshot -ra 1y
30 0 1 1 * echo $VOLS | xargs zfsnap snapshot -ra forever
0 1 * * * echo $VOLS | xargs zfsnap destroy -r

In this example, the VOLS will get daily, weekly, monthly, and annual snapshots with a re-
tention policy of one week, one month, one year, and forever, respectively. On our rust-buck-
ets, we prune more carefully and less frequently for good measure.

Replication
Since our backups are our last line of defense, we try to practice our best security protocols

here. We always use pull replication because we want each server to have as small of an attack
surface as possible. For example, our dedicated backup hosts have no Internet traffic forwarded
to them at all.

For an additional minor security improvement, we never ssh to the root user on our backup
source. I don’t have anything against using root for replication, but it’s so easy to compartmen-
talize ZFS functions with zfs allow that we’re happy to have that little extra peace of mind.
Unfortunately, it’s not quite as easy for the zfs receive side; the receiving user will need ev-

5 of 9

10FreeBSD Journal • May/June 2022

ery non-default ZFS property permission used, or the replication will throw errors or fail. We
found a good compromise by running our first zfs receive operation as root, and then running
the regular backup scripts as an unprivileged user. Although there are myriad great replication
scripts available for FreeBSD, I wanted to learn the process precisely—and then I just ended
up using my own scripts. Here’s an example, based on my homegrown replication scripts, for
backing up a VM called drive.client.

On the host pulling the backups, we’ll set up our backup user to replicate to host12rust/
Backups and make us an ssh-key:

pw useradd backup -m
su backup -c ssh-keygen -N “” -f ~/.ssh/id_rsa
cat ~backup/.ssh/id_rsa
zfs create -o compression=zstd host10rust/Backups
zfs allow -u backup receive,mount,mountpoint,create,hold host10rust/Backups

On the source host, we make the same backup user and grant it the permissions to send us
snapshots:

pw useradd backup -m
cat >> ~backup/.ssh/authorized_keys
[PASTE THE KEY HERE]
zfs allow -u backup send,snapshot,hold host05data/jail
zfs allow -u backup send,snapshot,hold host05data/vm

We can do the rest of the work from the backup host. There are lots of zfs send and re-
ceive choices, but the only thing we can’t live without is -L to ensure we get block sizes
matching our source. We also like -c to send the stream compressed as-is, for lower band-
width, but we can also omit it to reapply a heavier compression setting on the target volume.
We also like forcing canmount=noauto to avoid the risk of active, overlapping mounts. This
adds a mounting step in recovery, but I think it’s worth it. Our first replication, fired as root,
looks something like this.

Figure out our latest snapshot:

REMOTE=”ssh -i ~backup/.ssh/id_rsa backup@host05”
SOURCE=”host05data/jail/drive.client”
TARGET=”host10rust/backups/drive.client”
SOURCESNAP=`eval $REMOTE zfs list -oname -Htsnap -Screation -d1 $SOURCE | head -1`
eval $REMOTE zfs send -cLR $SOURCE | zfs receive -v -u -x atime -o canmount=noauto
$TARGET

Building our script from the above, we can run subsequent replications as our backup.

TARGETSNAP=`zfs list -oname -Htsnap -Screation -d1 $TARGET | head -1`
ssh -i ~backup/.ssh/id_rsa backup@host05 zfs send -LcRI $TARGETSNAP $SOURCESNAP |
zfs receive $TARGET

6 of 9

11FreeBSD Journal • May/June 2022

Due to shifting schedules or oversights, a snapshot inevitably gets out of sync from time to
time and a replication will fail. To figure out the most recent matching snapshot between two
datasets, we run a script that does the following:

zfs list -oname -Htsnap -Screation -d1 $SOURCE | awk -F@ ‘{print $2}’ > /tmp/
source-snap
zfs list -oname -Htsnap -Screation -d1 $TARGET | awk -F@ ‘{print $2}’ | grep -f /
tmp/target-snap

We have much beefier homespun awk replication scripts that take care of all the above for
us, including retrying and fixing broken -R replications (e.g., if there are different child snapshots
due to a recovery), and monitoring/reporting. The reporting is full of emojis.

Migration and restoration with ZFS
If the virtual interface names are already consistent with the source, all we need to do is

check and start the instance. Here’s our checklist to make sure a backup partner is ready to roll
when duty calls.

 ✓ The backup server’s virtual networks are prepared and ready to adopt the guest, as well
as any network management software we need, such as VPNs or dhcpd.

 ✓ Any other guest configuration files are up-to-date and readily available. For jails, we like
using the format /etc/jail.guest_name.conf so it’s usually quickly and painfully obvi-
ous when a configuration is missing.

 ✓ The backup server has the correct amount of resources and sysctl settings, e.g. Linux support.
 ✓ Our replications are running on the proper schedule: daily, hourly, or quarter-hourly.
 ✓ We’ve documented and tested our process and our collaborators know what to do.

If everything is ready to go and tested, the recovery or migration process will be painless:
• If the source hasn’t crashed, power it off, take one more snapshot, and replicate it one last
time. We have a script written for these stressful moments tuned for fastest possible repli-
cation with no intermediate snapshots. See the “Tips and Tricks” section for more details.

• Next, we replicate, move, or clone our snapshot into the production location. It’s quickest
and easiest to rename the snapshot into the production location for active guests, for ex-
ample:
zfs rename data1pool/Backup/guest.client data1pool/vm/guest.client
zfs mount data1pool/vm/guest.client

• Finally, we double-check the guest’s configurations launch it.
We often recover data using ZFS clones, which are also a great way to test iterative chang-

es to guests, e.g., testing database upgrades before running them in production. If the clone is
going into production, we always zfs promote it when convenient to avoid later dependency
problems. In the ransomware recovery example at the beginning of the article, we used a clone
to ensure there was no risk of losing any good data after the time of the recovered snapshot:

zfs rename data1pool/vm/fs.cli/d-drive data1pool/Backup/fs.cli-d-drive-ransom.
zfs clone data1pool/Recovery/fs.cli-d-drive-ransom@last-night data1pool/vm/fs.cli/
d-drive
[…after hours…]
zfs promote data1pool/vm/fs.cli/d-drive

7 of 9

12FreeBSD Journal • May/June 2022

If the old host is accessible, we can rename the migrated dataset into the pool/Backup
dataset, and flip-flop the backup process.

Tips and Tricks
Migrating instances faster

No matter how prepared I am, there are still situations when I need to perform a rapid repli-
cation to a host while under the gun. In these special cases and when it’s safe to do so, such as
when a trusted switch or VPN is involved, we can drop our encrypted ssh pipe for a little more
speed.

Unfortunately, if we use zfs send -R to pick up child datasets, it will send all child snap-
shots, which probably isn’t the best idea in a pinch. (In the old Oracle ZFS documentation, there
was zfs send -r command, which could be used to only replicate the latest recursive snap-
shots, but unfortunately this hasn’t yet made it into OpenZFS).

Here’s a quick one-liner to get a list of the newest snapshots recursively that can be used:

VOL=”pool/vm/guest.cli”
zfs list -Hroname $VOL |xargs -n1 -I% sh -c “zfs list -Honame -tsnap -Screation %
| head -1”

Next, we can user the output of the above to create a network pipes with nc:

zfs send -Lcp sourcepool10/vm/guest.cli@2022-02-19_00.19.77--1d | nc -Nl 60042

And on the target, we attach to the above pipe:

nc -N source 60042 | zfs receive -v localpool/jail/guest.cli

And repeat the previous two pipe commands with any child volumes. In our example, we
used “nc -N” to close the socket when the stream completes and use the zfs send -c option
to send the replication stream in its currently compressed state. We also sometimes add a com-
pressor to the pipe as described below.

Escaping someone else’s cloud (or another hypervisor)
We use a similar technique to copy a remote volume into an image file or zvol. For example,

this is great for moving a VM from a cloud provider or another hypervisor into bhyve in a sin-
gle step, rather than spending more time and space
downloading and converting the volume in multiple
steps. It’s especially handy for evacuating “cloud ap-
pliances” that aren’t yet available in a raw, bhyve
friendly format.

To get started, we disable the cloud-init and all
provider-specific startup scripts (YMMV if you use
cloud-init). Though we’ve successfully cloned ac-
tive VPSs in place, corruption is likely if the source volume is mounted. A much better choice is
booting from a FreeBSD ISO if the cloud provider allows. If not, then we make a copy of the
source volumes and attach them to another VPS. For example, in AWS, we can snapshot tar-
get volumes, convert the new snapshots to volumes, and then attach those volumes to a run-

A much better choice is booting

from a FreeBSD ISO if the cloud

provider allows.

8 of 9

13FreeBSD Journal • May/June 2022

ning host. Note that the examples will need to be modified based on operating system. For ex-
ample, Linux’s stock dd has slightly different options, and the sending OS might not have zstd
(gzip and gzcat are good alternatives). Be careful not to use a compression level so powerful
that CPU time becomes your transfer time bottleneck.

On the source, possibly adjusted for OS differences and device names:

dd if=/dev/ada0 bs=1m | zstd - | nc -Nl 60042

On our target FreeBSD host:

nc -N source 60042 | zstdcat | dd of=ada.img bs=1m status=progress

For guests that boot with UEFI, it will be easy enough to move the boot loader file into the
right place if bhyve doesn’t find it automatically. If the VM uses grub, it might take a little
more elbow grease to make everything line up properly. Here’s the grub-bhyve command for
a CentOS VM I recently released from the clutches of big cloud:

echo ‘(hd0) /dev/zvol/ssd11/vm/pbx.bts/vda’ > device.map
grub-bhyve -m device.map -M 8G -r hd0,1 -d /grub2 -g grub.cfg pbx3.bts
[usual bhyve commands]

Conclusion
Your disaster recovery plan will come from your team, not from any amount of cloud re-

sources; we have to hire, retain, and train the right talent. In my opinion, we can have it all.
Keep the large cloud providers for the lightweight scaling solutions they excel at, and for every-
thing else use a rock-solid foundation of FreeBSD bare metal servers running ZFS, bhyve, and
jails. Take your data seriously and save money doing it.

DANIEL J. BELL is the founder of Bell Tech, a small managed service provider that has been op-
erating in New York City for over 20 years. He prioritizes privacy, security, and efficiency by utiliz-
ing a unique mix of cutting-edge technologies along with bulletproof, tried-and-true standards.

9 of 9

Nov/Dec 2019 57

November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

2022 Editorial Calendar
• Software and System Management

(January-February)

• ARM64 is Tier 1 (March-April)

• Disaster Recovery (May-June)

• Science, Systems, and FreeBSD (July-August)

• Security (September-October)

• Observability and Metrics (November-December)

15FreeBSD Journal • May/June 2022

F
or the last decade, FreeBSD underwent a major effort of replacing the various compo-
nents of its tool chain with more modern, permissively licensed programs. A part of that
effort was replacing the aged GNU GDB debugger with LLDB, the debugger of LLVM
project. Moritz Systems took part in that effort by taking up a few projects to modernize
and improve the FreeBSD support in LLDB, as well as implement missing features.

LLDB 14 is a culmination of the work done so far. The March LLVM tool chain release in-
cludes a number of improvements that bring LLDB closer to a fully featured replacement for
GDB. The debugger features FreeBSD support on amd64, arm, arm64, i386 and powerpc. It
uses a client-server layout that provides uniform support for both local and remote debugging.
In addition to the provided lldb-server, other protocol stubs are supported such as the ones pro-
vided by QEMU emulator or the FreeBSD kernel. Multithreaded programs are fully supported,
as well as the most common multiprocessing scenarios, with more work underway. In addition
to that, FreeBSD kernel debugging support akin to KGDB is provided.

