ZFS Administration Guide

X Sun

microsystems

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
US.A.

Part No: 817-2271
January 2010

Copyright 2010 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. or its subsidiaries in the U.S. and other countries. AIl SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2010 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs a la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent étre dérivées du logiciel Berkeley BSD, licenciés par 'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc. Legato NetWorker is a trademark or registered trademark of Legato Systems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur I'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font 'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matiére de controle des exportations et
peuvent étre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une fagon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matiére de controle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

100115@23031

Contents

PrEface ... s 11
1 ZFSFile System (INtroduction)c.ccoiiiiinininece et 15

What's NeW in ZES? ... sssses 15
New ZFS System Process
ZFS Deduplication PrOPEILYc.cccriueiieniurieciniiriieicireieicistiseieeeiseiesseisese s ssessesessssesessesesesaees 17
ZFS Storage POOL RECOVETYcuuvuruiiieieciiieiicieieieeeeienie i asese st ssssssessasesessesnesensns 17
ZFS Log Device ENNanCemMENLScoveuiurierierieereeieeeeeneieeensessesensesesensesssssse s ssensessesensens 18
Triple Parity RAIDZ (Faidz3) ... ssesssssssssse s s ssesasons 18
Holding ZES SNapShotscvcureeeiiinieeieiriieicnineiecereiesceseieesesessese e ssesessessssesessesesessees 18
ZFS Device Replacement ENhancementsc.cocueueeuneeerineeinineenencesineieeeeiesseesessesesseenes 19
ZFS User and Group QUOLASc..cccueureucureneuerneiieinieetsieuessesessesesetseesessesessesesessesesessescssssesessesssns 20
ZFS ACL Pass Through Inheritance for Execute Permissioncoocveeeveereeercencernerneenenens 21
Automatic ZES SNapSROLScuiuieciiiriieiciieicitireiceieie et 22
ZFS Property ENNanCEemENntscoveveeiureeriineiereieeeeeeeeseienessesesseseeessesssssssessesesensessesensens 22
ZFS LOg DeVICE RECOVETY ...uvuviiiriitctctt st s
USING ZES ACL SELS ...ttt
Using Cache Devices in Your ZFS Storage Pool
ZFS Installation and BOOt SUPPOILccueueueuriiueiriciriccirieecnecieieeseeseeseae e esesesessesesseneae
Rolling Back a Dataset Without Unmountingc...ceceeveuvceneuceemneenemneesersenseneneneseeseneeene
Enhancements to the zfs send Commandcccccouiicicinininiinceceeeeaes

ZFS Quotas and Reservations for File System Data Only

ZFS File System Properties for the Solaris CIFS SEIVICecccvvuuiurirreuenircirricniinciriineciennn.
ZFS Storage POOl PTOPEITIEsccviuieieiiiiiiciccctc s sseas
ZFS and File System Mirror MOUNLScccviiiimiiiiiieceisicsssissssssssssessssssassssesens 30
ZFS Command History Enhancements (zpool NISTOrY) ..c.occreceneinceencineeeeerneeneenennens 30
Upgrading ZFS File Systems (Zfs Upgrade)coecreeeneereeeerneeseeinessesesessesesesseseeesseseens 32
ZFS Delegated AdMINIStIationc.oceeveceeureeeeniuneeerceiieiseeseeseseseesesessessesessessessesessssesessesesensens 32

Contents

Setting Up Separate ZFS Logging Devices ... 33
Creating Intermediate ZFS DataSetsc.cccureurmuerniureuereureieieeneieesesessesesseesesessesessssessssesessees
ZFS Hotplugging ENhancementsccoeecureereeeeneenieeieinieeicineieeseeeseseseesesessessesessesessesessees
Recursively Renaming ZFS Snapshots (zfs rename -r)
ZFS Boot SUPPOIt 0N X86 SYStEIMSvuviiiiiiiiiiiciicci s
GZIP Compression is Available for ZEScccocviiininininireeereensesesese e eeeneeens
Storing Multiple Copies 0f ZES USer Datac.cceueveeeeeneerememserenerenieseseasessessessessensessesssens 36
Improved zpool status OULPUL ...c.ccceeevecerercecrrecieecireeeeieacaes
ZFS and Solaris iSCSI Improvements
Sharing ZFS File System Enhancementsoccvereeeeeniercnnineeneneeneeneeeneneesesenesesensens 38
ZFS Command HiStory (Zpo0T hISTOIY) .t ssessesesessesessessesenne 39
ZFS Property IMProVemeNtsccccvecuiieinieiniceiieieiicisieieseesessesesessesesssessssesessssssessaes 40
Displaying All ZFS File System INformationcccocecnerecuneuneereneeeeceneeneeneenesenensesennens 40
New zfs receive -F OPtiOn ... 41
Recursive ZES SNAaPSNOLScceiuciiirieeiiiriicicintieei ettt saeen 41
Double Parity RAID-Z (FAidz2)coccereereeeeniereieieireeriseieessiesseenesessesesssseseesesesssssssessessessssesnees 41
Hot Spares for ZFS Storage POOLI DeVICESc..cvwevuieerieieniciiiieneeeeeneeseeessessesesensessesensens 41
Replacing a ZFS File System With a ZFS Clone (zfs promote)cccvenereeencrneenerernenene 42
Upgrading ZFS Storage Pools (zpool Upgrade)ccceeuneeneeenerneseserseeneessessesessesseseene 42
Using ZFS to Clone Non-Global Zones and Other Enhancementscccccococcvivuccininnenees 42
ZFS Backup and Restore Commands are Renamedcccoveeueiveeinincnnccinenccnicienccneenee 43
Recovering Destroyed Storage POOIScccvurreriuriueiceniieiciniineeeineeecesesessesessesessesesessees 43
ZFS is Integrated With Fault Manager ... 43
New zpool clear COMMANAccoovevieereeieeeieeeeeeeeee ettt eseseesese s sesessesenseseneans 44
Compact NFSv4 ACL FOImMatccoviviiiiiiiiiiiccs e 44
File System Monitoring TOOL (FSSTAt) ..c..ccoiiuriicuciieiciriieireisciseeee e sseens 44
ZFS Web-Based Managementcceeeeeeueereeemeeremenseeseeessessssessesssssssessessesessesssssssessesssessens 45
WRALIS ZES? .ottt sttt ettt 46
ZES POOLEA SEOTAZE ...ecvuvreeieiieieieiiiceereie ettt 46
Transactional SEMANTICScuvuicuiiriciiiieci e naes 46
Checksums and Self-Healing Datac.cceeeueureereuniuereniinieneieeeneseeensesessesensessesessesesessens 47
Unparalleled SCalabilitycocecuririeiniiniieicinieicnereeieieicieseeeeeseseseesese e sese e ssasesesnees 47
ZES SNAPSNOLS .ot s 47
Simplified AAMINISTrAtION .c.veuceeiiciricicirecierect ettt seeaeeeaes 48
ZES TOIMINOLOZY ...vevrevrreircrieicieteeeeireiseeeietseae ettt seee et st sse st see et sese st sesessessessesessessesesacsnes 48
ZFS Component Naming REqUITeMENtSscccccccuruririniiicieiiiiiiiiicceeieeeicccee e 50

ZFS Administration Guide « January 2010

Contents

2 Getting Started WIth ZFS ..ot aneas 51
ZFS Hardware and Software Requirements and Recommendationsc.eccveeveeeeneereuneceneunenne 51
Creating a Basic ZFS File SYSteIMcocuvveiiirireirirenerecerceereee e

Creating a ZFS Storage Pool
V¥ How to Identify Storage Requirements for Your ZFS Storage Pool
V¥ How to Create a ZFS Storage POOLccivciiuricrniiieeeieeeisee e seseaeens

Creating a ZFS File System HIeTarchycocvcevcurevreeincineicinenesieneiseeeiseesee et ssesecseens
V¥ How to Determine Your ZFS File System Hierarchy
V How to Create ZES File SYStEIMScueuvuiurierieciiiiieieineieicireiseetseiseseseisese et ssessesesesscseens

3 ZFSandTraditional File System Differences

ZFS File System GIanularityococreeeecrneirierneiieeeneeeeeesesseieeessesesse et sessesessessesessessesssaenses

ZFS Space ACCOUNTINGcuuiiiiiiiiiciiciiis bbb
Out of Space Behavior

Mounting ZFS File Systems

Traditional Volume Managementccccuveeeereureuercuerreemsenseaeaenesessessessesessessesessessesessensessesenses 61

New Solaris ACL MOEL ...t saes 61

4 Managing ZFS StOrag@Poolscccooviiieeeieieieiccsete ettt en 63

Components of a ZES Storage POO] ..o sssesssssssssaees 63
Using Disks in a ZES Storage POOLcovuvicuiuniieicinieeicntinieeineieneseeenecsseseee s ssessessnsens 63
Using Slices in @ ZFS Storage PoOL ... 65
Using Files in @ ZES Storage POOL ..ot neeissssesessssesessessesensens 66

Replication Features of a ZFS Storage POOLccvviiincrniiererennneeneiseseseneessessesssessssssaens 67
Mirrored Storage Pool CONfIGUIALIONc.eveueueuerucuiuneeeiienieeneineienseseeeeseseaseeessessesensessessnsens 67
RAID-Z Storage Pool CONfIgUrationcc.ucueeeuimneieiuccieisieesseesssesssssssssesssasesssesens 67
ZES Hybrid StOrage POOLc.cuveeviirieeicieiricintireiecieiecstiseies st ssessssesesasanesesaes 68
Self-Healing Data in a Redundant Configurationceceeceeveeereeeereuneererserenersensecssennenne 68
Dynamic Striping in a Storage POOLc.ccvcrieiciniunicniiniceneieeeneieeeseeseie s ssesesessens 69

Creating and Destroying ZFS Storage POOIS ..o 69
Creating a ZES Storage POOL ..ottt saesesesaees 70
Displaying Storage Pool Virtual Device INfOrmationc.ceeeeeereneereuneererersenereneecenennenne 74
Handling ZFS Storage Pool Creation EITOLSccceureeuiereeeeeineieieintenneeineeneeeneeseseneesessesens 75
Destroying ZFS Storage POOLS ..o nsessesensessesensns 78

Managing Devices in ZES Storage POOLSc.occeveureureciniirieineineieicneiseesesseeesetsesesscesesseaessessesenae 79

Contents

Adding Devices t0 @ Storage POOLc.cueuevcuniurrciniireieicirieieieieeieeineee e sese e essesessees 79
Attaching and Detaching Devices in a Storage Poolceccreeieneeeceneneeeneeneeneineeennens 85
Onlining and Offlining Devices in a Storage POOLcccccveiuvcuiicininininineseceieeeneene 87

Clearing Storage Pool Device Errors

Replacing Devices in a Storage Pool

Designating Hot Spares in Your Storage POlccceeeciinecrenienenieneeereenenneeennens 91
Managing ZFS Storage POOL PIOPEILIEsc.cevcureureeeeeiriveicieirieinetneeerensesessessesseeessessesessessesesaesns 97
Querying ZFS Storage POOL STATUSc..c.evcuevreeeircireieicireieieeiretseeeeetsesessessesseeessetsesessessesessessessesesaes 100