This article details some of the more interesting aspects of LLDB’s architecture and its fea-
tures. However, prior to diving into the specific details, it probably makes sense to start by dis-
cussing some of the basic principles on how debuggers are implemented on Unix derivatives
such as FreeBSD.

Debugging on Unix Derivatives
Debugging userspace processes on many Unix derivatives, including Linux, FreeBSD and oth-

er BSDs is implemented through a combination of ptrace(2) system call and signals. The former
is generally used to control the traced process and obtain additional information about its state,
while the latter is used to asynchronously report events to the debugger.

BY MICHAŁ GÓRNY AND KAMIL RYTAROWSKI

1 of 7

The New Debugger
 for FreeBSD

16FreeBSD Journal • May/June 2022

Fig. 1. The initial steps in a debugging session, initiated either via launching a new process or attaching to a running
process.

The first step in a debugging session is for the tracer to either attach to a process that is al-
ready running, or launch a new program. In the former case, it issues a PT_ATTACH request.
Once the request succeeds, the traced process is stopped and a signal is delivered to the de-
bugger. In the latter case, the process is a bit more complex as presented on fig. 1.

The ptrace(2) API does not provide an explicit request to spawn a new program. Instead,
the debugger needs to use the regular system API to do that, e.g. fork(2) + exec*(2). How-
ever, just before executing the new program, the child process issues a PT_TRACE_ME request.
This causes it to start being traced by its parent process (the debugger). At this point, the de-
bugger steps the child process until the exec*(2) call finishes.

After attaching or launching, the traced process is stopped. The debugger performs addi-
tional setup, e.g. through setting the reported event mask or querying additional information
about the debugged process. The remainder of the debugging session consists of the debug-
ger issuing ptrace(2) requests to control the debugged process and query additional informa-
tion about it, and the kernel delivering process-related events via signals. SIGTRAP has a special
role here, as it is used to indicate the majority of events specific to the debugging process, e.g.
breakpoint and watchpoint hits.

The Architecture of LLDB
LLDB utilizes plugins in order to abstract away large parts of its code base. At the moment

of writing, there are 26 plugin categories existing in the LLDB source tree. The plugins pro-
vide support for different platforms, ABIs, programming languages, file formats and so on.
While the plugin architecture is not considered complete yet (most notably, dynamic loading of
plugins is not supported at the time of writing), it enforces the necessary encapsulation to pre-
vent the code from becoming unmaintainable.

At the core of the plugin system, there is one category crucial to LLDB’s debugging func-
tionality: process plugins. These plugins implement all the routines needed to launch a process
or attach to one already running, and debug it. In the modern versions of LLDB, the process

2 of 7

17FreeBSD Journal • May/June 2022

plugin category holds two kinds of modules: the actual client plugins built on Process class,
and lldb-server backends built on NativeProcessProtocol class.

Historically, every operating system supported by LLDB had its own client process plugin. Pri-
or to LLVM 13, this was also the case for FreeBSD. When running on this platform, the LLDB cli-
ent would load the respective process plugin and use it to control the debugged program. The
debugger’s UI and ptrace(2) invocations would both be done from a single process.

A more modern approach used by LLDB is to move the actual debugging process abstrac-
tion into the lldb-server(1) executable. The platform support is moved into a dedicated
lldb-server backend. The client uses the gdb-remote plugin to either spawn a new lldb-server
instance, or connect to another debug server using the GDB Remote Serial Protocol. This serv-
er does not have to be lldb-server — it could be the gdbserver from GDB or one of the imple-
mentations provided by e.g. QEMU, Valgrind or the FreeBSD kernel.

Fig. 2. Traditionally, the FreeBSD plugin was loaded into LLDB, and the debugged process was traced directly from the
LLDB executable (subfig. a.). The more modern approach is to move this logic into lldb-server, and have LLDB communi-
cate with it using the GDB Remote Serial Protocol (subfig. b.).

This change marks the evolution of LLDB from a standalone debugger to a client-server
model that is capable of cross-platform remote debugging. This layout is also used when de-
bugging locally, providing isolation between the debugger’s UI (i.e. the LLDB client) and the
server issuing the actual ptrace(2) calls.

As of LLDB 14, the vast majority of officially supported platforms use the client-server model
and the gdb-remote process plugin. The other process plugins primarily implement support for
a variety of core dumps formats.

Local and Remote Cross-platform Debugging
The LLVM toolchain is designed as a cross-compiler from ground up. This also applies to

LLDB, as it features support for cross-debugging across different architectures and operat-
ing systems. However, since the majority of the debugging scenarios requires running the de-
bugged program, LLDB needs to overcome the limitations of the operating system kernel.

A variety of operating systems feature the ability to run executables built for different ABIs
that are compatible with the current CPU, most commonly 32-bit i386 executables on a 64-bit
amd64 kernel. When this is the case, it is valuable for the kernel to support such programs via
the ptrace(2) API and for a debugger to be able to use it correctly. The problem can be classi-
fied into three scenarios:

1. Native debugging — the kernel, the debugger and the debugged executable architec-
tures are the same.

3 of 7

18FreeBSD Journal • May/June 2022

2. Debugging non-native programs — the kernel and the debugger architectures are the
same but the executable architecture is different.

3. Running a non-native debugger — the kernel and the debugger architectures are different.
Table 1. Example mapping of architectures to the debugging scenarios.

Case Kernel Debugger Executable

1
amd64 amd64 amd64

i386 i386 i386

2 amd64 amd64 i386

3 amd64 i386 i386

The cases 1. and 3. are the same from the debugger’s standpoint. Both the debugger and
the traced executable are built for the same architecture. The debugger needs to explicitly fea-
ture support for the executables of this architecture, and its ptrace(2) API. Case 3. additionally
requires the kernel support for non-native ptrace(2) API.

The second case is perhaps the most interesting. The debugger is built for the native sys-
tem architecture, and therefore uses the native ptrace(2) API. However, this API needs to be
adjusted for the non-native executable format. For example, if an i386 executable is run on
amd64, the PT_GETREGS request uses 64-bit register dump format and it is desirable that the
debugger translates between it and the format used natively on i386.

While local cross-debugging is limited by kernel features, remote debugging is much more
powerful. In this scenario, lldb-server, gdbserver or any other server implementing a compati-
ble protocol can be spawned on one machine, and the LLDB client can be used to connect to
it from another. The two machines don’t have to be running the same architecture or even the
same operating system.

In fact, it gets even better. Remote debugging is not limited to tracing userspace applica-
tions. It can be used to connect to the GDB stub found in FreeBSD kernel over the serial port,
and inspect the kernel’s state. It can be used to connect to GDB stub implemented in QEMU in
order to control the virtual machine’s CPU and memory.

LLDB 14 features a more compatible implementation of the GDB Remote Serial Protocol
than prior versions. Over the years, LLDB has evolved from using a custom variation of the pro-
tocol that was suitable only for communication between LLDB and lldb-server, to one that is
compatible with many other debugging servers.

One interesting example of this evolution are register definitions. The earliest versions of
lldb-server were transmitting them in JSON-based format that fitted the LLDB’s internal layout
best. Afterwards, XML-based format was added for compatibility with GDB. Finally, fallback
definitions were added to the client for a variety of architectures in order to support stubs that
did not transmit target definitions at all.

Debugging Multithreaded Processes
Every modern debugger needs to be able to handle multithreaded programs. In general, the

support for multithreading consists of:
• receiving thread creation and termination events
• being able to distinguish other events applicable to a specific thread (e.g. per-thread signals,

breakpoints)
• being able to control running and stopping individual threads

4 of 7

19FreeBSD Journal • May/June 2022

Fig. 3. On Linux and NetBSD 10, the primary thread shares identifier with the process identifier. On FreeBSD, process
and thread identifiers use disjoint ranges.

The exact mechanism of handling multiple threads of a debugged program varies depending on
the operating system. Modern kernels use a single namespace for process and thread identifiers.
TIDs are globally unique. On Linux (and the future NetBSD 10 release) the primary thread has the
same identifier as the corresponding process identifier. On FreeBSD process and threads identifiers
use disjoint ranges.

This layout also implies how per-thread requests are handled via ptrace(2) API. On Linux and
FreeBSD, TID can be passed in place of PID to perform a per-thread action. For historical reasons,
on NetBSD the thread identifier needs to be passed separately along with the process identifier.

Thread list change events are generally enabled via setting an appropriate event mask. The ker-
nel reports these events via issuing a SIGTRAP signal with appropriate data. However, it should be
noted that the debugger needs to account for the events being received out of order, that is e.g. a
breakpoint hit from a new thread arriving before the thread creation event.

On the current versions of FreeBSD and NetBSD, the tracing API could be called process scoped.
When a thread-specific event occurs, the whole process is paused. The debugger receives a signal
and needs to use ptrace(2) to obtain additional signal information, particularly the identifier of
the corresponding thread. There are also requests to control whether a particular thread will remain
paused, continue running or enter single-stepping when the process is resumed.

On the other hand, the Linux API treats threads in greater isolation. The debugger needs to
trace every thread separately. Signals are reported for a specific thread. When a single thread stops,
other threads of the process remain running.

Debugging Multiple Processes
The debugger’s support for multiple processes can cover a variety of use cases, from pro-

grams forking themselves in order to run multiple operations simultaneously, to running exter-
nal programs or complete pipelines. At the time of writing, LLDB has two features for debug-
ging multiple processes: support for multiple targets and handling of fork events. Furthermore,
there is an ongoing work to introduce full multiprocess support.

In LLDB terminology, a target represents a single debugged process. Appropriately, in order
to be able to trace multiple processes simultaneously, LLDB needs to create and track multiple
targets. In the most common case of using gdb-remote plugin to trace native processes, every
process is traced by a separate lldb-server instance, and every target maintains a separate con-
nection to its respective server. The limitation of this approach is that every target needs to be
created separately, e.g. via launching the executable or attaching to a process that is already
running.

5 of 7

20FreeBSD Journal • May/June 2022

Fig. 4. When a process forks, the debugger receives SIGTRAP from the parent process and SIGSTOP from the child pro-
cess. The server reports stop due to fork to the client, and the client requests detaching one of the processes (via PT_DE-
TACH) and resuming the other one (via PT_CONTINUE).

The other feature is handling of fork(2), vfork(2), posix_spawn(3) and their equivalents.
Similarly to the support for multiple threads, this is enabled via setting an appropriate event
mask. When the process is forked, the debugger is signaled and starts tracing both the parent
and the child processes. However, at this point LLDB does not feature full support for tracing
both processes, and instead detaches one of them. LLDB can be configured to either continue
tracing the parent process, or detach it and trace the newly forked child instead.

The purpose of the ongoing multiprocess effort is to combine both these features to pro-
vide the full support for debugging process trees. A key feature is to be able to start tracing the
child process immediately without having to resume it or its parent. There are two primary pos-
sible implementations: using GDB-style multiprocess extensions to support multiplexing multi-
ple traced processes within a single GDB Remote Serial Protocol connection, or using a separate
connection for every new process.

Non-live Process Debugging Targets
While admittedly the primary use of LLDB on FreeBSD is to debug userspace processes,

there are other kind of ‘process’ plugins: notably plugins handling core dumps and the FreeBSD
kernel debugging. Similarly to the gdb-remote plugin, these modules are loaded directly into
LLDB client and do not utilize the client-server architecture.

Core dumps on modern Unix derivatives are recorded using the ELF file format, much like
executables on these platforms. Appropriately, they are handled by an elf-core plugin in LLDB.
However, this plugin is not suitable for handling FreeBSD kernel core dumps since these dumps
use physical memory layout rather than the virtual layout used by regular processes.

Fig. 5. Common methods of debugging the FreeBSD kernel

FreeBSD kernel debugging is a wider topic. There is a variety of methods provided for work-
ing either with the live kernel (i.e. the kernel of a running system) or with a kernel core dump.
Firstly, the kernel itself features a built-in debugger, kdb. Secondly, it features a GDB stub that
can be used to attach a remote debugger using the GDB Remote Serial Protocol, over a serial

6 of 7

21FreeBSD Journal • May/June 2022

port. The recent versions of LLDB include improved serial port support for precisely this reason.
Thirdly, it is possible to gain access to kernel memory through /dev/mem special device. Finally,
it is possible to use a kernel core dump.

LLDB 14 introduced a new FreeBSDKernel plugin that provides support for the last two
scenarios. It enables LLDB to open and process kernel core dump files correctly, both in the
newer minidump format and in the older ‘full memory dump’ format. This is done with the
help of one of the two libraries: either libkvm that is provided by the FreeBSD base system, or
libfbsdvmcore that has been created as a portable alternative for cross-platform debugging.
This makes it possible to use LLDB as a replacement for the KGDB tool.

Summary
Over the last years, LLDB has made major progress as a debugger. While it still does not fea-

ture 100% feature parity with GDB, it improves with every new release. Furthermore, it goes
beyond aiming to be ‘just’ a replacement for GDB. Built on top of LLVM tool chain, it features
extensive expression parsing support built on top of Clang, JIT suport, Python and Lua scripting
support. Plugin-based design and good test coverage makes extending it a pleasure.

The progress made on the LLDB front has made it possible to finally retire the aged GDB
from FreeBSD and replace it with LLDB that fits the project much better. Furthermore, thanks
to fruitful cooperation between the projects, it was possible to integrate KGDB functionality di-
rectly into LLDB, removing the need for a separately maintained frontend. These achievements
were possible in large part due to the support of the FreeBSD Foundation.

There is a lot of interesting work happening in LLDB all the time. A part of it is a recently
started project on implementing full support for multiprocessing — effectively enabling users
to efficiently debug complete trees of forked or spawned processes. Another interesting future
project is RISC-V architecture support.

KAMIL RYTAROWSKI and MICHAŁ GÓRNY are open source enthusiasts and contributors
for over 10 years. They founded Moritz Systems, a company focused on BSD development.
They authored the modern LLDB plugin for NetBSD, and have been improving LLDB’s support
for FreeBSD since September 2020.

7 of 7

22FreeBSD Journal • May/June 2022

Have you ever tried to use IPv6 on your FreeBSD box? While IPv4 is still the golden stan-
dard of today’s Internet world, IPv6 is considered as a promising protocol which is ex-
pected to eventually replace IPv4. The first RFC of IPv6 was published in 1995, and

FreeBSD has supported it for over 20 years by default. The implementation is mature, not an
experimental one anymore.

Why is IPv6 less popular? Some people believe that IPv4 is enough for their purpose and
do not want to change. That is a valid reason. However, I believe one of the reasons prevent-
ing IPv6 from being popular is system administrators’ lack of experience. Similar to the history
of IPv4, implementations and best current practices of IPv6 have also been changed over the
years. This makes finding books, articles, or literature containing practical information on IPv6
challenging. As long as the pros and cons of using IPv6 are unclear, no skilled sysadmin wants
to use this new technology.

This series of articles introduces (or re-introduces) IPv6 to you by showing various examples
you can try on your FreeBSD box, not only the theoretical aspects. IPv6 is not a complete re-
placement of IPv4 and works fine with the existing IPv4 network. Even if you are already using
IPv6, you should find something new or valuable.

Introduction
Before diving into the details, I would like to start this with basic concepts that you have to

understand. They might be boring if you are already using IPv6, but this article assumes that the
readers are familiar with IPv4 network management but not with IPv6 as yet. Definitions of the
following technical terms will be explained as the very first introductory topic:

• IPv6 address format and text representation
• Subnet prefix and interface identifier
• Address scope and zone

IPv6 Address
This might be the most visible difference from IPv4. IPv6 has a 128-bit long address1 while

IPv4 has 32-bit long one. The line (1) in Figure 1 shows an example. This IPv6 address is rep-
resented in 8 fields separated by colons. You can see 4 digits in hexadecimal in each field be-
cause it has a 16-bit value.

It is a complete expression of a 128-bit value. However, there is a recommended way for text

BY HIROKI SATO

1 of 9

Pragmatic IPv6
(Part 1)

23FreeBSD Journal • May/June 2022

representation of an IPv6 address2. The rules are as follows:
• Successive “0”s and/or leading “0”s must be omitted,
• The first longest successive “0”s longer than 16-bit must be replaced with “::”,
• Shorten as much as possible.

(1) 2001:0db8:0000:0000:0001:0000:0000:4444
(2) 2001:0db8:0000:0000:0001:0000:0000:4444
(3) 2001:db8:0:0:1:0:0:4444
(4) 2001:db8::1:0:0:4444

Figure 1: An IPv6 address in a hexadecimal format (16-bit field x 8)

(2) in figure 1 is one after the successive zeros are removed, and (3) is one after the first lon-
gest zeros are removed. (4) is the final form and what you will see in outputs from IPv6-aware
software, including FreeBSD.

This convention of the address text representation is just for consistency and simplicity. You
can use all representations from (1) to (4) as your input. It would be best to design your soft-
ware to use (4) in the outputs. An address in a log file is a good example. It should be able to
use “grep” in the format of (4).

Subnet Prefix and IID
The next keyword is "subnet prefix" and “interface identifier (IID).” Let’s revisit an IPv4 ad-

dress before that. Figure 2 shows the structure of an IPv6 and IPv4 address. In IPv4, an address
is represented in “dotted octect” format. There are two addresses: host address and network
address. The host address identifies a "node" or an end host. The network address identifies a
network segment, a domain where nodes can communicate with each other without a rout-
er. A network address is calculated by using a host address and a netmask as shown in Figure
2. If you have 192.168.2.1 as the host address and 255.255.255.0 as the netmask, then the
network address is 192.168.2.0. Machines with the same network address belong to the same
network segment and can communicate directly.

(1) 2001:0db8:0000:0000:0001:0000:0000:4444
 subnet prefix (n bit) interface identifier (128 − n) bit

(2) 2001:db8::1:0:0:4444/64
 prefix length

(3) 192.168.2.1 255.255.255.0
 host address netmask

(4) network address = AND(host address, netmask) = 192.168.2.0
(5) 192.168.2.1/24
 subnet mask length

Figure 2: Subnet prefix and interface indentifier

An IPv4 netmask is designed as a 32-bit value, and it is not necessary for the “1” values in
the mask to be contiguous. 255.255.255.0 is (1111 1111 1111 1111 1111 1111 0000 0000) in
binary. So the leading “1” is contiguous. Most of the netmasks you see today should be con-
tiguous because it is the standard way of routing domain engineering for the Internet. In the
very early days “network class” was used and three classes A, B, and C, were defined by net-
masks —"255.0.0.0," "255.255.0.0," and "255.255.255.0"— respectively. The host address de-
termined one of these classes automatically, so you needed no netmask. This was changed at

2 of 9

24FreeBSD Journal • May/June 2022

some point, and CIDR (Classless Inter-Domain Routing) was introduced3. In CIDR strategy, the
netmask is independent of the host address, and the leading “1”s in the mask are usually con-
tiguous. So the netmask can be represented by using the leading “1”s length. This length is
called “subnet mask length” and is often represented at the tail of an IPv4 address with a slash
when you want to show the network address information at the same time (see also the last
line of Figure 2).

Some modern systems no longer support the non-CIDR netmask. FreeBSD still supports it.
You can try the following to see what happens. Have you ever seen an output of netstat(1) like
this?

ifconfig bge0 inet 192.168.2.1 netmask 255.128.255.0
ifconfig bge0 | grep netmask
 inet 192.168.2.1 netmask 0xff80ff00 broadcast 192.255.0.255
netstat -nrf inet | grep bge0
 192.128.0.0&0xff80ff00 link#1 U bge0

Let’s go back to IPv6. IPv6 has almost the same concept as “host address” and "network
address.” A 128-bit address is divided into two parts; one is “subnet prefix,” and another is
“IID (interface identifier).” The subnet prefix corresponds to “network address” in IPv4. It is a
128-bit address generated by a subnet prefix and “0”s in the lower digits. You can consider a
128-bit netmask, but it is always represented by the leading "1”s length similar to IPv4 CIDR
subnet mask length. In IPv6, it is called “prefix length.”

You can assign an IPv6 address to an interface on your box. You need a subnet prefix, an I
ID, and prefix length to do that. A prefix length for an IPv6 node (e.g., your machine) will be 64
if there is no specific reason. In the core specification of IPv6, the prefix length is variable. How-
ever, most IPv6-related protocols assume an IID is 64-bit or longer. If you do not specify the
prefix length, 64 will be used as the default value. An IPv6 address assigned to your FreeBSD
box is usually split into a 64-bit subnet prefix and a 64-bit IID. An interface identifier identifies
the node in the same network segment.

When you get Internet access from your ISP, typically, you will receive an IPv4 address. If your
ISP supports IPv6, it provides an IPv6 “prefix.” They typically provide prefixes with /48, /56,
/60, or /64 for you. This means you can use 16 bits for your LANs in the case of a /48 prefix
since the prefix length of addresses for your machines is always /64.

Let’s Try IPv6 on FreeBSD
Are you getting tired of abstract things? Let’s go to IPv6 world on your FreeBSD box. As

mentioned in the preface, FreeBSD has supported IPv6 by default for a long time. The GENERIC
kernel has no runtime knob to enable or disable IPv6. All you need to use IPv6 is simply to add
an IPv6 address to one of the interfaces.

Manual Configuration by using ifconfig(8)
To understand IPv6 step-by-step, let’s get started configuring it by hand. bge0 is assumed as

a primary NIC on your box in the following examples. You can try them on your working NIC
and IPv4 network. It will not break them at all.

Try command lines shown in Figure 3. The first ifconfig bge0 shows the current status of
bge0. It should show nd6 options line with IFDISABLED option. This option means “IPv6 is
disabled on this interface”.

3 of 9

25FreeBSD Journal • May/June 2022

The second ifconfig bge0 inet6 -ifdisabled command removes this option. You can
double-check the status by another ifconfig bge0 command.

By third ifconfig command, you should see inet6 line. This is an IPv6 address configured
to bge0. The fe80::d63d:7eff:fe78:fc64%bge0 part is the address, and prefixlen 64 part
shows the prefix length. The “%bge0” part looks a bit odd, but it is a part of the address and
will be explained later.

You can "ping" this address. The ping(8) command for IPv6 is named as ping6(8). Note
that ping(8) and ping6(8) are merged into a single command on and after FreeBSD 13.x,
while ping6(8) is still available in the newer releases.