Displaying Basic ZFS Storage Pool INformationcccceeeeercerecrneenecencineeenenneseeerseenenenne 100

Viewing ZFS Storage Pool I/O StatiSticscccuvuiiririeiiniiniinniiiieissisceissiessssssssssenes 103

Determining the Health Status of ZFS Storage Pools ... 105
Migrating ZEFS StO1age POOLScccuiurieriirieiciieeceieeeeieneeee e esessessasesenaees

Preparing for ZFS Storage Pool Migration

Exporting a ZES Storage POOLc..c.ocueueeieinienieiiinieeineenceisee e ssessessesessessesnns

Determining Available Storage Pools t0 IMPOTtcovucuiureeeecuncericrneirecicineeseiseeeeeneenenenne 109

Importing ZFS Storage Pools From Alternate Directories ..o 111

Importing ZFS StOrage POOLSc.ceveuiurieeriiricieitieeeisee e ssessesenns 112

Recovering Destroyed ZES Storage POOLSccccuiereeeniireeicineieieineseceiseeeiseseee e 113

Upgrading ZFS Storage POOLScccieiiinieeeiieees e eeseesenns 115

Installing and Booting a ZFS Root File System

Installing and Booting a ZFS Root File System (Overview)

ZFS Installation FEatUures ... ssssssens
Solaris Installation and Solaris Live Upgrade Requirements for ZFS Support 119
Installing a ZFS Root File System (Initial Installation)cccceveeveeneineericcrneenecneneeeereeeennes 121
Installing a ZFS Root File System (JumpStart Installation)coeeecrereceneenecnceneeecenenneenns 127
ZFS JumpStart Profile EXamplescovirincicicinininineeeseeenie s ssessesssssessns 128
ZES TUMPSLArt KEYWOISevuvveeciriieeciiieneieieneieie e ese e seessesenns 128
ZES TUMPSLArt ISSUEScoiiiiiiiiiiiiiiiiic e 130
Migrating a UFS Root File System to a ZFS Root File System (Solaris Live Upgrade) 131
Required Solaris Live Upgrade Patch Informationccecveeeeerneenecrnerneeenenneeeeerneenenenne 131
ZFS Solaris Live Upgrade Migration ISSUESccoeureueueureeeeuneeeeerneineenessesesesseseesessessesenns 132
Using Solaris Live Upgrade to Migrate to a ZFS Root File Systemcccccoeceeveuvevevcnrcrnenncn. 133
ZFS Support for Swap and DUmp DEVICESc.vcueureiueiricirineieirieieirieieieieiseeie e sseeaesseaesees 138
Adjusting the Sizes of Your ZFS Swap and Dump Devicesc.ccccurureuniurerniuncuneusennenennes 139

ZFS Administration Guide « January 2010

Contents

Troubleshooting ZFS DUump Device ISSUESc.ccvveuriureueriureererneeeierneeneessesseseaensesensensesene 141
Booting From a ZFS ROOt File SYStIMcccvvuiueuiuriieieiriieicineireeeeinee e seeessesessessese e snesenaees 142
Booting From an Alternate Disk in a Mirrored ZFS Root Poolcccccuvcuccivininiincuncnnce 142
Booting From a ZFS Root File System on a SPARC Based Systemccccceeceveiviuciennunnes 143

Booting From a ZFS Root File System on an x86 Based Systemcccccveuvevcunerrecnrcrnennce 145
Booting For Recovery Purposes in a ZFS Root Environmentcccccococuviiiinicivinccininnns 146
Recovering the ZFS Root Pool or Root Po0l SNapshotsc.ceeeereeeecunienrcenieneencrneeencnneeneaens 148
V¥ How to Replace a Disk in the ZFES ROOT POOIcovueeiinirricireineecincrecneinceecineiseesennceenne 148
V¥ How to Create Ro0t POOL SNAPSHOLScevuiivieciciieeicireirecreireeeciseceiseiee e 150
V¥ How to Recreate a ZFS Root Pool and Restore Root Pool Snapshotscccccvuvereuncence 152
V¥ How to Roll Back Root Pool Snapshots From a Failsafe BOOtcccceeeuveurierincireinccinerncnnn. 154
Managing ZFS Fil@ SYStEMIScccooveiiieiiiceeiee ettt sne

Creating and Destroying ZFS File Systems
Creating a ZFS File System
Destroying a ZFS File SYSeIMcccuuiiiiniiieiiiiniiiiieiiisiessss s sesnasees
Renaming a ZES FIle SYSTEIM «....ovcuiuieviinieeiciiireeieieie et ssesesesenne

INtroducing ZES PIrOPEITIESc.cueurucemeuriueicireieieeieaneieseesesesseasesessessssesesssssesesaesesessesssssesessssnesesaces
ZFS Read-Only Native PrOPErties ..o ssssssssssens
Settable ZFS Native PrOPEItIEScceuveucuriiueinieirieieireeiseneietseeiessesesstsese e sesesesseese s sesseaes
ZFS User Properties

Querying ZFS File System INfOrmationcceeeeeereuneinemnerererereeeeeeesesessenenseseessessecsssssesnens
Listing Basic ZFS INfOIrMAatioNc..cvveueurieereriineentinieeneineeenseseesesesessesessessesessesessesesessesnns
Creating Complex ZES QUETIESccueuiuieciciicieriiriiiireiseese e ssesaessssasenans

Managing ZES PIOPETTIEScccvuiuiiiiuiiiiiciiiciciiciii e sssaeses
Setting ZES PrOPEITIESsccccoiiuiiiiiiiiiiiiciiii s
Inheriting ZFS Properties
Querying ZFS Properties

Mounting and Sharing ZFS File SYStEmScccveureueueuriueeeeniinieeieineeereeneaenseesessesesssssesessessesensens
Managing ZFS Mount POINESc.ccuviuieiciiiieicicec et
Mounting ZFS File SYStEIMSovcururieeueurieereiiineeneineeeneneeenseseseesessessesessessesessesessesessessesenne
Using Temporary Mount PrOperties ...
Unmounting ZFS File Systems
Sharing and Unsharing ZFS File SYStEIMScccvveuiuriuemcrninecrirneeneineeeeenneseeenessesesesseseene 189
Sharing ZFS Files in a Solaris CIFS ENVIFONMENTccoiuuiieucicieeeeiiiireieescicie e 191

Contents

Setting ZFS Quotas and ReSEIVATIONScvcuveeercrreueicireiereeirerneeeeceneseeeesesseeessessesessessesesscssessesesnes 193
Setting Quotas on ZEFS File SYStIMSc..c.vueveuiureeriirieenernieneieieeeseneeenessese e ssessesenne 193
Setting Reservations on ZFS File SYStemSccccuviuveeuiuriencrnieeeeeeceee e 197

Working With ZFS Snapshots and Clonescccooeieiieennnineceeeeee s eaeaeaees

OVerview Of ZFS SNAPSNOLSeuvuieriiiiiiieiiirecie it sses s ssenes
Creating and Destroying ZFS SNapshotsceccvereeuniinieieincesicneneceiseesseisesesesessesenns

Displaying and Accessing ZFS Snapshots
Rolling Back @ ZFS SNAPSHOLcucuuiurciiirieciiiicicitieiecieeeeieie e seasnsenne
Managing Automatic ZFS SNapshots ..ot
OVEIVIEW Of ZES CLONES ...ttt ssss s saenes
Creating @ ZES CLOMNEcuveuiiriciiiriecitineieecireiseietiseae et nos
Destroying a ZFS Clone
Replacing a ZFS File System With a ZFS Clone
Sending and Receiving ZEFS Dataccccccuiuriecuriiniciniirieieireieiceeiseieeeeseeessessesessessessssessessesessennes
Sending a ZFS SNapShot ...
Receiving @ ZFS SNAPSIOLc.vuvcuiieeciiiicciceeitieeeisee et e ssenne
Sending and Receiving Complex ZFS Snapshot Streams ..o 215
Saving ZFS Data With Other Backup Productseccveureeeeureeerceneenecrnieneencenesensennesensens 218

Using ACLs and Attributes to Protect ZFS Files
New Solaris ACL MOdel ...
Syntax Descriptions for Setting ACLSc.covuueeeueureeeeeereeeeeineiseeeneesesesseesesessessessssessessesessees
ACL INHEIIANCE cocveiiiiieicicicii s
ACL Property MOESc.cureeeimcueeriieitiniieieiseieseisese et sessese e ssessssesssssesessssesessesecssssesns
Setting ACLS 0N ZES FIlScuviuiciiiricieieiccireteccireiseieeteie ettt sesessessesssaessessesessennes
Setting and Displaying ACLs on ZFS Files in Verbose Formatccccoceevniinincinicincinnins 230
Setting ACL Inheritance on ZFS Files in Verbose FOrmatccccovcvecencuncerncunenencrncnnenenne 237
Setting and Displaying ACLs on ZFS Files in Compact Formatcccocecoeuveurieencninicneninnnes 245

Applying Special Attributes to ZFS Files

ZFS Delegated AdminiStrationc.ocooviiiiceiecccee e a s eas 253
Overview of ZFS Delegated Administrationccc.ceeeeeereneererernererereeenenneesessenensersessersessenes 253
Disabling ZFS Delegated PErmiSSIONScccreeeuueuiermmeuierememeinesenenesnesesessesesessesessessessesenns 254

ZFS Administration Guide « January 2010

Contents

10

11

Delegating ZFS PEIMISSIONSc.vueeeumeurieereeriuereeiseenieemseesesesseaeseseestssssessessesessessesessesstssssessessesessens 254
Delegating ZFS Permissions (Zfs @all1OW)ccceuuiuiuiuncineinceemseinemeeisseseiseesessessessessesessaesans 256
Removing ZFS Delegated Permissions (zfs unallow)cccoceeceeeereeeeceneeeeemiereeenenresennens 257

Using ZFS Delegated Administrationc.ceceeeecereureeererneenenernerneennerseeeeserserseenne
Delegating ZFS Permissions (Examples)

Displaying ZFS Delegated Permissions (EXamples)c.ccooceveureemrerneenecrnerneennenseenenneneene 262
Removing ZFS Permissions (EXamples)ccccveueurieremcenienemeeneineeeierneeneessessesesessesesesseseens 264

ZFS AAVANCEATOPICS ..o

ZES VOIUIMES ...ttt
Using a ZFS Volume as a Swap or Dump Device
Using a ZFS Volume as a Solaris iSCSI Targetcoceueuivecuncureemnerneeencreeeeneneeeenenseeeene

Using ZFS on a Solaris System With Zones Installed
Adding ZFS File Systems to a Non-Global Zone
Delegating Datasets to a Non-Global Zone