If an sshd(8) daemon is running on your machine, you can even connect using the IPv6 ad-
dress. Try the last command in Figure 3. Note that if AddressFamily is limited to inet in your
sshd_config(8) configuration file, it fails. See the output of sockstat -6 | grep sshd to
check whether sshd(8) listens to the IPv6 socket.

From users’ point of view, TCP/IP applications with IPv6 support like ssh(1) work in the
same way as IPv4 except for the address format.

% ifconfig bge0% ifconfig bge0
bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=c019b <RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4,
VLAN_HWTSO,LINKSTATE>
ether d4:3d:7e:78:fc:64
inet 192.168.100.104 netmask 0xffffff00 broadcast 192.168.100.255
media: Ethernet autoselect (1000baseT <full-duplex>)
status: active
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO LINKLOCAL>

ifconfig bge0 inet6 -ifdisabled# ifconfig bge0 inet6 -ifdisabled

% ifconfig bge0% ifconfig bge0
bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=c019b <RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4,
VLAN_HWTSO,LINKSTATE>
ether d4:3d:7e:78:fc:64
inet 192.168.100.104 netmask 0xffffff00 broadcast 192.168.100.255
inet6 fe80::d63d:7eff:fe78:fc64%bge0 prefixlen 64 scopeid 0x1
media: Ethernet autoselect (1000baseT <full-duplex>)
status: active
nd6 options=21<PERFORMNUD,AUTO LINKLOCAL>

% ping fe80::d63d:7eff:fe78:fc64%bge0% ping fe80::d63d:7eff:fe78:fc64%bge0
PING6(56=40+8+8 bytes) fe80::d63d:7eff:fe78:fc64%bge0 --> fe80::d63d:7eff:fe78:f-
c64%bge0
16 bytes from fe80::d63d:7eff:fe78:fc64%bge0, icmp_seq=0 hlim=64 time=0.181 ms
16 bytes from fe80::d63d:7eff:fe78:fc64%bge0, icmp_seq=1 hlim=64 time=0.107 ms
16 bytes from fe80::d63d:7eff:fe78:fc64%bge0, icmp_seq=2 hlim=64 time=0.094 ms
ˆC

4 of 9

26FreeBSD Journal • May/June 2022

--- fe80::d63d:7eff:fe78:fc64%bge0 ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/std-dev = 0.094/0.127/0.181/0.038 ms

% ssh -v fe80::d63d:7eff:fe78:fc64%bge0% ssh -v fe80::d63d:7eff:fe78:fc64%bge0
OpenSSH_7.9p1, OpenSSL 1.1.1k-freebsd 24 Aug 2021
debug1: Reading configuration data /home/hrs/.ssh/config
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Connecting to fe80::d63d:7eff:fe78:fc64%bge0 [fe80::d63d:7eff:fe78:
fc64%bge0] port 22.
debug1: Connection established.
....

Figure 3: A command line example to add an IPv6 address to bge0 manually

IPv6 Address Autoconfiguration
An IPv6 address was configured, and it was usable. However, where does this address come

from? In IPv4, you should have configured an address by specifying it literally in an ifconfig(8)
command line. What we did was just ifconfig bge0 inet6 -ifdisabled. What happened?

FreeBSD supports IPv6 SLAAC (StateLess Address AutoConfiguration)4. This is a neat feature
of IPv6 that configure an IID automatically. Remember that an IPv6 address has a prefix and an
IID. The prefix is provided by the network operator (you or someone else), but the IID is what
you have to choose. It must be unique on the same network.

SLAAC fills the IID part by using the MAC address5. It is not exactly the same as the MAC
address, but a unique IID is generated based on it. You can see whether SLAAC is enabled or
not by checking “nd6 options” line in the output of ifconfig(8). If it has “AUTO_LINKLOCAL,"
an IPv6 address is automatically generated and configured.

What about the prefix part? If you configured no IPv6 network or your ISP offered no
IPv6 prefix, your LAN has no IPv6 prefix. However, the bge0 interface has an address fe80::
d63d:7eff:fe78:fc64%bge0. Figure 4 (1) was the output of ifconfig(8). It means an address
shown in (2) in a full 128-bit format. The prefix is fe80:: in the shortened representation.

The fe80:: subnet prefix is one of the reserved prefixes for “link-local” communication. You
can use this prefix freely on any network interface. Addresses within this prefix are limited to
communication between directly-connected machines to the link. In IPv4, 169.254.0.0/16 is re-
served for the same purpose, but it is optional and not widely used for actual communications5.
In IPv6, the link-local subnet prefix is essential in the core protocol. This is why this address is
automatically configured just by enabling IPv6 on the interface.

So you can consider that an IPv6-capable interface always has at least one address with the
link-local subnet prefix. You can use this address for standard TCP/IP applications while it is also
used in various vital communications.

(1) inet6 fe80::d63d:7eff:fe78:fc64%bge0 prefixlen 64
(2) fe80:0000:0000:0000:d63d:7eff:fe78:fc64%bge0/64
 prefix IID

Figure 4: An automatically-configured IPv6 address

5 of 9

27FreeBSD Journal • May/June 2022

Address Type, Scope, and Zone
The last mysterious part of the auto-configured address is %bge0. If you try ping6(8) with-

out this part, ping6(8) fails. What is this?
An IPv6 address has its “scope.” The scope is a topological span within which the address

may be used as a unique identifier 7. Although several scopes were proposed in IPv6 RFCs in the
past, only two scopes named “global” and “link-local” are practical today. The global scope
means routable on the Internet. The link-local scope is valid only on a single, specific link.

The keyword “zone” is related to “scope.” Figure 5 shows an example network with two
or more NICs. A zone is an extent which a scoped address must be unique. If you have two
NICs and they are connected to the same network, you will have an fe80:: prefix address on
each interface automatically. In this case, these two must be unique, and this extent is called
“a link-local zone.” Each link-local zone is identified by using a zone identifier. On FreeBSD, the
zone identifier is the scope identifier or the interface name of the NIC. You can see “scopeid”
keyword in the output of ifconfig(8). The value just after the keyword is the scope identifier.

bge0

bge0

fe80::%bge0/64

FreeBSD Box A

::1

::2

Router A

::3

bge1
::1

fe80::%bge1/64

link-local zone 2
 (%bge1)

link-local zone 1
 (%bge0)

Figure: Relationship between zones and network segments

FreeBSD Box B

Figure 5: Relationship between zones and network segments

Let’s go back to %bge0. This is the zone identifier of this address. Link-local scoped addresses
are unique within the zone but may not be unique on the same machine. So you have to spec-
ify which zone must be used. %bge0 part is required to specify the zone. The scope identifier of
bge0 is 1, so you can write it as %1 instead. A link-local address with no zone identifier is con-
sidered invalid7.

And an IPv6 address has two types; “unicast” and “multicast.” This is independent of the
address scope. If it is unicast, the address is used for regular 1:1 communication. If multicast,
the communication can have multiple receivers.

The prefix automatically determines the scope and type:
• if the first 8 bits are “1111 1111” (ff00::), it is a multicast prefix,
• if the first 10 bits are “1111 1110 10” (fe80::), it is a link-local scope and unicast prefix

(called as LLA, linklocal address),
• the others are global scope, unicast prefixes (called GUA, global unicast address).

Useful Multicast Addresses
Multicast addresses are not popular in standard IPv4 deployment. In IPv6, multicast is used

everywhere. More details will be covered in later issues, but I would like to introduce the follow-
ing two addresses:

• ff02::1—link-local scope, all-nodes multicast address
• ff02::2—link-local scope, all-routers multicast address

6 of 9

28FreeBSD Journal • May/June 2022

Every IPv6 node “joins” the all-nodes multicast address. This means that all machines con-
nected to the specified zone will respond to communication to this address. Let’s try the com-
mand shown in Figure 6. If no other IPv6-capable device is connected to bge0, you will see no
response except for your machine itself. If you have some, you will see multiple ICMPv6 echo
replies. If you use ff02::2, routers on the same link will respond. If you have Apple macOS or
iOS devices, you can see them because they enable IPv6 by default.

These two link-local multicast addresses are helpful for diagnostics. Remember that you can
find an IPv6 neighbor by using ff02::1, and you can find an IPv6 router by using ff02::2.

% ping6 ff02::1%bge0% ping6 ff02::1%bge0
PING6(56=40+8+8 bytes) fe80::d63d:7eff:fe78:fc64%bge0 --> ff02::1%bge0
16 bytes from fe80::d63d:7eff:fe78:fc64%bge0 , icmp_seq=0 hlim=64 time=0.073 ms
16 bytes from fe80::21b:78ff:fe39:84f6%bge0 , icmp_seq=0 hlim=64 time=0.194 ms(DUP!)
16 bytes from fe80::225:90ff:fe13:503a%bge0 , icmp_seq=0 hlim=64 time=0.276 ms(DUP!)
16 bytes from fe80::a6ba:dbff:fee0:b190%bge0 , icmp_seq=0 hlim=64 time=0.351 ms(DUP!)
16 bytes from fe80::202:a5ff:fee9:4104%bge0 , icmp_seq=0 hlim=64 time=0.427 ms(DUP!)
16 bytes from fe80::202:a5ff:fee9:c87d%bge0 , icmp_seq=0 hlim=64 time=0.511 ms(DUP!)
16 bytes from fe80::8c:7aff:fe24:1c64%bge0 , icmp_seq=0 hlim=64 time=0.585 ms(DUP!)
16 bytes from fe80::202:a5ff:fee9:c3c9%bge0 , icmp_seq=0 hlim=64 time=0.658 ms(DUP!)
16 bytes from fe80::202:a5ff:fee9:3952%bge0 , icmp_seq=0 hlim=64 time=0.730 ms(DUP!)
16 bytes from fe80::202:a5ff:fee9:2e5e%bge0 , icmp_seq=0 hlim=64 time=0.802 ms(DUP!)
:
:

Figure 6: A ping6 command with ff02::1

IPv6 Node Configuration
An IPv6 node must have the following configuration:
• At least one link-local address on each NIC,
• a lookback address.
The loopback address is ::1. In IPv4, 127.0.0.1 is used and configured on lo0. The ::1 is

also automatically configured on lo0.
You can configure more IPv6 addresses on a single interface. In IPv6, many addresses are

used on the same interface for various purpose. For example, you can add another link-local
address fe80::1/64 by using ifconfig(8):

% ifconfig bge0 inet6 fe80::1/64
Unlike IPv4, this does not remove or replace the already configured IPv6 addresses. Check

the output of ifconfig(8) and try ping6(8) or ssh(1) to use the new address. If you want to
remove a specific address, you can use -alias flag like this:

% ifconfig bge0 inet6 fe80::1/64 -alias

What address/prefix can I use?
You might be confused about what IPv6 address you can actually use. In the IPv4 network,

you probably know “private address space” is always available for your local network9. 10/8,
172.16/16, and 192.168/24 are widely used. So what about IPv6?

As mentioned in the previous sections, you can use fe80::/64 prefix for link-local communi-
cation. You can generate addresses by using this prefix freely as long as there is no duplication.
Most TCP/IP applications work with them10. Note that you need to add %zoneid part in the ad-
dress if you use a link-local unicast address.

7 of 9

29FreeBSD Journal • May/June 2022

If you have a global IPv6 prefix from your ISP, you can use it in addition to the link-local pre-
fix. If you configure the default router for IPv6, you can do IPv6 Internet communication. The
global prefix is not a replacement for the link-local one; the link-local addresses are essential for
the core IPv6 protocol. Do not forget that you need them even if you have global ones.

So is there no private address replacement in IPv6? Yes and no. ULA (Unique Local Address)
is a reserved address space for a similar purpose11. However, deployment of ULA needs some
more careful consideration than IPv4.

More details about IPv6 deployment scenarios, including clarification about the questions
above, will be covered in the next issue.

Configuration in rc.conf
Lastly, let’s see how to configure IPv6 addresses in /etc/rc.conf. For IPv4, ifconfig_bge0

line is used to configure the bge0 interface. For IPv6, ifconfig_bge0_ipv6 is used to indicate
that bge0 is IPv6-capable. The simpliest version of the configuration is as follows. In this config-
uration, only one link-local address is automatically configured:

ifconfig_bge0="inet 192.168.0.10/24"
ifconfig_bge0_ipv6="inet6 auto_linklocal"
If you want to add another link-local address manually, you can add “inet6” line into

ifconfig_bge0_ipv6. This configuration adds two link-local addresses, one by SLAAC and
another by the ifconfig_bge0_ipv6 line:

ifconfig_bge0="inet 192.168.0.10/24"
ifconfig_bge0_ipv6="inet6 fe80::1/64"
More addresses can be added in the same way as IPv4. The following example adds a glob-

al unicast address 2001:db8::1/64 by using ifconfig_bge0_alias0 line:
ifconfig_bge0="inet 192.168.0.10/24"
ifconfig_bge0_ipv6="inet6 fe80::1/64"
ifconfig_bge0_alias0="inet6 2001:db8::1/64"

Summary
This column introduced IPv6 basics and configuration examples on FreeBSD. Once you un-

derstand the address structure and configuration by using ifconfig(8), you can use automatical-
ly-configured link-local addresses. While they are not globally routable on Internet, they are still
helpful for local network communication or diagnostics.

In the next issue, deployment details using IPv6 global prefix and more configuration exam-
ples of FreeBSD and thirdparty software on IPv6-enabled network.

Footnotes
1 RFC4291: “IP Version 6 Addressing Architecture”
2 It is summarized in RFC 5952: “A Recommendation for IPv6 Address Text Representation”
3 RFC 1519: “Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy”
4RFC 4862: “IPv6 Stateless Address Autoconfiguration”
5 The IID is not always generated by using the MAC address, but it is one of the most popular implementations.
RFC 7217 and RFC 8064 have discussed several issues and a new standard. This topic will be covered in later
issues of this column.

6 RFC 3927: “Dynamic Configuration of IPv4 Link-Local Addresses”. Microsoft calls this as “Automatic
Private IP Addressing (APIPA)”.

7RFC 4007: “IPv6 Scoped Address Architecture”

8 of 9

9 of 9

30FreeBSD Journal • May/June 2022

8 The zone identifier “bge0” is actually interface-local, not link-local. If you have bge0 and bge1 which are con-
nected to the same network segment, both %bge0 and %bge1 means the same link-local zone. IPv6 network
stack on FreeBSD internally assumes interface-local and link-local are the same.

9RFC 1918: “Address Allocation for Private Internet”
10Unfortunaltely, a few applications are incompatible with LLA. They will be explained in later issues.
11RFC 4193: “Unique Local IPv6 Unicast Addresses”

HIROKI SATO is an assistant professor at Tokyo Institute of Technology. His research topics in-
clude transistor-level integrated circuit design, analog signal processing, embedded systems,
computer network, and software technology in general. He was one of the FreeBSD core team
members from 2006 to 2022, has been a FreeBSD Foundation board member since 2008, and
has hosted AsiaBSDCon, an international conference on BSD-derived operating systems in Asia,
since 2007.

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

31FreeBSD Journal • May/June 2022

FreeBSD kernel panics are a hopefully rare occurrence, but they do happen from time to time.
You may have been unlucky and hit a kernel bug on a production system, or perhaps you are
developing a kernel patch and uncovered a bug while testing. In such situations, a reboot will
bring the system back online, but the contents of RAM will be lost, making it impossible to find
the root cause of the panic.

FreeBSD supports both live debugging and post-mortem debugging of kernel panics. While
live debugging is often simpler, its nature means that the panicked system cannot be rebooted
until the developer has finished debugging. This
is often impractical, so post-mortem debugging
via core dumps is a common debugging activity.
For a long time, the FreeBSD kernel has had the
ability to save a core dump, often called a “kernel
dump,” following a panic; once a kernel dump has
been saved, the panicked system can be rebooted
and brought back online, and the dump can then
be used to diagnose the problem.

When a userspace program crashes and dumps
core, the operating system saves its state in a reg-
ular file somewhere in the file system. When the
kernel crashes, though, life is not as straightfor-
ward: the kernel itself is responsible for mediating access to its file systems, and following a
panic the kernel is by definition in an inconsistent state, so writing data to a file is a fraught en-
deavor. A kernel panic is bad enough, but it'd be much worse if the kernel went on to corrupt
its own file systems!

FreeBSD's traditional solution to this problem is to write the kernel dump to a raw disk par-
tition, often the same one used for swap space. Doing so is much simpler than modifying a
file system, and since swapped-out data does not persist between reboots, there is little risk of
overwriting important data.

Configuring kernel dumps is easy: in /etc/rc.conf, set the dumpdev variable to the name
of the disk device to which kernel dumps should be saved, or set it to the string "AUTO" if the
swap partition is to be used. Under the hood, this mechanism uses dumpon(8) to tell the kernel
which disk device to use. When booting up following a panic, FreeBSD will automatically run

BY MARK JOHNSTON

1 of 6

Post-Mortem
Kernel Debugging
with netdump(4)

FreeBSD supports

both live debugging

and post-mortem debugging

of kernel panics.

32FreeBSD Journal • May/June 2022

savecore(8), which reads the saved kernel dump and places it in /var/crash for later use.
Disk-based kernel dumps work well so long as the system has a spare partition where they

can be saved. This is not always the case, though: systems might boot disklessly and not have
any persistent storage at all, or, as is common with embedded devices, there might not be any
disk space to spare. In these situations one historically had to resort to live debugging, or a one-
off hack like using a USB thumb drive to store the kernel dump. However, as of FreeBSD 12.0
there's a better way!

Introduction to netdump
netdump(4) is a relatively new feature which lets a panicked FreeBSD transmit a kernel dump

over a network before rebooting. In short, it uses a custom UDP-based protocol to transmit the
contents of RAM to a server, implemented by netdumpd(8) (ftp/netdumpd in the FreeBSD
ports system). This lets one get a dump from a panicked kernel without requiring any local stor-
age on the system.

It should be stated up front that netdump does not perform any encryption or authentication,
so the contents of kernel memory are transmitted directly over the network. Since kernel memo-
ry typically contains secret information, it is important to use netdump only on trusted networks.

netdump has a long history: it started life circa 2000 as FreeBSD 4 patch by Darrell Anderson
at Duke University, and was ported forward over the years by developers at several FreeBSD-us-
ing companies. It was finally committed to the FreeBSD src repository in 2018 and first became
available in FreeBSD 12.0.

Internally, netdump is built on top of debugnet, a standalone IPv4/UDP implementation
which is specialized to be usable in a panicked kernel. In particular, debugnet’s UDP stack runs
in a single thread, does not perform any heap memory allocations, and does not block (e.g., to
wait for an interrupt or a mutex). These constraints come from a need to minimize the complex-
ity of kernel code which executes after a panic: since the kernel has already crashed, netdump
must avoid making the situation worse while it does its job.

Because debugnet transmits and receives packets, it needs to be able to talk to network in-
terface controller (NIC) hardware. Thus, individual NIC drivers require modification in order to be
used by netdump. Typically this modification consists of adding a “polling” mode to the driver’s
packet transmission and receive paths. In practice the required modifications are straightforward
to implement and typically involve adding less than 100 lines of C code to a given driver. Many
widely used drivers implement debugnet support today, including all of the Intel drivers (in fact,
all drivers implemented using the iflib framework), modern Mellanox drivers, the VirtIO net-
work driver, and several drivers for GigE NICs often found in desktop systems or server manage-
ment ports; a full list is given in the netdump(4) manual page.

Finally, debugnet hooks into the kernel's packet buffer allocator. This is because driver code
will continue to use the standard mbuf(9) allocator interface to allocate buffers after a panic, but
netdump needs to avoid relying on the standard allocator. During system initialization, debugnet
pre-allocates and reserves memory for use after the kernel panics, thus ensuring that mbuf allo-
cations will be successful and won't perturb the state of the kernel more than necessary.

The debugnet Protocol
The debugnet protocol, in keeping with the requirements of netdump, is very simple and

specialized to its task. It is implemented on top of UDP and currently uses only IPv4; IPv6 could
be supported as well, but so far this has not been implemented.

netdumps are initiated by the panicking system, which acts as a client, with the server imple-

2 of 6

33FreeBSD Journal • May/June 2022

mented by netdumpd. The debugnet protocol has two packet types: client messages, and ac-
knowledgements:

Message:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| UDP Header |
| ... |
+-+
| Packet Type |
+-+
| Sequence Number |
+-+
| Offset |
| |
+-+
| Data Length |
+-+
| Reserved |
+-+
| Data |
| ... |
+-+

Acknowledgement:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| UDP Header |
| ... |
+-+
| Sequence Number |
+-+

When initiating a netdump, the client first has to discover the MAC address of the next-hop
router. To do so, its configuration includes a “gateway” IP, for which debugnet broadcasts ARP
requests.

Once the router address is known, the client first sends a message with type NETDUMP_
HERALD (1) to the server on port 20023. This establishes a session with the server, which binds
to an ephemeral port and sends an acknowledgement to the client at port 20024. All subse-
quent packets sent by the client go to this ephemeral port. All client messages are acknowl-
edged by the server.

Once the session is fully established, the client begins transmitting kernel dump data. Mes-
sages containing this data have type NETDUMP_VMCORE (3). Each message gets a unique se-
quence number and specifies the offset and length of the data relative to the beginning of the
kernel dump file. Upon receipt of a NETDUMP_VMCORE message, the server writes the data at

3 of 6

34FreeBSD Journal • May/June 2022

the corresponding offset in the dump, and then transmits an acknowledgement. The client will
typically transmit a burst of chunks of data and wait for acknowledgements to arrive for all of
them before continuing.

Once all of the kernel dump data has been transmitted and acknowledged, the client pro-
vides some metadata describing the panic in a NETDUMP_KDH (4) message, and then completes
the session with a NETDUMP_FINISHED (2) message. At this point, the kernel dump is available
on the server's file system and can be used for debugging.

Configuring netdump
Armed with some knowledge of how netdump works under the hood, we can explore its

configuration. There are, effectively, four configuration variables that netdump needs to work:
1. the client IP address
2. the server IP address
3. the gateway IP address
4. the interface to use (e.g., em0)
Just as with traditional disk-based kernel dumps, netdump can be configured with

dumpon(8). For example, with a client at 10.0.1.157 on vtnet0, the server at 10.0.1.236, and a
gateway at 10.0.1.1, one can configure netdump like so:

dumpon -c 10.0.1.157 -s 10.0.1.236 -g 10.0.1.1 vtnet0

Then, on the server, netdumpd can be run as a foreground program

$ netdumpd -d . -D -P ./netdumpd.pid
netdumpd: default: listening on all interfaces
Waiting for clients.