Adding ZFS Volumes to a Non-Global Zone ..o
Using ZFS Storage Pools Within @ ZOnecceeuereeercuninecrneinieineneeeessesesessessesesessesenns
Managing ZFS Properties Within @ Zoneccccvevcurcneveneinieeneneneeneseeeseeeeseseesenne
Understanding the zoned Property
Using ZFS Alternate ROOt POOLSc.covueveiiiriciiiiccnieeeieeeeeeeeeie e nsessese s seeeesens
Creating ZFS Alternate ROOt POOLScvvueueiiuriueiiinieeicineinicciseieie et esseseene
Importing Alternate ROOt POOLScoveuiuieemiirieieinieeneneieeeneeseee s ssesesenne
ZES RIGNES PIOTIIES .couvuieiuiieieciiiicciicctreie ittt
ZFS Troubleshooting and POOI RECOVELY ..ot aesnes 277
ZES Failure MOdescuiviiiiiiiiiicicicci s 277
Missing Devices in a ZFS Storage POOL ..ot sesseseene 278
Damaged Devices in a ZFS Storage Pool ..o 278
CorrupPted ZES DAtacuucueeceiirieciiireieieineieeeeisese ettt sese e ssescasesnns 278
Checking ZFS File System INTeGIityccccocvieicuriirieiniirieeireieeceneteeeeiseeeeeeeseesesessesensessesenens 279
File SYStem REPAILc.cvuuriuieeiiiiecitireieicireeeeceiseae st nne 279
File System Validation ..o sseeseesenns 279
Controlling ZFS Data SCrUbDINGc.coeuevrieiniirieitinieeieineieecieiseeeisesesessese e ssessesessesseseens 279
Identifying Problems in ZESccovinrerereiniineineiseesesensessesiessssssesessesessessessessessessesens 281
Determining if Problems Exist in a ZFS Storage PoOlccvcurevicunienecinernceencneeeecnnenene 282

Contents

10

Reviewing zpool status OULPUL ... 282
System Reporting of ZFS Error MeSSagesccucwiuiueieiuiueisssiisssssisssssssssesssssessssns 285
Repairing a Damaged ZFS Configurationc.cecereeeeuneeerennieencrneeneeenesesensenesessessessesensens 286
Resolving @ MiSSING DEVICEc.euvecueuiuciiirieeicireieiecisetseiesetsesesseesessesessessesessessesessessessesesscssesesscsnes 286
Physically Reattaching the Device ... 287
Notifying ZFS of Device AVailabilityccccoeveevemnirrcrniinieieinieeneeecnesee e eeeesenne 287
Replacing or Repairing a Damaged DeVICEcocuvwueuiureurecireiriecineireieeeineieieesetseeeseasesessessesseeennes 288
Determining the Type of Device Failurec..coccueveieeiniineiiirenenereneeneeseieeseneneneesaenanes 288
Clearing TTansient EITOIScocireeueniereriineeneineeenessesessessesessesessesessessesessessessesessessesenne 289
Replacing a Device in @ ZES Storage POOL ... 290
Repairing Damaged Data .. 297
Identifying the Type of Data COITUPIONceuvecunivrmmeriereeieieeeeeneenesesessesesessesessenessesenne 297
Repairing a Corrupted File 0r DIreCtory ... 298
Repairing ZFS Storage Pool-Wide Damageccocveeueureemernieeeerniineenerneeneneensesessesenne 300
Repairing an Unbootable SYSTEIMc.ccccureveiciriiriecineiniieieireieicesct et eeessessesessessesessesnes 301
INAEX ..o e 303

ZFS Administration Guide « January 2010

Preface

The ZFS Administration Guide provides information about setting up and managing Solaris™
ZFS file systems.

This guide contains information for both SPARC® based and x86 based systems.

Note - This Solaris release supports systems that use the SPARC and x86 families of processor
architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported
systems appear in the Solaris 10 Hardware Compatibility List at http://www.sun.com/bigadmin/
hcl. This document cites any implementation differences between the platform types.

In this document these x86 terms mean the following:

= “x867 refers to the larger family of 64-bit and 32-bit x86 compatible products.
= “x64” points out specific 64-bit information about AMD64 or EM64T systems.
= “32-bitx86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book

This guide is intended for anyone who is interested in setting up and managing Solaris ZFS file
systems. Experience using the Solaris Operating System (OS) or another UNIX® version is
recommended.

How This Book Is Organized

The following table describes the chapters in this book.

Chapter Description

Chapter 1, “ZFS File System Provides an overview of ZFS and its features and benefits. It also covers some
(Introduction)” basic concepts and terminology.

http://www.sun.com/bigadmin/hcl
http://www.sun.com/bigadmin/hcl

Preface

Chapter

Description

Chapter 2, “Getting Started
With ZES”

Chapter 3, “ZFS and
Traditional File System
Differences”

Chapter 4, “Managing ZFS
Storage Pools”

Chapter 5, “Installing and
Booting a ZFS Root File
System”

Chapter 6, “Managing ZFS File
Systems”

Chapter 7, “Working With ZFS
Snapshots and Clones”

Chapter 8, “Using ACLs and
Attributes to Protect ZFS Files”

Chapter 9, “ZFS Delegated
Administration”

Chapter 10, “ZFS Advanced
Topics”

Chapter 11, “ZFS
Troubleshooting and Pool
Recovery”

Provides step-by-step instructions on setting up simple ZFS configurations
with simple pools and file systems. This chapter also provides the hardware
and software required to create ZFS file systems.

Identifies important features that make ZFS significantly different from
traditional file systems. Understanding these key differences will help reduce
confusion when using traditional tools to interact with ZFS.

Provides a detailed description of how to create and administer storage
pools.

Describes how to install and boot a ZFS file system. Migrating a UFS root file
system to a ZFS root file system by using Solaris Live Upgrade is also covered.

Provides detailed information about managing ZFS file systems. Included are
such concepts as hierarchical file system layout, property inheritance, and
automatic mount point management and share interactions.

Describes how to create and administer ZFS snapshots and clones.

Describes how to use access control lists (ACLs) to protect your ZFS files by
providing more granular permissions then the standard UNIX permissions.

Describes how to use ZFS delegated administration to allow non-privileged
users to perform ZFS administration tasks.

Provides information on using ZFS volumes, using ZFS on a Solaris system
with zones installed, and alternate root pools.

Describes how to identify ZFS failure modes and how to recover from them.
Steps for preventing failures are covered as well.

Related Books

Related information about general Solaris system administration topics can be found in the

12

following books:

= Solaris System Administration: Basic Administration

» Solaris System Administration: Advanced Administration
m Solaris System Administration: Devices and File Systems
= Solaris System Administration: Security Services

= Solaris Volume Manager Administration Guide

ZFS Administration Guide « January 2010

Preface

Documentation, Support, and Training

The Sun web site provides information about the following additional resources:

® Documentation (http://www.sun.com/documentation/)

= Support (http://www.sun.com/support/)
= Training (http://www.sun.com/training/)

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.comand click Feedback.

Typographic Conventions

The following table describes the typographic conventions that are used in this book.

TABLEP-1 Typographic Conventions

Typeface

Meaning

Example

AaBbCc123

AaBbCc123

aabbccl23

AaBbCcl23

The names of commands, files, and directories,
and onscreen computer output

What you type, contrasted with onscreen
computer output

Placeholder: replace with a real name or value

Book titles, new terms, and terms to be
emphasized

Edit your . login file.

Use 1s -a to list all files.
machine name% you have mail.
machine name% su

Password:

The command to remove a file is rm
filename.

Read Chapter 6 in the User's Guide.

A cacheis a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/
http://docs.sun.com

Preface

Shell Prompts in Command Examples

The following table shows the default UNIX system prompt and superuser prompt for the C

shell, Bourne shell, and Korn shell.

TABLEP-2 Shell Prompts

Shell

Prompt
C shell machine nameS
C shell for superuser machine_name#

Bourne shell and Korn shell

Bourne shell and Korn shell for superuser

$

#

14 ZFS Administration Guide « January 2010

L K R 4 CHAPTER 1

ZFS File System (Introduction)

This chapter provides an overview of the ZFS file system and its features and benefits. This
chapter also covers some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter:

“What's New in ZFS?” on page 15

“What Is ZFS?” on page 46

“ZFS Terminology” on page 48

“ZFS Component Naming Requirements” on page 50

What's New in ZFS?

This section summarizes new features in the ZFS file system.

“New ZFS System Process” on page 16

“ZFS Deduplication Property” on page 17

“ZFS Storage Pool Recovery” on page 17

“ZFS Log Device Enhancements” on page 18

“Triple Parity RAIDZ (raidz3)” on page 18

“Holding ZFS Snapshots” on page 18

“ZFS Device Replacement Enhancements” on page 19

“ZFS User and Group Quotas” on page 20

“ZFS ACL Pass Through Inheritance for Execute Permission” on page 21
“Automatic ZFS Snapshots” on page 22

“ZFS Property Enhancements” on page 22

“ZFS Log Device Recovery” on page 24

“Using ZFS ACL Sets” on page 25

“Using Cache Devices in Your ZFS Storage Pool” on page 25
“ZFS Installation and Boot Support” on page 26

“Rolling Back a Dataset Without Unmounting” on page 26
“Enhancements to the zfs send Command” on page 27

What's New in ZFS?

16

“ZFS Quotas and Reservations for File System Data Only” on page 28
“ZFS File System Properties for the Solaris CIFS Service” on page 28
“ZFS Storage Pool Properties” on page 29

“ZFS and File System Mirror Mounts” on page 30

“ZFS Command History Enhancements (zpool history)” on page 30
“Upgrading ZFS File Systems (zfs upgrade)” on page 32

“ZFS Delegated Administration” on page 32

“Setting Up Separate ZFS Logging Devices” on page 33

“Creating Intermediate ZFS Datasets” on page 34

“ZFS Hotplugging Enhancements” on page 34

“Recursively Renaming ZFS Snapshots (zfs rename -r)” on page 35
“ZFS Boot Support on x86 Systems” on page 36

“GZIP Compression is Available for ZFS” on page 36

“Storing Multiple Copies of ZFS User Data” on page 36

“Improved zpool status Output” on page 37

“ZFS and Solaris iSCSI Improvements” on page 37

“Sharing ZFS File System Enhancements” on page 38

“ZFS Command History (zpool history)” on page 39

“ZEFS Property Improvements” on page 40

“Displaying All ZFS File System Information” on page 40

“New zfs receive -F Option” on page 41

“Recursive ZFS Snapshots” on page 41

“Double Parity RAID-Z (raidz2)” on page 41

“Hot Spares for ZFS Storage Pool Devices” on page 41

“Replacing a ZFS File System With a ZFS Clone (zfs promote)” on page 42
“Upgrading ZFS Storage Pools (zpool upgrade)” on page 42

“Using ZFS to Clone Non-Global Zones and Other Enhancements” on page 42
“ZFS Backup and Restore Commands are Renamed” on page 43
“Recovering Destroyed Storage Pools” on page 43

“ZFS is Integrated With Fault Manager” on page 43

“New zpool clear Command” on page 44

“Compact NFSv4 ACL Format” on page 44

“File System Monitoring Tool (fsstat)” on page 44

“ZFS Web-Based Management” on page 45

New ZFS System Process

Solaris Express Community Edition, build 129: In this Solaris release, each ZFS storage pool
has an associated process, zpool - poolname. The threads in this process are the pool's I/O
processing threads to handle I/O tasks, such as compression and checksumming, that are
associated with the pool. The purpose of this process is to provide visibility into each storage
pool's CPU utilization. Information about these process can be reviewed by using the ps and
prstat commands. These processes are only available in the global zone. For more
information, see sdc.1m.

ZFS Administration Guide « January 2010

What's New in ZFS?

ZFS Deduplication Property

Solaris Express Community Edition, build 129: In this Solaris release, you can use the
deduplication property to remove redundant data from your ZFS file systems. If a file system
has the dedup property enabled, duplicate data blocks are removed synchronously. The result is
that only unique data is stored and common components are shared between files.

You can enable this property as follows:

zfs set dedup=on tank/home

Although deduplication is set as a file system property, the scope is pool-wide. For example, you
can identify the deduplication ratio as follows:

zpool list tank
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
tank 136G 55.2G 80.8G 40% 2.30x ONLINE

The zpool list output has been updated to support the deduplication property. For more
information, see

For more information setting the deduplication property, see “The dedup Property” on
page 173.

For detailed information about the ZFS deduplication features, see this blog:
http://blogs.sun.com/bonwick/entry/zfs dedup
For up-to-date information about the ZFS deduplication features, see this FAQ:

http://hub.opensolaris.org/bin/view/Community+Group+zfs/dedup

ZFS Storage Pool Recovery

Solaris Express Community Edition, build 128: A storage pool can become damaged if
underlying devices become unavailable, a power failure occurs, or if more than the supported
number of devices fail in a redundant ZFS configuration. This release provides new command
features for recovering your damaged storage pool. However, using this recovery feature means
that the last few transactions that occurred prior to the pool outage might be lost.

Both the zpool clear and zpool import commands support the -F option to possibly recover
a damaged pool. In addition, running the zpool status, zpool clear, or zpool import
command automatically report a damaged pool and these commands describe how to recover
the pool.

For more information, see “Repairing ZFS Storage Pool-Wide Damage” on page 300.

Chapter 1 « ZFSFile System (Introduction) 17

http://blogs.sun.com/bonwick/entry/zfs_dedup
http://hub.opensolaris.org/bin/view/Community+Group+zfs/dedup

What's New in ZFS?

18

ZFS Log Device Enhancements

The following log device enhancements are available in the Solaris Express Community
Edition:

= The logbias property — In SXCE build 122, you can use this property to provide a hint to
ZFS about handling synchronous requests for a specific dataset. If logbias is set to latency,
ZFS uses the pool's separate log devices, if any, to handle the requests at low latency. If
logbias is set to throughput, ZFS does not use the pool's separate log devices. Instead, ZFS
optimizes synchronous operations for global pool throughput and efficient use of resources.
The default value is latency. For most configurations, the default value is recommended.
Using the logbias=throughput value might improve performance for writing database
files.

= Log device removal — In SXCE build 125, you can now remove a log device from a ZFS
storage pool by using the zpool remove command. A single log device can be removed by
specifying the device name. A mirrored log device can be removed by specifying the
top-level mirror for the log. When a separate log device is removed from the system, ZIL
transaction records are written to the main pool.

Redundant top-level virtual devices are now identified with a numeric identifier. For
example, in a mirrored storage pool of two disks, the top level virtual deviceismirror-0.

For more information, see Example 4-3.

Triple Parity RAIDZ (raidz3)

Solaris Express Community Edition, build 120: In this Solaris release, a redundant RAID-Z
configuration can now have either single-, double-, or triple-parity, which means that one, two,
three device failures can be sustained respectively, without any data loss. You can specify the
raidz3 keyword for a triple-parity RAID-Z configuration. For more information, see

Holding ZFS Snapshots

Solaris Express Community Edition, build 121: If you implement different automatic
snapshot policies so that older snapshots are being inadvertently destroyed by zfs receive
because they no longer exist on the sending side, you might consider using the snapshots hold
feature in this Solaris release.

Holding a snapshot prevents it from being destroyed. In addition, this feature allows a snapshot
with clones to be deleted pending the removal of the last clone by using the zfs destroy -d
command.

You can hold a snapshot or set of snapshots. For example, the following syntax puts a hold tag,
keep, on tank/home/cindys/snap@l.

ZFS Administration Guide « January 2010

What's New in ZFS?

zfs hold keep tank/home/cindys@snapl

For more information, see “Holding ZFS Snapshots” on page 203.

ZFS Device Replacement Enhancements

Solaris Express Community Edition, build 117: In this Solaris release, a system event or
sysevent is provided when an underlying device is expanded. ZFS has been enhanced to
recognize these events and adjusts the pool based on the new size of the expanded LUN,
depending on the setting of the autoexpand property. You can use the autoexpand property
pool to enable or disable automatic pool expansion when a dynamic LUN expansion event is
received.

These features enable you to expand a LUN and the resulting pool can access the expanded
space without having to export and import pool or reboot the system.

For example, automatic LUN expansion is enabled on the tank pool.

zpool set autoexpand=on tank

Or, you can create the pool with the autoexpand property enabled.

zpool create -o autoexpand=on tank c1t13d0

The autoexpand property is disabled by default so you can decide whether you want the LUN
expanded or not.

A LUN can also be expanded by using the zpool online -e command. For example:

zpool online -e tank cl1t6d0

Or, you can reset the autoexpand property after the LUN is attached or made available by using
the zpool replace feature. For example, the following pool is created with one 8-Gbyte disk
(c0t0d0). The 8-Gbyte disk is replaced with a 16-Gbyte disk (c1t13d0), but the pool size is not
expanded until the autoexpand property is enabled.

zpool create pool c0t0do

zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
pool 8.44G 76.5K 8.44G 0% ONLINE

zpool replace pool c0t0d0 cltl3do

zpool list

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
pool 8.44G 91.5K 8.44G 0% ONLINE

zpool set autoexpand=on pool

zpool list

Chapter 1 « ZFSFile System (Introduction) 19

What's New in ZFS?

20

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
pool 16.8G 91.5K 16.8G 0% ONLINE -

Another way to expand the LUN in the above example without enabling the autoexpand
property, is to use the zpool online -e command even though the device is already online. For
example:

zpool create tank c0t0do

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 8.44G 76.5K 8.44G 0% ONLINE -

zpool replace tank c0t0d0 cltl3do

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 8.44G 91.5K 8.44G 0% ONLINE -

zpool online -e tank c1t13d0

zpool list tank

NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 16.8G 90K 16.8G 0% ONLINE -

o

Additional device replacement enhancements in this release include the following features:

= In previous releases, ZFS was not able to replace an existing disk with another disk or attach
a disk if the replacement disk was a slightly different size. In this release, you can replace an
existing disk with another disk or attach a new disk that is nominally the same size provided
that the pool is not already full.

= Inthisrelease, you do not need to reboot the system or export and import a pool to expand a
LUN. As described above, you can enable the autoexpand property or use the zpool online
-e command to expand the full size of a LUN.

For more information about replacing devices, see “Replacing Devices in a Storage Pool” on
page 89.

ZFS User and Group Quotas

Solaris Express Community Edition, build 114: In previous Solaris releases, you could apply
quotas and reservations to ZFS file systems to manage and reserve space.

In this Solaris release, you can set a quota on the amount of space consumed by files that are
owned by a particular user or group. You might consider setting user and group quotas in an
environment with a large number of users or groups.

You can set user or group quotas by using the zfs userquota and zfs groupquota properties
as follows:

zfs set userquota@userl=5G tank/data
zfs set groupquota@staff=10G tank/staff/admins

ZFS Administration Guide « January 2010

What's New in ZFS?

You can display a user's or group's current quota setting as follows:

zfs get userquota@userl tank/data

NAME PROPERTY VALUE SOURCE

tank/data userquota@userl 5G local

zfs get groupquota@staff tank/staff/admins

NAME PROPERTY VALUE SOURCE
tank/staff/admins groupquota@staff 10G local

Display general quota information as follows:

zfs userspace tank/data

TYPE NAME USED QUOTA
POSIX User root 3K none
POSIX User wuserl 0 5G

zfs groupspace tank/staff/admins

TYPE NAME USED QUOTA
POSIX Group root 3K none
POSIX Group staff 0 10G

You can display individual user or group space usage by viewing the userused@user and
groupused@group properties as follows:

zfs get userused@userl tank/staff

NAME PROPERTY VALUE SOURCE
tank/staff userused@userl 213M local

zfs get groupused@staff tank/staff

NAME PROPERTY VALUE SOURCE
tank/staff groupused@staff 213M local

For more information about setting user quotas, see “Setting ZFS Quotas and Reservations” on
page 193.

ZFS ACL Pass Through Inheritance for Execute
Permission

Solaris Express Community Edition, build 103: In previous Solaris releases, you could apply
ACL inheritance so that all files are created with 0664 or 0666 permissions. If you want to
optionally include the execute bit from the file creation mode into the inherited ACL, you can
use the pass through inheritance for execute permission in this release.

Ifaclinherit=passthrough-x is enabled on a ZFS dataset, you can include execute permission
for an output file that is generated from cc or gcc tools. If the inherited ACL does not include
execute permission, then the executable output from the compiler won't be executable until you
use the chmod command to change the file's permissions.

Chapter 1 « ZFSFile System (Introduction) 21

What's New in ZFS?

22

For more information, see Example 8-13.

Automatic ZFS Snapshots

Solaris Express Community Edition, build 100: This release includes the Time Slider
snapshot tool. This tool automatically snapshots ZFS file systems and allows you to browse and
recover snapshots of file systems. For more information, see “Managing Automatic ZFS
Snapshots” on page 207.

ZFS Property Enhancements

Solaris Express Community Edition, builds 96-128: The following ZFS file system
enhancements are included in these releases.

Setting ZFS Security Labels - The mlslabel property is a sensitivity label that determines if
a dataset can be mounted in a Trusted Extensions labeled-zone. The default is none. The
mlslabel property can be modified only when Trusted Extensions is enabled and only with
the appropriate privilege.

Setting ZFS file system properties at pool creation time — You can set ZFS file system
properties when the pool is created. In the following example, compression is enabled on the
ZFS file system that is created when the pool is created.

zpool create -0 compression=on pool mirror c0t1ld® c0t2d0

Setting cache properties on a ZFS file system - Two new ZFS file system properties are
provided in that allow you to control what is cached in the primary cache (ARC) or the
secondary cache (L2ARC). The cache properties are set as follows:

® primarycache - Controls what is cached in the ARC.
® secondarycache — Controls what is cached in the L2ZARC.

= Possible values for both properties — all, none, and metadata. If set to all, both user
data and metadata are cached. If set to none, neither user data nor metadata is cached. If
set to metadata, only metadata is cached. The defaultis all.