This will cause kernel dumps to be saved in the current directory, as specified by the -d flag.
To test the setup, we can manually trigger a panic and tell the kernel to dump core:

sysctl debug.kdb.panic=1
debug.kdb.panic: 0panic: kdb_sysctl_panic
cpuid = 1
time = 1655412790
KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2b/frame 0xfffffe007c573af0
vpanic() at vpanic+0x151/frame 0xfffffe007c573b40
panic() at panic+0x43/frame 0xfffffe007c573ba0
kdb_sysctl_panic() at kdb_sysctl_panic+0x61/frame 0xfffffe007c573bd0
sysctl_root_handler_locked() at sysctl_root_handler_locked+0x9c/frame
0xfffffe007c573c20
sysctl_root() at sysctl_root+0x213/frame 0xfffffe007c573ca0
userland_sysctl() at userland_sysctl+0x187/frame 0xfffffe007c573d50
sys___sysctl() at sys___sysctl+0x5c/frame 0xfffffe007c573e00
amd64_syscall() at amd64_syscall+0x12e/frame 0xfffffe007c573f30
fast_syscall_common() at fast_syscall_common+0xf8/frame 0xfffffe007c573f30
--- syscall (202, FreeBSD ELF64, sys___sysctl), rip = 0x8011a773a, rsp =

4 of 6

35FreeBSD Journal • May/June 2022

0x7fffffffd938, rbp = 0x7fffffffd970 ---
KDB: enter: panic
[thread pid 784 tid 100098]
Stopped at kdb_enter+0x32: movq $0,0x1279963(%rip)
db> dump
debugnet: overwriting mbuf zone pointers
debugnet_connect: searching for gateway MAC...
netdumping to 10.0.1.236 (02:9a:88:79:b5:0a)
Dumping 257 out of 4057 MB:..7%..13%..25%..32%..44%..56%..63%..75%..81%..94%
netdump finished.
debugnet: restoring mbuf zone pointers

Dump complete

On the server, we should see something like the following:

New dump from client devvm [10.0.1.157] (to ./vmcore.devvm.0)
................(KDH from devvm [10.0.1.157])
Completed dump from client devvm [10.0.1.157]

Now we have a kernel dump in the directory specified by the -d flag!
In this example, the client and server are on the same link. The gateway parameter is thus

redundant and can be omitted:

dumpon -c 10.0.1.157 -s 10.0.1.236 vtnet0

Configuring netdump using /etc/rc.conf is a bit trickier. If the relevant IP addresses are
static, then they can be passed using the dumpon_flags rc.conf variable. If not, one may
instead use a hook in the system’s DHCP client to invoke dumpon once the client address is
known. The dumpon.8 manual page provides an example of how to do this with dhclient(8).

Starting in FreeBSD 14.0 and 13.2, debugnet will be able to infer a client address in most sit-
uations, simplifying configuration.

netdump On The Fly
One limitation of netdump was the need to configure it in advance of a panic. Starting in

FreeBSD 13.0, it is possible to configure netdump after a panic, from DDB (the in-kernel debug-
ger). This is done using DDB’s netdump command:

sysctl debug.kdb.panic=1
...
Stopped at kdb_enter+0x32: movq $0,0x1279963(%rip)
db> netdump -s 10.0.1.236
debugnet: overwriting mbuf zone pointers
debugnet_connect: searching for server MAC...
netdumping to 10.0.1.236 (02:9a:88:79:b5:0a)
Dumping 258 out of 4057 MB:..7%..13%..25%..31%..44%..56%..62%..75%..81%..93%
netdump finished.

5 of 6

36FreeBSD Journal • May/June 2022

debugnet: restoring mbuf zone pointers

Dump complete

Next Steps
A kernel dump on its own is not very useful: debuggers require that a core dump be paired

with an exact copy of the kernel and its debug info. When packaging up a core dump to send
to a developer, be sure to include the matching kernel. By default, kernel debug info is split into
separate files under /usr/lib/debug. Thus, it is usually safest to include the following:

1. the kernel dump file (usually vmcore.<something>)
2. the contents of /boot/kernel/
3. the contents of /usr/lib/debug/boot/kernel/
netdumpd sports a -i flag which can be used to specify a script to run after a netdump

completes. This can be used to perform post-processing of kernel dumps. A discussion of ker-
nel debugging itself is outside the scope of this article, but a past article provides lots of infor-
mation.

netdump can be very useful for debugging the kernel in certain environments, but has some
limitations. A few mentioned already include the lack of confidentiality, missing IPv6 support,
and fixed port numbers. If you find yourself running into such limitations (or bugs, for that mat-
ter!), please be sure to report the problem in the FreeBSD project’s bug tracker or on the proj-
ect mailing lists.

MARK JOHNSTON is a software developer and FreeBSD src committer living in Toronto,
Ontario, Canada. He currently works for the FreeBSD Foundation and is interested in most
aspects of operating system development. When not sitting in front of a computer he enjoys
playing in a city dodgeball league with friends.

6 of 6

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

https://freebsdfoundation.org/wp-content/uploads/2019/01/Debugging-the-FreeBSD-Kernel.pdf
https://bugs.freebsd.org/bugzilla/

37FreeBSD Journal • May/June 2022

F
or a lot of us, the time a FreeBSD system takes to start up is mostly decided by how
long the machine takes to go from power through the system firmware and into load-
er. On server hardware, the first stages to initialize the system and get to loader can take
minutes. In this environment, it is hard to worry much about a couple of seconds in the

FreeBSD boot process.
In a cloud environment, where you are charged by the second, time spent in the boot pro-

cess is time wasted, it is time you are billed for from which you don’t get any value back. Faster
boot times mean that your platform can be used in dynamically scaled environments more eas-
ily. If your system takes minutes to boot versus tens or single digit seconds to boot, you must
guess more about future load, rather than being able to spin up and down hosts as demand
requires them.

Cloud environments are where the first set of
tools to improve the performance of FreeBSD boot
were added. In 2018, Colin Percival presented “Profil-
ing the FreeBSD kernel boot: From hammer_time to
start_init” at AsiaBSDCon. Colin’s work added a
timestamped event log—called TSLOG—to the ker-
nel, which can be used to track the time the kernel
spends in each subsystem during boot [https://pa-
pers.freebsd.org/2018/bsdcan/percival-profiling_the_
freebsd_kernel_boot/].

The TSLOG framework traces events that are com-
piled into kernels with the TSLOG option. Events are
implemented with macros which compile to nothing
when the option isn’t present. TSLOG events go into
a buffer and accumulate until the buffer is full and
then they are silently dropped, this allows TSLOG to capture early events in preference to later
ones in the system.

With TSLOG, the boot time can be tracked and analyzed, to analyze the output log from
the system. Colin uses timeshare plots called FlameCharts that work well for this, FlameCharts
are like FlameGraphs [https://www.brendangregg.com/flamegraphs.html], but are sorted in
chronological order rather than alphabetically.

In each flame graph, the horizontal time represents how much of the boot process is spent
in each area, broken down vertically by sub system.

BY TOM JONES AND MITCHELL HORNE

FreeBSD
Boot Performance

1 of 4

On server hardware,

the first stages

to initialize the system

and get to loader can

take minutes.

https://papers.freebsd.org/2018/bsdcan/percival-profiling_the_freebsd_kernel_boot/
https://papers.freebsd.org/2018/bsdcan/percival-profiling_the_freebsd_kernel_boot/
https://papers.freebsd.org/2018/bsdcan/percival-profiling_the_freebsd_kernel_boot/
https://www.brendangregg.com/flamegraphs.html

38FreeBSD Journal • May/June 2022

11.1-RELEASE boot
28208 ms

Reset Zoom Search

249 /etc/rc.d/..

kernel
mi_startupinteract

DEVICE_ATTACH nexus

DELAY

DEVICE_ATTACH ..

SYSINI..

1 /sbin/init

DEVICE_ATTACH ..

bd_io
read DE.. SYSINIT configure2

363 s..

ha..

DELAY

366 s..
8..SYSI..

DEVIC.._..

loader

255 /usr/local..DEVICE_ATTACH acpi
DELAY

256 /sbin/dhc.._vp..
bd_io

D..
bd_edd..

bd_edd_io

155 /etc/rc.d/netif
22 /etc/rc

DE..
DEVICE_P..

bd_open
open

DELAY

DEVICE_A..

14.0-CURRENT boot
8090 ms

Reset Zoom Search

lo..

i..
404 s..

k..

298 /sbin/dhc..

16 /etc/rci..
1 /sbin/init

562 ..
290 /etc/rc.d..

199 /etc/rc.d/netif
569 ..

Figures 1 and 2 show how Colin and others have used TSLOG to find slow periods in the boot
process. Fgure 1 shows approximately where we started in 2017 and Figure 2 shows the time
they have managed to trim out of the boot process in last 5 years, with most of the of the hard
work happening recently.

BootTrace
TSLOG is a great way to discover where the kernel was spending time during start up. In

early 2022, Mitchell Horne began upstreaming a framework from NetApp called BootTrace.
BootTrace allows us to perform the same sort of tracing as TSLOG, but with a couple of ma-
jor enhancements that give us even more coverage. BootTrace provides the enhanced ability to
trace userspace processes, allowing us to cover the rc subsystem, and we can trace the shut-
down process.

Shutdown process is difficult to trace with TSLOG because when it is done, the host is gone.
In some ways, shutdown (or reboot) is just as important as startup, time spent putting the sys-
tem to bed helps with system consistency, but the host really isn’t doing work during shut-
down. BootTrace works around this limitation and gives us a great total view into how the sys-
tem starts and stops.

How to Contribute
We now have a wealth of tooling to look at the performance of the FreeBSD boot and shut-

down process, but developers can only look at the systems and application workloads to which
they have access.

Colin is focused on running FreeBSD in Amazon Web Services. There are many, many more
cloud providers around and each is likely to have areas that can be tuned to get the fast boot
and shutdown times out of a FreeBSD system.

The best way to contribute to improving FreeBSD performance in these areas is to run the
tooling we have and share the resulting FlameCharts. Colin is eager to have boot FlameCharts
for more and non-cloud systems. You can use the FlameCharts to figure out where the ‘hot
spots’ (or maybe they are ‘cold spots’) are in the boot and shutdown processes. Once these
have been identified to the FreeBSD project, developers can figure out how to improve perfor-
mance in each case.

TSLOG lead to large improvements in the FreeBSD boot process. FreeBSD boot has gone
from ~30 seconds in 2017 on 11.1-RELEASE when Colin started and is down to ~9 seconds in

2 of 4

FreeBSD Boot Performance

FreeBSD Boot Performance

39FreeBSD Journal • May/June 2022

March 2022 on 14-CURRENT. Some of these gains are in the form of second-sized improve-
ments, but plenty of others came as 100ms reductions in the time subsystems spent initializing.

There is still a way to go to get FreeBSD down to clear Linux, which can boot in ~1 second
on EC2. The way to get there is by testing with the boot profiling tools we now have and high-
lighting areas for improvement to developers in the project.

Tracing Boot Time with TSLOG
TSLOG is reasonably straightforward to run if you have experience building and using your

own FreeBSD kernels. You need to build a custom kernel with an ‘options TSLOG’ and then run
the script Colin has provided in the freebsd-boot-profiling repository [https://docs.freebsd.org/
en/books/handbook/kernelconfig/].