You can set these properties on an existing file system or when the file system is created. For
example:

zfs set primarycache=metadata tank/datab
zfs create -o primarycache=metadata tank/newdatab

When set on existing file systems, only new I/O is cache based on the value of these
properties.

Some database environments might benefit from not caching user data. You will have
determine if setting cache properties is appropriate for your environment.

ZFS Administration Guide « January 2010

What's New in ZFS?

= Space accounting properties — New read-only file system properties help you identify space
usage for clones, file systems, and volumes, but not snapshots. The properties are as follows:

= usedbychildren - Identifies the amount of space that is used by children of this dataset,
which would be freed if all the dataset's children were destroyed. The property
abbreviation is usedchild.

= usedbydataset - Identifies the amount of space that is used by this dataset itself, which
would be freed if the dataset was destroyed, after first destroying any snapshots and
removing any refreservation. The property abbreviation is usedds.

= usedbyrefreservation - Identifies the amount of space that is used by a
refreservation set on this dataset, which would be freed if the refreservation was
removed. The property abbreviation is usedrefreserv.

= usedbysnapshots - Identifies the amount of space that is consumed by snapshots of this
dataset. In particular, it is the amount of space that would be freed if all of this dataset's
snapshots were destroyed. Note that this is not simply the sum of the snapshots' used
properties, because space can be shared by multiple snapshots. The property
abbreviation is usedsnap.

These new properties break down the value of the used property into the various elements
that consume space. In particular, the value of the used property breaks down as follows:

used property = usedbychildren + usedbydataset + usedbyrefreservation + usedbysnapshots

You can view these properties by using the zfs 1ist -o space command. For example:

$ zfs list -o space

NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
rpool 25.4G 7.79G 0 64K 0 7.79G
rpool/ROOT 25.4G 6.29G 0 18K 0 6.29G
rpool/RO0T/snv_98 25.4G 6.29G 0 6.29G 0 0
rpool/dump 25.4G 1.00G 0 1.00G 0 0
rpool/export 25.4G 38K 0 20K 0 18K
rpool/export/home 25.4G 18K 0 18K 0 0
rpool/swap 25.8G 512M 0 111M 401M 0

The above command is equivalent to the zfs list
-0 name,avail,used,usedsnap,usedds,usedrefreserv,usedchild -t filesystem,volume
command.

= Listing snapshots - The listsnapshots pool property controls whether snapshot
information is displayed by the zfs 1ist command. The default value is of f, which means
snapshot information is not displayed by default.

You can use the zfs list -t snapshots command to display snapshot information. For
example:

zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
pool/home@today 16K - 22K -

Chapter 1 « ZFSFile System (Introduction) 23

What's New in ZFS?

24

pool/home/userl@today 0 - 18K -
pool/home/user2@today 0 - 18K -
pool/home/user3@today 0 - 18K -

To display snapshot information by default, set the listsnapshots property. For example:

zpool get listsnapshots pool

NAME PROPERTY VALUE SOURCE

pool listsnapshots off default

zpool set listsnaps=on pool

zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 208K 6.71G 19K /pool

pool/home 92K 6.716G 22K /pool/home
pool/home@today 16K - 22K -
pool/home/userl 18K 6.71G 18K /pool/home/userl
pool/home/userl@today 0 - 18K -
pool/home/user2 18K 6.71G 18K /pool/home/user2
pool/home/user2@today 0 - 18K -
pool/home/user3 18K 6.71G 18K /pool/home/user3
pool/home/user3@today 0 - 18K -

Keep in mind that changing the default listsnapshots setting might cause the zfs list
output to run slowly in a pool with many snapshots.

ZFS Log Device Recovery

Solaris Express Community Edition, build 96: In this release, ZFS identifies intent log failures
in the zpool status command. FMA reports these errors as well. Both ZFS and FMA describe
how to recover from an intent log failure.

For example, if the system shuts down abruptly before synchronous write operations are
committed to a pool with a separate log device, you will see messages similar to the following:

zpool status -x
pool: pool
state: FAULTED
status: One or more of the intent logs could not be read.
Waiting for adminstrator intervention to fix the faulted pool.
action: Either restore the affected device(s) and run ’'zpool online’,
or ignore the intent log records by running ’zpool clear’.
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
pool FAULTED 0 0 0 bad intent log
mirror ONLINE 0 0 0

ZFS Administration Guide « January 2010

What's New in ZFS?

c0t1ldd ONLINE
c0t4dd ONLINE
logs FAULTED
c0t5do UNAVAIL

0

0

0 bad intent log
0 cannot open

SIS IS
SIS IS

You will need to resolve the log device failure in the following ways:
= Replace or recover the log device. In this example, the device c0t5d0.
= Bring thelog device back online.
zpool online pool c@t5d0
= Reset the failed log device error condition.
zpool clear pool
If you want to recover from this error without replacing log device failure, you can clear the

error with the zpool clear command. In this scenario, the pool will operate in degraded mode
and the log records will be written to the main pool until the separate log device is replaced.

Consider using mirrored log devices to reduce the log device failure scenario.

Using ZFS ACL Sets

Solaris Express Community Edition, build 95: This release provides the ability to apply
NFSv4-style ACLs in sets, rather than apply different ACL permissions individually. The
following ACL sets are provided:

full_set = all permissions

modify_set = all permissions exceptwrite_acl andwrite_owner

read_set =read data, read attributes, read xattr,and read acl

write set=write data,append data,write attributes,andwrite xattr

These ACL sets are prefined and cannot be modified.

For more information about using ACL sets, see Example 8-5.

Using Cache Devices in Your ZFS Storage Pool

Solaris Express Community Edition, build 78: In this Solaris release, you can create pool and
specity cache devices, which are used to cache storage pool data.

Cache devices provide an additional layer of caching between main memory and disk. Using
cache devices provide the greatest performance improvement for random read-workloads of
mostly static content.

One or more cache devices can specified when the pool is created. For example:

Chapter 1 « ZFSFile System (Introduction) 25

What's New in ZFS?

26

zpool create pool mirror c0t2d@ c0t4d@ cache c0t0do
zpool status pool

pool: pool

state: ONLINE

scrub: none requested

config:
NAME STATE READ WRITE CKSUM
pool ONLINE 0
mirror ONLINE 0 0 0
c0t2d® ONLINE 0 0 0
c0t4dd ONLINE 0 0 0
cache
c0t0do ONLINE 0 0 0

errors: No known data errors

After cache devices are added, they gradually fill with content from main memory. Depending
on the size of your cache device, it could take over an hour for them to fill. Capacity and reads
can be monitored by using the zpool iostat command as follows:

zpool iostat -v pool 5
Cache devices can be added or removed from the pool after the pool is created.

For more information, see “Creating a ZFS Storage Pool with Cache Devices” on page 73 and
Example 4-4.

ZFS Installation and Boot Support

Solaris Express Community Edition, build 90: This release provides the ability to install and
boot a ZFS root file system. You can use the initial installation option or the JumpStart feature
to install a ZFS root file system. Or, you can use the Live Upgrade feature to migrate a UFS root
file system to a ZFS root file system. ZFS support for swap and dump devices is also provided.
For more information, see Chapter 5, “Installing and Booting a ZFS Root File System.

For alist of known issues with this release, go to the following site:

http://hub.opensolaris.org/bin/view/Community+Group+zfs/boot

Rolling Back a Dataset Without Unmounting

Solaris Express Community Edition, build 80: This release provides the ability to rollback a
dataset without unmounting it first. This feature means that zfs rollback - f option is no
longer needed to force an umount operation. The - f option is no longer supported, and is
ignored if specified.

ZFS Administration Guide « January 2010

http://hub.opensolaris.org/bin/view/Community+Group+zfs/boot

What's New in ZFS?

Enhancements to the zfs send Command

Solaris Express Community Edition, build 77: This release includes the following
enhancements to the zfs send command.

= Send all incremental streams from one snapshot to a cumulative snapshot. For example:

zfs list

NAME USED AVAIL REFER MOUNTPOINT
pool 428K 16.5G 20K /pool
pool/fs 71K 16.5G 21K /pool/fs
pool/fs@snapA 16K - 18.5K -
pool/fs@snapB 17K - 20K -
pool/fs@snapC 17K - 20.5K -
pool/fs@snapD 0 - 21K -

zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@combo

Send all incremental snapshots between fs@snapA to fs@snapD to fs@combo.

= Send an incremental stream from the origin snapshot to create a clone. The original
snapshot must already exist on the receiving side to accept the incremental stream. For
example:

zfs send -I pool/fs@snapl pool/clone@snapA > /snaps/fsclonesnap-I

zfs receive -F pool/clone < /snaps/fsclonesnap-I

= Send areplication stream of all descendent file systems, up to the named snapshots. When
received, all properties, snapshots, descendent file systems, and clones are preserved. For
example:

zfs send -R pool/fs@snap > snaps/fs-R

For an extended example, see Example 7-1.
= Send an incremental replication stream.

zfs send -R -[1iI] @snapA pool/fs@snapD
For an extended example, see Example 7-1.

For more information, see “Sending and Receiving Complex ZFS Snapshot Streams” on
page 215.

Chapter 1 « ZFSFile System (Introduction) 27

What's New in ZFS?

28

ZFS Quotas and Reservations for File System Data
Only

Solaris Express Community Edition, build 77: In addition to the existing ZFS quota and
reservation features, this release includes dataset quotas and reservations that do not include
descendents, such as snapshots and clones, in the space consumption accounting.

= The refquota property limits the amount of space a dataset can consume. This property
enforces a hard limit on the amount of space that can be used. This hard limit does not
include space used by descendents, such as snapshots and clones.

= The refreservation property sets the minimum amount of space that is guaranteed to a
dataset, not including its descendents.

For example, you can set a 10 Gbyte refquota for studentA that sets a 10-Gbyte hard limit of
referenced space. For additional flexibility, you can set a 20-Gbyte quota that allows you to
manage studentA's snapshots.

zfs set refquota=10g tank/studentA
zfs set quota=20g tank/studentA

For more information, see “Setting ZFS Quotas and Reservations” on page 193.

ZFS File System Properties for the Solaris CIFS Service

Solaris Express Community Edition, build 77: This release provides support for the Solaris™
Common Internet File System (CIFS) service. This product provides the ability to share files
between Solaris and Windows or MacOS systems.

To facilitate sharing files between these systems by using the Solaris CIFS service, the following
new ZFS properties are provided:

= Case sensitivity support (casesensitivity)

= Non-blocking mandatory locks (nbmand)

= SMB share support (sharesmb)

= Unicode normalization support (normalization)
m UTF-8 character set support (utf8only)

Currently, the sharesmb property is available to share ZFS files in the Solaris CIFS environment.
More ZFS CIFS-related properties will be available in an upcoming release. For information
about using the sharesmb property, see “Sharing ZFS Files in a Solaris CIFS Environment” on
page 191.

In addition to the ZFS properties added for supporting the Solaris CIFS software product, the
vscan property is available for scanning ZFS files if you have a 3rd-party virus scanning engine.

ZFS Administration Guide « January 2010

What's New in ZFS?

ZFS Storage Pool Properties

Solaris Express Community Edition, build 77: ZFS storage pool properties were introduced in
an earlier release. This release provides for additional property information. For example:

zpool get all mpool

NAME PROPERTY VALUE SOURCE
mpool size 33.8G

mpool used 5.76G

mpool available 28.0G

mpool capacity 17% -

mpool altroot - default
mpool health ONLINE -

mpool guid 2689713858991441653

mpool version 10 default
mpool bootfs mpool/RO0T/zfsBE local
mpool delegation on default
mpool autoreplace off default
mpool cachefile - default
mpool failmode continue local

For a description of these properties, see Table 4-1.

The cachefile property - Solaris Express Community Edition, build 77: This release
provides the cachefile property, which controls where pool configuration information is
cached. All pools in the cache are automatically imported when the system boots. However,
installation and clustering environments might need to cache this information in a different
location so that pools are not automatically imported.

You can set this property to cache pool configuration in a different location that can be
imported later by using the zpool import ¢ command. For most ZFS configurations, this
property would not be used.

The cachefile property is not persistent and is not stored on disk. This property replaces
the temporary property that was used to indicate that pool information should not be
cached in previous Solaris releases.

The failmode property — Solaris Express Community Edition, build 77: This release
provides the failmode property for determining the behavior of a catastrophic pool failure
due to aloss of device connectivity or the failure of all devices in the pool. The failmode
property can be set to these values: wait, continue, or panic. The default value iswait,
which means you must reconnect the device or replace a failed device and clear the error
with the zpool clear command.

The failmode property is set like other settable ZFS properties, which can be set either
before or after the pool is created. For example:

zpool set failmode=continue tank
zpool get failmode tank

Chapter 1 « ZFSFile System (Introduction) 29

What's New in ZFS?

zpool history

NAME PROPERTY VALUE SOURCE
tank failmode continue local

zpool create -o failmode=continue users mirror c0t1ld@ clt1do

For a description of all ZFS pool properties, see Table 4-1.

ZFS and File System Mirror Mounts

Solaris Express Community Edition, build 77: In this Solaris release, NFSv4 mount
enhancements are provided to make ZFS file systems more accessible to NFS clients.

When file systems are created on the NFS server, the NES client can automatically discover
these newly created file systems within their existing mount of a parent file system.

For example, if the server neo already shares the tank file system and client zee has it mounted,
/tank/baz is automatically visible on the client after it is created on the server.

zee# mount neo:/tank /mnt
zee# ls /mnt
baa bar

neo# zfs create tank/baz

zee% ls /mnt

baa bar baz
zee% ls /mnt/baz
filel file2

ZFS Command History Enhancements (zpool
history)

Solaris Express Community Edition, build 69: The zpool history command has been
enhanced to provide the following new features:

= ZFS file system event information is displayed. For example:

History for 'rpool’:

2009-08-26.16:49:07 zpool create -f -o failmode=continue -R /a -m legacy -o cachefile=
/tmp/root/etc/zfs/zpool.cache rpool cltld@s0

2009-08-26.16:49:08 zfs set canmount=noauto rpool

2009-08-26.16:49:08 zfs set mountpoint=/rpool rpool

2009-08-26.16:49:09 zfs create -o mountpoint=legacy rpool/ROOT

2009-08-26.16:49:10 zfs create -b 8192 -V 2048m rpool/swap

2009-08-26.16:49:11 zfs create -b 131072 -V 1024m rpool/dump

30

ZFS Administration Guide « January 2010

What's New in ZFS?

2009-08-26.16:49:14 zfs create -o canmount=noauto rpool/RO0T/zfs1009BE
2009-08-26.16:49:15 zpool set bootfs=rpool/RO0T/zfs1009BE rpool
2009-08-26.16:49:15 zfs set mountpoint=/ rpool/RO0T/zfs1009BE
2009-08-26.16:49:16 zfs set canmount=on rpool

2009-08-26.16:49:17 zfs create -o mountpoint=/export rpool/export
2009-08-26.16:49:18 zfs create rpool/export/home

2009-08-28.08:17:59 zpool attach rpool cl1t1ld@s0@ c1t0d0s0O

= A -1option for displaying a long format that includes the user name, the hostname, and the
zone in which the operation was performed. For example:

zpool history -1 rpool

History for ’'rpool’:

2009-08-26.16:49:07 zpool create -f -o failmode=continue -R /a -m legacy -o cachefile=
/tmp/root/etc/zfs/zpool.cache rpool cltld@s@ [user root on neo:global]

2009-08-26.16:49:08 zfs set canmount=noauto rpool [user root on neo:global]
2009-08-26.16:49:08 zfs set mountpoint=/rpool rpool [user root on neo:global]
2009-08-26.16:49:09 zfs create -o mountpoint=legacy rpool/ROOT [user root on neo:globall]
2009-08-26.16:49:10 zfs create -b 8192 -V 2048m rpool/swap [user root on neo:globall]
2009-08-26.16:49:11 zfs create -b 131072 -V 1024m rpool/dump [user root on neo:global]
2009-08-26.16:49:14 zfs create -o canmount=noauto rpool/RO0T/zfsl@@9BE [user root on neo:globall]
2009-08-26.16:49:15 zpool set bootfs=rpool/RO0T/zfs1009BE rpool [user root on neo:global]
2009-08-26.16:49:15 zfs set mountpoint=/ rpool/RO0T/zfs1009BE [user root on neo:global]
2009-08-26.16:49:16 zfs set canmount=on rpool [user root on neo:global]

2009-08-26.16:49:17 zfs create -o mountpoint=/export rpool/export [user root on neo:global]
2009-08-26.16:49:18 zfs create rpool/export/home [user root on neo:globall
2009-08-28.08:17:59 zpool attach rpool c1ltld0s@ c1t@d@s® [user root on neo:global]

= A -ioption for displaying internal event information that can be used for diagnostic
purposes. For example:

zpool history -i rpool

History for ’'rpool’:

2009-08-26.16:49:07 zpool create -f -o failmode=continue -R /a -m legacy -o cachefile=
/tmp/root/etc/zfs/zpool.cache rpool cltld0s0@

2009-08-26.16:49:07 [internal property set txg:6] mountpoint=/ dataset = 16
2009-08-26.16:49:07 [internal property set txg:7] mountpoint=legacy dataset = 16
2009-08-26.16:49:08 [internal property set txg:8] canmount=2 dataset = 16
2009-08-26.16:49:08 zfs set canmount=noauto rpool

2009-08-26.16:49:08 [internal property set txg:10] mountpoint=/rpool dataset = 16
2009-08-26.16:49:08 zfs set mountpoint=/rpool rpool

2009-08-26.16:49:09 [internal create txg:12] dataset = 31

2009-08-26.16:49:09 [internal property set txg:13] mountpoint=legacy dataset = 31
2009-08-26.16:49:09 zfs create -o mountpoint=legacy rpool/ROOT
2009-08-26.16:49:09 [internal create txg:15] dataset = 37

2009-08-26.16:49:10 [internal property set txg:16] refreservation=2147483648 dataset = 37
2009-08-26.16:49:10 [internal refreservation set txg:16] 2147483648 dataset = 37
2009-08-26.16:49:10 zfs create -b 8192 -V 2048m rpool/swap

2009-08-26.16:49:10 [internal create txg:18] dataset = 43

2009-08-26.16:49:10 [internal property set txg:19] refreservation=1073741824 dataset = 43

Chapter 1 « ZFSFile System (Introduction) 31

What's New in ZFS?

2009-08-26.16:49:10 [internal refreservation set txg:19] 1073741824 dataset = 43

32

For more information about using the zpool history command, see “Identifying Problems in
ZFS” on page 281.

Upgrading ZFS File Systems (zfs upgrade)

Solaris Express Community Edition, build 69: The zfs upgrade command is included in this
release to provide future ZFS file system enhancements to existing file systems. ZFS storage
pools have a similar upgrade feature to provide pool enhancements to existing storage pools.

For example:

zfs upgrade
This system is currently running ZFS filesystem version 3.

All filesystems are formatted with the current version.

Note - File systems that are upgraded and any streams created from those upgraded file systems
by the zfs send command are not accessible on systems that are running older software
releases.

ZFS Delegated Administration

Solaris Express Community Edition, build 69: In this release, you can delegate fine-grained
permissions to perform ZFS administration tasks to non-privileged users.

You can use the zfs allowand zfs unallow commands to grant and remove permissions.

You can modify the ability to use delegated administration with the pool's delegation
property. For example:

zpool get delegation users

NAME PROPERTY VALUE SOURCE
users delegation on default
zpool set delegation=off users

zpool get delegation users

NAME PROPERTY VALUE SOURCE
users delegation off local

By default, the delegation property is enabled.

ZFS Administration Guide « January 2010

What's New in ZFS?

For more information, see Chapter 9, “ZFS Delegated Administration,” and zfs(1M).

Setting Up Separate ZFS Logging Devices

Solaris Express Community Edition, build 68: The ZFS intent log (ZIL) is provided to satisfy
POSIX requirements for synchronous transactions. For example, databases often require their
transactions to be on stable storage devices when returning from a system call. NFS and other
applications can also use fsync() to ensure data stability. By default, the ZIL is allocated from
blocks within the main storage pool. However, better performance might be possible by using
separate intent log devices in your ZFS storage pool, such as with NVRAM or a dedicated disk.

Log devices for the ZFS intent log are not related to database log files.

You can set up a ZFS logging device when the storage pool is created or after the pool is created.
For examples of setting up log devices, see “Creating a ZFS Storage Pool with Log Devices” on
page 73 and “Adding Devices to a Storage Pool” on page 79.

You can attach alog device to an existing log device to create a mirrored log device. This
operation is identical to attaching a device in a unmirrored storage pool.

Consider the following points when determining whether setting up a ZFS log device is
appropriate for your environment:

= Any performance improvement seen by implementing a separate log device depends on the
device type, the hardware configuration of the pool, and the application workload. For
preliminary performance information, see this blog:

http://blogs.sun.com/perrin/entry/slog blog or blogging on
= Logdevices can be unreplicated or mirrored, but RAID-Z is not supported for log devices.

= Ifaseparate log device is not mirrored and the device that contains the log fails, storing log
blocks reverts to the storage pool.

= Logdevices can be added, replaced, attached, detached, and imported and exported as part
of the larger storage pool. Currently, log devices cannot be removed.

= The minimum size of a log device is the same as the minimum size of each device in a pool,
which is 64 Mbytes. The amount of in-play data that might be stored on a log device is
relatively small. Log blocks are freed when the log transaction (system call) is committed.

= The maximum size of a log device should be approximately 1/2 the size of physical memory
because that is the maximum amount of potential in-play data that can be stored. For
example, if a system has 16 Gbytes of physical memory, consider a maximum log device size
of 8 Gbytes.

Chapter 1 « ZFSFile System (Introduction) 33

http://docs.sun.com/doc/819-2240
http://blogs.sun.com/perrin/entry/slog_blog_or_blogging_on

What's New in ZFS?