The latest version of these steps should be on the Boot Time FreeBSD wiki page [https://wiki.
freebsd.org/BootTime]. With the FlameChart from Colin’s script in hand, you can now follow
the much more difficult process of identifying areas in the boot process that take longer than
they should.

As of writing, rtsold takes up a large portion of the userspace boot time on my systems.
This is an important daemon for doing IPv6 autoconfiguration, but it might also be a good
starting point for improving your systems boot performance if you use DHCP6 for your net-
work configuration.

Tracing Boot and Shutdown Time with BootTrace
With FreeBSD 14-CURRENT the new BootTrace framework from NetApp is present in the

FreeBSD kernel. BootTrace is built into the kernel but is disabled by default.
BootTrace allows the tracing of boot, run time and shutdown time events which it stores in

three separate logs. On a FreeBSD 14-CURRENT system from March 2022 you can enable trac-
ing by setting the kern.boottrace.enabled sysctl to 1 in /boot/loader.conf.

Once enabled, the system will output the boot and run time logs via the kern.bootrace.
log sysctl.

 CPU msecs delta process event PID CPUtime IBlks OBlks
 0 177873 0 kernel sysinit 0x2100001 0 0.00 0 0
 0 177873 0 kernel sysinit 0x2110000 0 0.00 0 0
 0 177873 0 kernel sysinit 0x2140000 0 0.00 0 0
 0 177873 0 kernel sysinit 0x2160000 0 0.00 0 0
 15 182874 0 kernel sysinit 0xf100000 0 0.00 0 0

...

 15 182874 0 kernel sysinit 0xfffffff 0 0.00 0 0
 15 182875 1 swapper mi_startup done 0 0.00 0 0
 9 182880 5 init init(8) starting... 1 0.00 0 0
 9 182880 0 init /etc/rc starting... 1 0.00 0 0
 14 202622 19742 init /etc/rc finished 1 0.61 909 23
 Total measured time: 24749 msecs

CPU msecs delta process event PID CPUtime IBlks OBlks
 14 202622 0 init multi-user start 1 0.61 909 23
 Total measured time: 0 msecs

3 of 4

https://docs.freebsd.org/en/books/handbook/kernelconfig/
https://docs.freebsd.org/en/books/handbook/kernelconfig/
https://wiki.freebsd.org/BootTime
https://wiki.freebsd.org/BootTime

40FreeBSD Journal • May/June 2022

Shutdown tracing is possible by setting the kern.bootrace.shutdown_trace sysctl to 1
and shutting down the system. Shutdown tracing is quite a difficult problem. Until boot perfor-
mance tracing at the end of the shutdown process, you don’t have a system from which to pull
the information. To work around this, BootTrace logs the shutdown log to the systems console. To
recover the log, you will need to have a console that records message sent to it (such as serial).

The log from my test system looks like this:

CPU msecs delta process event PID CPUtime IBlks OBlks
 11 8089055 0 init single-user from multi-user 1 0.57 914 45
 11 8128611 39556 init halt & poweroff from multi-user 1 1.38 1274 142
 15 8129849 1238 init kernel shutdown (clean) started 1 1.69 1274 248
 0 8129849 0 init system halting... 1 1.69 1274 248
 0 8129849 0 init system powering off... 1 1.69 1274 248
 0 8132523 2674 init shutdown pre sync complete 1 1.69 1274 248
 0 8132523 0 init bufshutdown begin 1 1.69 1274 248
 0 8132524 1 init shutdown sync complete 1 1.69 1274 248
 0 8132615 91 init shutdown unmounted all filesystems 1 1.69 1274 248
 0 8132715 100 init bufshutdown end 1 1.69 1274 248
 0 8132715 0 init shutdown post sync complete 1 1.69 1274 248
 0 8132715 0 init shutdown final begin 1 1.69 1274 248

BootTrace offers three write only sysctls, boottrace, runtrace and shuttrace. When
written to an event will be logged as ‘${procname}: name’. These sysctls make it easy to
add BootTrace logging to your own applications.

Dealing with the Results You Get
Once you have identified an area in the boot process in your environment, you then need to

determine if it can be improved and, if possible, suggest how. From TSLOG results, you should
look for items in the FlameChart that take up a substantial portion of the boot time first and
dig down into those in the FlameChart svg.

More subsystems and userspace components could benefit from BootTrace events. Adding
these into your workloads’ start up and shutdown scripts can provide insight into where issues
are and you might uncover issues that impact FreeBSD users generally.

Some subsystems build in long delays to allow other network hosts to synchronize. These
sorts of delays might be prime candidates for trimming down the boot process.

FreeBSD developers welcome good bug reports via the bug tracker, if you can provide hints
or patches that will fix boot performance issues, then all the better.

The FreeBSD boot process is never going to be finished. Over time, as services and hardware
change, it is going to vary. A lot of the most significant boot performance benefits came from
reducing interactions with emulated legacy hardware. On systems with many cores, loads of
time was spent writing characters to the emulated VGA console. Over time, hardware will age
out of use and faster or slower equipment will follow. With your help we can keep FreeBSD
competitive in the cloud and stop wasting time starting up machines.

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives in the
North East of Scotland and offers FreeBSD consulting.

4 of 4

FreeBSD Boot Performance

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

42FreeBSD Journal • May/June 2022

W
e recently experienced a small disaster at work that got me re-thinking our cur-
rent file-serving strategy. We deploy distributed applications like MongoDB, Ha-
doop, Spark and others via Ansible. The binaries to install these don’t come from
a software repository but are downloaded from the vendors website because of

the up-front registration to get the Enterprise edition with extra features. The archives that con-
tain these binaries are quite large (even compressed) and copying them from the Ansible con-
troller to the target machines over the network usually takes some time.

A while ago, we figured there could be a faster way to do this: put all those binaries into a
network share (coming from Ceph in this case), mount them on the target machine, and then
point Ansible to them. For Ansible, this looks like
the files are “local” to the target machine, so it in-
stalls right from the share. Even in those instanc-
es where we still need to copy the files to a local
directory (in case of Hadoop or Spark, which is
nothing more than an archive to extract), it’s much
faster than transferring them from the Ansible
controller first.

One of the last actions in the deployment play-
book is to unmount the share. The share gets
mounted as read-only so that no accidents can
happen, and we simply don’t need write access
during the deployment. Even if the share does not
unmount properly and may still be around when
our students start using the server, they cannot delete any important files because of the miss-
ing w-bits.

All was fine and good until one fateful day when one of our student helpers working on a
new version of the NoSQL databases needed to put a newer version of said software on the
share. It was easy enough to mount the share read-write (they are allowed to do that as part
of their job) and put the new binaries next to the others. When running the script again, things
went wrong: the playbook ran and faithfully did its work. What I get later is an email from the
student telling me that the script mounted the share (still read-write) and did some cleanup

BY BENEDICT REUSCHLING

Setting up an NFSv4 Fileserver
on OpenZFS

PRACTICAL

When running
the script again,
things went wrong…

1 of 5

PRACTICAL

43FreeBSD Journal • May/June 2022

action afterwards. However, what it did not check for is whether the share was cleanly un-
mounted from the system. Which did not happen in this case. So, the cleanup job happily ran
over the still mounted Ceph share and thoroughly cleaned all the files in there. Oops!

The email from the student asked whether I still had an older snapshot from the Ceph share
to restore the files. I did not, as the share was provided by our IT department. When inquiring
there directly, it turned out that they did not backup that share at all. A new backup system
was put in place recently but was not ready yet to do the backups. There were also no other
backups available, even though the Ceph share was replicated among three separate buildings
on campus. No luck there.

I was rather calm about this for several reasons: first, this could have easily happened to me,
second, the files could be restored and nothing on the share was irreplaceable. Third, this pro-
vided me with an opportunity to make things more robust in case this happened again in the
future, which is the best takeaway from events like this.

I updated the playbooks to do an extra check after the unmount task to determine whether
the share was actually unmounted. If not, it would do a forced unmount, and if that also failed,
then the playbook execution would stop at that point. There are usually good reasons for a
network share to not unmount properly (typically when there are some files still accessed), but
not continuing would be better than risking another accidental data erase.

Since I did not have full control over the Ceph share and my network share needs are not
that big, I decided to run my own. Instead of Ceph, I chose FreeBSD’s ZFS with its integrated
NFSv4 sharing. That way, I could run regular snapshots which don’t grow too much when there
are no changes on a mostly read fileshare. Also, instead of relying on simply mounting the
share read-only, I could set the ZFS property of the same name to “on.” With readonly=on,
not even the root user would be able to remove files on a dataset with that property. Plus, I
could get the regular data-integrity checks that ZFS does and maybe some space savings from
compressing that dataset.

Implementing the Solution
Here are my notes setting up the NFSv4 server on a FreeBSD system. First, I went to

/etc/rc.conf and added the following lines:

nfs_server_enable=”YES”
nfsv4_server_enable=”YES”
nfsuserd_enable=”YES”
hostid_enable=”YES”
rpcbind_enable=”YES”
mountd_enable=”YES”
rpc_lockd_enable=”YES”
rpc_statd_enable=”YES”

This enables the NFS server in general, ensures proper permissions using nfsuserd, and
does correct locking for the RPC calls that NFS makes. Next, I checked that /etc/exports con-
tained only the following line:

2 of 5

PRACTICAL

44FreeBSD Journal • May/June 2022

V4: /

This is telling the NFS server on FreeBSD that it should use NFS version 4, but that the actu-
al definition of what paths are shared will be determined by ZFS. I’ve read on the web that this
file could even be empty now, but it does not hurt to have it in there either.

I created the ZFS dataset that will do the file sharing like any other:

zfs create -o atime=off zroot/fileshare
zfs set mountpoint=/fileshare zroot/fileshare

The nice thing about ZFS is its inheritance. If I decide to create a sub-dataset below fileshare
that should also serve NFS, I don’t have to separately configure it, as it already inherits all prop-
erties from the parent (except the mountpoint). If I don’t want to share the sub-dataset, then I
can just as easily disable the sharing by setting the sharenfs property to off (which is the de-
fault).

Let’s first copy some files over to the NFS share and then set the readonly property to “on”
(that’s what we came here to do in the first place):

cp /some/important/files /fileshare
zfs set readonly=on zroot/fileshare

Clever ZFS users could take this one step further by taking a snapshot of the share, mount-
ing that into the system and then sharing that over the network. This also ensures that the files
can’t be changed, as ZFS snapshots are read-only in nature. But I’ll leave that as an exercise to
you for another day.

In the sharenfs property, I can define all the parameters that I would normally need to put
into a separate NFS config file. That way, the information about how to share this dataset over
NFS stays with it even when it gets sent to a different pool. This all-in-one-place nature of ZFS
is making configuration much simpler, as there are fewer places to look for errors.

In my case, I only wanted to share the NFS on a certain subnet. You can also list hostnames
or IP-addresses separated by commas instead. That way, you limit who can mount the share to
a number of hosts for some extra security.

zfs set sharenfs=”-network 192.168.0.0 -mask 255.255.255.0
-maproot=user,-alldirs” zroot/fileshare

The maproot=user part defines that if a user accesses the share and there are files with the
user’s permissions, then the server maps them to the same local permissions, even though they
may be different on the server. For example, Joe may have a local uid/gid of 2000, while on
the NFS server, the users all begin starting at 3000. The NFS server will have Joe’s files set with
uid/gid as 3000, but when Joe accessed the share, he will see his familiar 2000 of the local
system to not get confused. The -alldirs option allows mounting at any directory within
/fileshare. Find out more about these and other options by reading exports(5).