34

Creating Intermediate ZFS Datasets

Solaris Express Community Edition, build 68: You can use the -p option with the zfs
create, zfs clone, and zfs rename commands to quickly create a non-existent intermediate
dataset, if it doesn't already exist.

For example, create ZFS datasets (users/area51) in the datab storage pool.

zfs list
NAME USED AVAIL REFER MOUNTPOINT
datab 106K 16.5G 18K /datab

zfs create -p -o compression=on datab/users/area51

If the intermediate dataset exists during the create operation, the operation completes
successfully.

Properties specified apply to the target dataset, not to the intermediate datasets. For example:

zfs get mountpoint,compression datab/users/area51

NAME PROPERTY VALUE SOURCE
datab/users/area51 mountpoint /datab/users/area51 default
datab/users/area51 compression on local

The intermediate dataset is created with the default mount point. Any additional properties are
disabled for the intermediate dataset. For example:

zfs get mountpoint,compression datab/users

NAME PROPERTY VALUE SOURCE
datab/users mountpoint /datab/users default
datab/users compression off default

For more information, see zfs(1M).

ZFS Hotplugging Enhancements

Solaris Express Community Edition, build 68: In this release, ZFS more effectively responds
to devices that are removed and provides a mechanism to automatically identify devices that are
inserted with the following enhancements:

= You can replace an existing device with an equivalent device without having to use the
zpool replace command.

The autoreplace property controls automatic device replacement. If set to off, device
replacement must be initiated by the administrator by using the zpool replace command.
If set to on, any new device, found in the same physical location as a device that previously
belonged to the pool, is automatically formatted and replaced. The default behavior is off.

ZFS Administration Guide « January 2010

http://docs.sun.com/doc/819-2240

What's New in ZFS?

= The storage pool state REMOVED is provided when a device or hot spare has been removed if
the device was physically removed while the system was running. A hot-spare device is
substituted for the removed device, if available.

= Ifadeviceis removed and then inserted, the device is placed online. If a hot-spare was
activated when the device is re-inserted, the spare is removed when the online operation
completes.

= Automatic detection when devices are removed or inserted is hardware-dependent and
might not be supported on all platforms. For example, USB devices are automatically
configured upon insertion. However, you might have to use the cfgadm -c configure
command to configure a SATA drive.

= Hot spares are checked periodically to make sure they are online and available.

For more information, see zpool(1M).

Recursively Renaming ZFS Snapshots (zfs rename -r)

Solaris Express Community Edition, build 63: You can recursively rename all descendent ZFS
snapshots by using the zfs rename - r command.

For example, snapshot a set of ZFS file systems.

zfs snapshot -r users/home@today

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 216K 16.5G 20K /users

users/home 76K 16.5G 22K /users/home
users/home@today 0 - 22K -
users/home/markm 18K 16.5G 18K /users/home/markm
users/home/markm@today 0 - 18K -
users/home/marks 18K 16.5G 18K /users/home/marks
users/home/marks@today 0 - 18K -

users/home/neil 18K 16.5G 18K /users/home/neil
users/home/neil@today 0 - 18K -

Then, rename the snapshots the following day.

zfs rename -r users/home@today @yesterday

zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 216K 16.5G 20K /users

users/home 76K 16.5G 22K /users/home
users/home@yesterday 0 - 22K -
users/home/markm 18K 16.5G 18K /users/home/markm
users/home/markm@yesterday 0 - 18K -
users/home/marks 18K 16.5G 18K /users/home/marks

Chapter 1 « ZFSFile System (Introduction) 35

http://docs.sun.com/doc/819-2240

What's New in ZFS?

36

users/home/marks@yesterday 0 - 18K -
users/home/neil 18K 16.5G 18K /users/home/neil
users/home/neil@yesterday 0 - 18K -

Snapshots are the only dataset that can be renamed recursively.

For more information about snapshots, see “Overview of ZFS Snapshots” on page 201 and this
blog entry that describes how to create rolling snapshots:

http://blogs.sun.com/mmusante/entry/rolling snapshots made easy

ZFS Boot Support on x86 Systems

Solaris Express Community Edition, build 62: In this Solaris release, support for booting a
ZFS file system is available on x86 systems. For more information, see:

http://hub.opensolaris.org/bin/view/Community+Group+zfs/boot

GZIP Compression is Available for ZFS

Solaris Express Community Edition, build 62: In this Solaris release, you can set gzip
compression on ZFS file systems in addition to 1zjb compression. You can specify compression
as gzip, the default, or gzip- N, where N equals 1 through 9. For example:

zfs create -o compression=gzip users/home/snapshots

zfs get compression users/home/snapshots

NAME PROPERTY VALUE SOURCE
users/home/snapshots compression gzip local

zfs create -o compression=gzip-9 users/home/oldfiles

zfs get compression users/home/oldfiles

NAME PROPERTY VALUE SOURCE
users/home/oldfiles compression gzip-9 local

For more information about setting ZFS properties, see “Setting ZFS Properties” on page 179.

Storing Multiple Copies of ZFS User Data

Solaris Express Community Edition, build 61: As a reliability feature, ZFS file system
metadata is automatically stored multiple times across different disks, if possible. This feature is
known as ditto blocks.

In this Solaris release, you can specify that multiple copies of user data is also stored per file
system by using the zfs set copies command. For example:

ZFS Administration Guide « January 2010

http://blogs.sun.com/mmusante/entry/rolling_snapshots_made_easy
http://hub.opensolaris.org/bin/view/Community+Group+zfs/boot

What's New in ZFS?

zfs set copies=2 users/home

zfs get copies users/home

NAME PROPERTY VALUE SOURCE
users/home copies 2 local

Available values are 1, 2, or 3. The default value is 1. These copies are in addition to any
pool-level redundancy, such as in a mirrored or RAID-Z configuration.
The benefits of storing multiple copies of ZFS user data are as follows:

= Improves data retention by allowing recovery from unrecoverable block read faults, such as
media faults (bit rot) for all ZFS configurations.

= Provides data protection even in the case where only a single disk is available.

= Allows you to select data protection policies on a per-file system basis, beyond the
capabilities of the storage pool.

Depending on the allocation of the ditto blocks in the storage pool, multiple copies might be
placed on a single disk. A subsequent full disk failure might cause all ditto blocks to be
unavailable.

You might consider using ditto blocks when you accidentally create a non-redundant pool and
when you need to set data retention policies.

For a detailed description of how setting copies on a system with a single-disk pool or a
multiple-disk pool might impact overall data protection, see this blog:

http://blogs.sun.com/relling/entry/zfs_copies_and_data_protection

For more information about setting ZFS properties, see “Setting ZFS Properties” on page 179.

Improved zpool status Output

Solaris Express Community Edition, build 57: You can use the zpool status -v command to
display a list of files with persistent errors. Previously, you had to use the find - inum command
to identify the filenames from the list of displayed inodes.

For more information about displaying a list of files with persistent errors, see “Repairing a
Corrupted File or Directory” on page 298.

ZFS and Solaris iSCSI Improvements

Solaris Express Community Release, build 54: In this Solaris release, you can create a ZFS
volume as a Solaris iSCSI target device by setting the shareiscsi property on the ZFS volume.
This method is a convenient way to quickly set up a Solaris iSCSI target. For example:

Chapter 1 « ZFSFile System (Introduction) 37

http://blogs.sun.com/relling/entry/zfs_copies_and_data_protection

What's New in ZFS?

38

zfs create -V 2g tank/volumes/v2

zfs set shareiscsi=on tank/volumes/v2

iscsitadm list target

Target: tank/volumes/v2
iSCSI Name: iqgn.1986-03.com.sun:02:984fe301-c412-cccl-cc80-cf9a72aa062a
Connections: 0

After the iSCSI target is created, set up the iSCSI initiator. For information about setting up a
Solaris iSCSI initiator, see Chapter 14, “Configuring Solaris iSCSI Targets and Initiators
(Tasks),” in System Administration Guide: Devices and File Systems.

For more information about managing a ZFS volume as an iSCSI target, see “Using a ZFS
Volume as a Solaris iSCSI Target” on page 268.

Sharing ZFS File System Enhancements

Solaris Express Community Release, build 53: In this Solaris release, the process of sharing file
systems has been improved. Although modifying system configuration files, such as
/etc/dfs/dfstab, is unnecessary for sharing ZFS file systems, you can use the sharemgr
command to manage ZFS share properties. The sharemgr command enables you to set and
manage share properties on share groups. ZFS shares are automatically designated in the zfs
share group.

Asin previous releases, you can set the ZFS sharenfs property on a ZFS file system to share a
ZFS file system. For example:

zfs set sharenfs=on tank/home

Or, you can use the new sharemgr add- share subcommand to share a ZFS file system in the zfs
share group. For example:

sharemgr add-share -s tank/data zfs
sharemgr show -vp zfs
zfs nfs=()
zfs/tank/data
/tank/data
/tank/data/1
/tank/data/2
/tank/data/3

Then, you can use the sharemgr command to manage ZFS shares. The following example shows
how to use sharemgr to set the nosuid property on the shared ZFS file systems. You must
preface ZFS share paths with a /zfs designation.

sharemgr set -P nfs -p nosuid=true zfs/tank/data
sharemgr show -vp zfs
zfs nfs=()

ZFS Administration Guide « January 2010

http://docs.sun.com/doc/819-2723
http://docs.sun.com/doc/819-2723

What's New in ZFS?

zfs/tank/data nfs=(nosuid="true")
/tank/data
/tank/data/1
/tank/data/2
/tank/data/3

For more information, see sharemgr(1M).

ZFS Command History (zpool history)

Solaris Express Community Release, build 51: In this Solaris release, ZFS automatically logs
successful zfs and zpool commands that modify pool state information. For example:

zpool history

History for ’'newpool’:

2007-04-25.11:37:31 zpool create newpool mirror c0t8d0 c0t10d0
2007-04-25.11:37:46 zpool replace newpool c@t1l0d0® c0t9do
2007-04-25.11:38:04 zpool attach newpool c@t9d0 c0tl1ldo
2007-04-25.11:38:09 zfs create newpool/userl
2007-04-25.11:38:15 zfs destroy newpool/userl

History for 'tank’:
2007-04-25.11:46:28 zpool create tank mirror clt@d@ c2t@d® mirror c3t0d0 c4t0do

This features enables you or Sun support personnel to identify the exact set of ZES commands
that was executed to troubleshoot an error scenario.

You can identify a specific storage pool with the zpool history command. For example:

zpool history newpool

History for 'newpool’:

2007-04-25.11:37:31 zpool create newpool mirror c@t8d0 c0t10d0
2007-04-25.11:37:46 zpool replace newpool c@t1l0d0@ c0t9do
2007-04-25.11:38:04 zpool attach newpool c@t9d0 c0tlldo
2007-04-25.11:38:09 zfs create newpool/userl
2007-04-25.11:38:15 zfs destroy newpool/userl

In this Solaris release, the zpool history command does not record user-ID, hostname, or
zone-name. For more information, see “ZFS Command History Enhancements (zpool
history)” on page 30.