3 of 5

PRACTICAL

45FreeBSD Journal • May/June 2022

That’s all for the server part. We need to start all the services listed in /etc/rc.conf to start
sharing the mounted dataset:

service nfsd start
service mountd start
service nfsuserd start

Some of these services should be automatically started with the NFS server, but carefully
check the status output from each of these services to see that they are running. The output of

sockstat -4l

as well as

rpcinfo

and

nfsstat

help you determine any problems when the share won’t mount for some reason.
Another way to see the currently shared datasets is running

cat /etc/zfs/exports

to see the whole list.
Next, we look at the client. I use FreeBSD and Ubuntu Linux systems to mount the share and

describe what each needs to access it. Starting with the FreeBSD client, it needs only a few lines
in /etc/rc.conf:

nfsuserd_enable=”yes”
hostid_enable=YES
nfscbd_enable=YES

The NFS user daemon takes care of the mapping of user ids and groups from the server as
described above. The hostid uniquely identifies this system to the NFS server and the NFS call-
back daemon handles callback requests from the server. The man page for it assures me that
mounts will work without it, but it won’t hurt to activate it right away so as not to scratch my
head about it later.

Starting those services right away, we can look at what the NFS server (called
myfiler) is offering to us:

showmount -e myfiler

4 of 5

PRACTICAL

46FreeBSD Journal • May/June 2022

This should give us a list of exported shares that we can mount. From the command-line,
the mount command is invoked as follows:

mount -t nfs -o nfsv4 myfiler:/fileshare /media

If you like to have this share mounted each time your system starts, add it to /etc/fstab like this:

myfiler:/fileshare /media nfs rw,tcp,noatime,nfsv4 0 0

The noatime and rw options are not strictly necessary as we took take care of them from
the ZFS side earlier, but the nfsv4 must be there to let the system know that it is talking to ver-
sion 4 of NFS.

At this point, you should be able to mount the share, see the files in there together with the
correct user and group IDs.

Over on a Ubuntu Linux system, we first need to install the NFS server bits as they are not
part of the base system:

apt install nfs-common

Use the package distribution of your particular distribution, the rest of the setup should be
the same from here on. It turns out that this is all that’s needed. Mounting the share on the
command line is done via:

mount -t nfs -onfsvers=4 myfiler:/fileshare /media

Of course, mounting can happen to any other local directory that exists, not just to /media.
I just use it because it exists and is usually empty. Mounting over an existing directory will hide
its contents until the next time the NFS share is unmounted again. Ensure that you don’t do this
on any vital directories that this system needs to run properly. Whatever directory you picked, in
case you also want to have the share mounted each time the Linux system boots, put this line
into /etc/fstab:

myfiler:/fileshare /media nfs rw,nfsvers=4 0 0

That’s all. The server that I put in place will regularly copy the contents from the NFS share to
the Ceph to have an extra backup. But I worry less now that ZFS is backing my files: regular snap-
shots and the readonly property should avoid future mistakes like the one described above.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and member
of the documentation engineering team. In the past, he served on the FreeBSD core team for
two terms. He administers a big data cluster at the University of Applied Sciences, Darmstadt,
Germany. He’s also teaching a course “Unix for Developers” for undergraduates. Benedict is
one of the hosts of the weekly bsdnow.tv podcast.

5 of 5

https://www.bsdnow.tv/

Dear Most Honest Advice Columnist in Technology,

I’ve been told that I must write my employer’s
disaster recovery plan. Seriously, this whole exercise
is bogus. We don’t have the resources to do actual
disaster recovery, nor will the cheapskates I work
for pay for any preparedness. I gotta come up with
something though. What’s the quickest, easiest way
to ditch this problem so I can get back to my real job?

 —Falling Behind on Doom WADs

Dear Experienced Sysadmin,
The main problem with cynicism in IT professionals is that it is inadequate. We think that by

becoming cynical we brace ourselves to cope with the worst this industry can do to us, but cyni-
cism is not a Boolean. One is neither “cynical” or “naïve.” Cynicism is an evil overlord’s dungeon.
The more you explore it, the deeper you learn you can go, but you can never quite delve the
worst depths. Cynicism can always be deepened and sharpened.

Your objection is not rooted in needing a disaster recovery plan. Anyone who works with
computers knows the innate treachery of all hardware and software. Your real problem is that
you have been assigned work that will never be used. Your organization has not devoted any re-
sources to disaster recovery. It’s a checkbox on the Checkbox Compliance Chief’s list. The com-
pany believes that they need to fill the checkbox, not actually plan for the disaster. Your question
does nothing but illuminate your lamentable shortage of cynicism--when the solution is obvious:

Be the disaster you want to see in the world.
Bad things happen. Everybody knows this intellectually. People don’t internalize how vulnera-

ble they are until they experience a short sharp shock of ruin. By providing seamless and robust
computing experiences, you are depriving your organization of necessary inoculations of panic
and despair. People do not believe in the need for disaster recovery until they have experienced
disasters.

In the days before Wi-Fi, I was responsible for internal technology at a consulting firm. One
of my duties was “security.” If you are pretending to run a secure environment, every piece of
equipment should require some sort of authentication for configuration. We had many print-
ers without passwords and a large contingent of people who did not want to bother with pass-
words on them. I could have spent months or years arguing about the importance of passwords,
or I could accept consensus and wait. One day, the company owners had a whole bunch of vis-
itors in the office for a critical meeting. Several were connected to the office network so they

1 of 3

47FreeBSD Journal • May/June 2022

by Michael W Lucas

freebsdjournal.org

could get Internet. Ten minutes into the presentation, some heinous prankster connected to an
over–welcoming printer and swapped its IP address and default gateway. Moments later, I was
notified that the entire company network was broken. Thanks to my vast expertise with a pack-
et sniffer, I was able to identify and fix the problem within minutes. Sadly, I was unable to deter-
mine who performed that malicious prank at such an inconvenient moment, but the CTO man-
dated my preferred password policy thirty minutes later. My recommendation for setting up an
isolated visitor network in the big conference room was also immediately accepted, which made
implementing future disasters more difficult but not impossible. A sysadmin should always rise to
a challenge, after all.

A disaster recovery policy need not be onerous. Look at your organization’s functions. Which
are critical, and which should they have stopped doing years ago? The most vital function, of
course, is payroll. Being assigned the duty of disaster recovery planner gives you the power to
be nosy. Dig into your organization to verify that no matter what, you will be paid. Of all the di-
saster recovery tasks, this is always the easiest to get cooperation on. Everybody is only there for
the money, after all. Even folks who claim to be entirely “mission driven” become surly when the
money doesn’t show. Your payroll person has done their best, but I have never seen an accoun-
tant who truly understands technology’s eagerness for perfidy. You will find problems. Write up
your recommendations for this most vital of tasks. This will get you credibility, because you’ve
demonstrated that you understand the organization’s most important role in people’s lives.

From there, expand. Present each part of your plan
as you create it. If you get pushback, tell people “that’s
fine” and change your plan to read in a disaster, this
function will not be restored. Hey, it’s a plan. It’s written
down. It’s even honest. What more could anyone ask?
Sometime later--not too soon, you don’t want people
noticing any sort of pattern or trend--a small disaster
might make them change their minds and you will al-
ready have a plan prepared.

No plan can be considered complete until it is tested.
Ideally, test each part of your plan as you write it. There
is no need for anyone to know all the flaws in the first

draught of your plan. It would only worry them. Verify that you can restore backups on decom-
missioned servers over junk switches. Make sure that you have enough spinning rust in the scrap
pile to hold the important databases as well as the stupid ones that the CEO insists remain active
because of this one personally traumatizing incident fifteen years before. Once you’ve successful-
ly tested everything, schedule a disaster recovery test that you tell people about. It will still have
problems, of course, but nobody would believe it was a real test if it ran perfectly.

The nice thing about disaster recovery plans is that they are always used. Even if your orga-
nization’s headquarters is not immolated by fire-breathing hippopotami before your next per-
formance review, one day your fancy all–SSD storage array will implode into a naked singulari-
ty, and you’ll be forced to retrieve the derelict spinning rust array from the scrapheap and try to
make it stagger along under load. The DBAs won’t be happy, but DBAs are never happy so ig-
nore their whining. Network gear will fail unexpectedly, because even though you’ve configured
everything to spew its errors to syslog, nobody reads the logs. Fortunately, HP still honors their
famous lifetime warranty on their 10/100 switches, so if you make sure they still work before-
hand you will have a ready-steady replacement.

2 of 3

No plan can be
considered complete
until it is tested.

48FreeBSD Journal • May/June 2022

You can’t do much about the greatest disaster of all, people. While you can list solutions in
your plan, implementing any of them would violate the law. You might choose to carry out such
plans anyway but do remember that documentation is considered evidence of premeditation.

Yes, DOOM is fun, but real disasters can be more fun. Disaster recovery plans do not have to
be pointless wastes of your time. Hone your cynicism, seize control of the inevitable, and use di-
sasters to improve your life.

Have a question for Michael?
Send it to letters@freebsdjournal.org

Many people consider MICHAEL W LUCAS an expert in disasters, but only because he is so
often found at the center of them. He is the author of Absolute FreeBSD, the FreeBSD Mastery
books, as well as books documenting the debacles of PAM, SNMP, TLS, DNSSEC, and more.
Get a full list at https://mwl.io. His most recent book is Letters to Ed(1), a collection of the first
three years of this column. Spending your hard-earned money on any of them would be another
disaster.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

49FreeBSD Journal • May/June 2022

freebsdjournal.org

https://mwl.io

BSD Events taking place through November 2022
BY ANNE DICKISON

Please send details of any FreeBSD related events or events that are of interest for
FreeBSD users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

50FreeBSD Journal • May/June 2022

SCALE 19x
July 28-31, 2022
Los Angeles, CA
https://www.socallinuxexpo.org/scale/19x

SCaLE is the largest community-run open-source and free software conference in North America.
• Check out the FreeBSD Workshop with Roller Angel on Friday, July 29
• Visit the Foundation Booth #502 July 29-31
• Use code BSD for 50% off registration

EuroBSDCon FreeBSD Developer Summit
September 15-16, 2022
Vienna, Austria
https://wiki.freebsd.org/DevSummit/202209

Join us for talks and discussion groups on day 1 followed by a hackathon on day 2.
The CFP is open.

EuroBSDCon 2022
September 15-18, 2022
Vienna, Austria
https://2022.eurobsdcon.org

This yearly conference gives the exceptional opportunity to learn about the latest news from
the BSD world.

All Things Open
October 30 - November 2, 2022
Raleigh, NC
https://2022.allthingsopen.org/

All Things Open is the largest open source/open tech/open web conference on the East Coast,
and one of the largest in the United States. It regularly hosts some of the most well-known ex-
perts in the world as well as nearly every major technology company. FreeBSD is proud to be a
media partner for this year’s All Things Open.

mailto:freebsd-doc@FreeBSD.org
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.youtube.com/c/FreeBSDProject
https://www.socallinuxexpo.org/scale/19x
https://wiki.freebsd.org/DevSummit/202209
https://2022.eurobsdcon.org
https://2022.allthingsopen.org/