For more information about troubleshooting ZFS problems, see “Identifying Problems in ZFS”
on page 281.

Chapter 1 « ZFSFile System (Introduction) 39

http://docs.sun.com/doc/819-2240

What's New in ZFS?

40

ZFS Property Improvements

ZFS xattr Property

Solaris Express Community Release, build 56: You can use the xattr property to disable or
enable extended attributes for a specific ZFS file system. The default value is on. For a
description of ZFS properties, see “Introducing ZFS Properties” on page 161.

ZFS canmount Property

Solaris Express Community Release, build 48: The new canmount property allows you to
specify whether a dataset can be mounted by using the zfs mount command. For more
information, see “The canmount Property” on page 172.

ZFS User Properties

Solaris Express Community Release, build 48: In addition to the standard native properties
that can either export internal statistics or control ZFS file system behavior, ZFS supports user
properties. User properties have no effect on ZFS behavior, but you can use them to annotate
datasets with information that is meaningful in your environment.

For more information, see “ZFS User Properties” on page 176.

Setting Properties When Creating ZFS File Systems
Solaris Express Community Release, build 48: In this Solaris release, you can set properties

when you create a file system, in addition to setting properties after the file system is created.

The following examples illustrate equivalent syntax:

zfs create tank/home

zfs set mountpoint=/export/zfs tank/home

zfs set sharenfs=on tank/home

zfs set compression=on tank/home

zfs create -o mountpoint=/export/zfs -o sharenfs=on -o compression=on tank/home

Displaying All ZFS File System Information

Solaris Express Community Release, build 48: In this Solaris release, you can use various
forms of the zfs get command to display information about all datasets if you do not specify a
dataset or if you do not specify all. In previous releases, all dataset information was not
retreivable with the zfs get command.

For example:

ZFS Administration Guide « January 2010

What's New in ZFS?

zfs get -s local all

tank/home atime off local
tank/home/bonwick atime off local
tank/home/marks quota 506G local

New zfs receive -F Option

Solaris Express Community Release, build 48: In this Solaris release, you can use the new -F
option to the zfs receive command to force a rollback of the file system to the most recent
snapshot before doing the receive. Using this option might be necessary when the file system is
modified between the time a rollback occurs and the receive is initiated.

For more information, see “Receiving a ZFS Snapshot” on page 214.

Recursive ZFS Snapshots

Solaris Express Community Release, build 43: When you use the zfs snapshot command to
create a file system snapshot, you can use the - r option to recursively create snapshots for all
descendent file systems. In addition, using the - r option recursively destroys all descendent
snapshots when a snapshot is destroyed.

Recursive ZFS snapshots are created quickly as one atomic operation. The snapshots are created
together (all at once) or not created at all. The benefit of atomic snapshots operations is that the
snapshot data is always taken at one consistent time, even across descendent file systems.

For more information, see “Creating and Destroying ZFS Snapshots” on page 202.

Double Parity RAID-Z (raidz2)

Solaris Express Community Release, build 42: A redundant RAID-Z configuration can now
have either single- or double-parity, which means that one or two device failures can be
sustained respectively, without any data loss. You can specify the raidz2 keyword for a
double-parity RAID-Z configuration. Or, you can specify the raidz or raidz1 keyword for a
single-parity RAID-Z configuration.

For more information, see “Creating RAID-Z Storage Pools” on page 71 or zpool(1M).

Hot Spares for ZFS Storage Pool Devices

Solaris Express Community Release, build 42: The ZFS hot spares feature enables you to
identify disks that could be used to replace a failed or faulted device in one or more storage
pools. Designating a device as a hot spare means that if an active device in the pool fails, the hot
spare automatically replaces the failed device. Or, you can manually replace a device in a storage
pool with a hot spare.

Chapter 1 « ZFSFile System (Introduction) 41

http://docs.sun.com/doc/819-2240

What's New in ZFS?

42

For more information, see “Designating Hot Spares in Your Storage Pool” on page 91 and
zpool(1M).

Replacing a ZFS File System With a ZFS Clone (zfs
promote)

Solaris Express Community Release, build 42: The zfs promote command enables you to
replace an existing ZFS file system with a clone of that file system. This feature is helpful when
you want to run tests on an alternative version of a file system and then, make that alternative
version of the file system the active file system.

For more information, see “Replacing a ZFS File System With a ZFS Clone” on page 211 and
zfs(1M).

Upgrading ZFS Storage Pools (zpool upgrade)

Solaris Express Community Release, build 39: You can upgrade your storage pools to a newer
version to take advantage of the latest features by using the zpool upgrade command. In
addition, the zpool status command has been modified to notify you when your pools are
running older versions.

For more information, see “Upgrading ZFS Storage Pools” on page 115 and zpool(1M).

If you want to use the ZFS Administration console on a system with a pool from a previous
Solaris release, make sure you upgrade your pools before using the ZFS Administration console.
To see if your pools need to be upgraded, use the zpool status command. For information
about the ZFS Administration console, see “ZFS Web-Based Management” on page 45.

Using ZFS to Clone Non-Global Zones and Other
Enhancements

Solaris Express Community Release, build 39: When the source zonepath and the target
zonepath both reside on ZFS and are in the same pool, zoneadm clone now automatically uses
the ZFS clone feature to clone a zone. This enhancement means that zoneadm clone will take a
ZFS snapshot of the source zonepath and set up the target zonepath. The snapshot is named
SUNWzoneX, where X is a unique ID used to distinguish between multiple snapshots. The
destination zone's zonepath is used to name the ZFS clone. A software inventory is performed
so that a snapshot used at a future time can be validated by the system. Note that you can still
specify that the ZFS zonepath be copied instead of the ZFS clone, if desired.

ZFS Administration Guide « January 2010

http://docs.sun.com/doc/819-2240
http://docs.sun.com/doc/819-2240
http://docs.sun.com/doc/819-2240

What's New in ZFS?

To clone a source zone multiple times, a new parameter added to zoneadm allows you to specify
that an existing snapshot should be used. The system validates that the existing snapshot is
usable on the target. Additionally, the zone install process now has the capability to detect when
a ZFS file system can be created for a zone, and the uninstall process can detect when a ZFS file
system in a zone can be destroyed. These steps are then performed automatically by the
zoneadm command.

Keep the following points in mind when using ZFS on a system with Solaris containers installed:

= Do not use the ZFS snapshot features to clone a zone

= You can delegate or add a ZFS file system to a non-global zone. For more information, see
“Adding ZFS File Systems to a Non-Global Zone” on page 271 or “Delegating Datasets to a
Non-Global Zone” on page 271.

For more information, see System Administration Guide: Virtualization Using the Solaris
Operating System.

ZFS Backup and Restore Commands are Renamed

Solaris Express Community Release, build 38: In this Solaris release, the zfs backup and zfs
restore commands are renamed to zfs send and zfs receive to more accurately describe
their function. The function of these commands is to save and restore ZFS data stream
representations.

For more information about these commands, see “Sending and Receiving ZFS Data” on
page 212.

Recovering Destroyed Storage Pools

Solaris Express Community Release, build 37: This release includes the zpool import -D
command, which enables you to recover pools that were previously destroyed with the zpool
destroy command.

For more information, see “Recovering Destroyed ZFS Storage Pools” on page 113.

ZFS is Integrated With Fault Manager

Solaris Express Community Release, build 36: This release includes the integration of a ZFS
diagnostic engine that is capable of diagnosing and reporting pool failures and device failures.
Checksum, I/0O, device, and pool errors associated with pool or device failures are also reported.

The diagnostic engine does not include predictive analysis of checksum and I/O errors, nor
does it include proactive actions based on fault analysis.

Chapter 1 « ZFSFile System (Introduction) 43

http://docs.sun.com/doc/819-2450
http://docs.sun.com/doc/819-2450

What's New in ZFS?

In the event of the ZFS failure, you might see a message similar to the following from fmd:

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Fri Aug 28 09:10:27 PDT 2009

PLATFORM: SUNW,Sun-Fire-T200, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: d6725ad6-4546-6c48-fal6-eace4d371981

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.
AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run 'zpool status -x' and replace the bad device.

By reviewing the recommended action, which will be to follow the more specific directions in
the zpool status command, you will be able to quickly identify and resolve the failure.

For an example of recovering from a reported ZFS problem, see “Resolving a Missing Device”
on page 286.

New zpool clear Command

Solaris Express Community Release, build 36: This release includes the zpool clear
command for clearing error counts associated with a device or the pool. Previously, error
counts were cleared when a device in a pool was brought online with the zpool online
command. For more information, see zpool(1M) and “Clearing Storage Pool Device Errors” on
page 89.

Compact NFSv4 ACL Format

Solaris Express Community Release, build 34: In this release, three NFSv4 ACL formats are
available: verbose, positional, and compact. The new compact and positional ACL formats are
available to set and display ACLs. You can use the chmod command to set all 3 ACL formats.
You can use the s -V command to display compact and positional ACL formats and the 1s -v
command to display verbose ACL formats.

For more information, see “Setting and Displaying ACLs on ZFS Files in Compact Format” on
page 245, chmod(1), and 1s(1).

File System Monitoring Tool (fsstat)

Solaris Express Community Release, build 34: A new file system monitoring tool, fsstat, is
available to report file system operations. Activity can be reported by mount point or by file
system type. The following example shows general ZFS file system activity.

44 ZFS Administration Guide « January 2010

http://docs.sun.com/doc/819-2240
http://docs.sun.com/doc/819-2239
http://docs.sun.com/doc/819-2239

What's New in ZFS?

$ fsstat zfs
new name name attr attr lookup rddir read read write write
file remov chng get set ops ops ops bytes ops bytes
7.82M 5.92M 2.76M 1.02G 3.32M 5.60G 87.0M 363M 1.86T 20.9M 251G zfs

For more information, see fsstat(1M).

ZFS Web-Based Management

Solaris Express Community Release, build 28: A web-based ZFS management tool is available
to perform many administrative actions. With this tool, you can perform the following tasks:

= Create a new storage pool.

= Add capacity to an existing pool.

= Move (export) a storage pool to another system.

= Importa previously exported storage pool to make it available on another system.
= View information about storage pools.

= Create afile system.

= Create avolume.

= Take a snapshot of a file system or a volume.

= Roll backa file system to a previous snapshot.

You can access the ZFS Administration console through a secure web browser at the following
URL:

https://system-name:6789/zfs

If you type the appropriate URL and are unable to reach the ZFS Administration console, the
server might not be started. To start the server, run the following command:

/usr/sbin/smcwebserver start

If you want the server to run automatically when the system boots, run the following command:

/usr/sbin/smcwebserver enable

Note - You cannot use the Solaris Management Console (smc) to manage ZFS storage pools or
file systems.

Chapter 1 « ZFSFile System (Introduction) 45

http://docs.sun.com/doc/819-2240

What Is ZFS?

What Is ZFS?

46

The Solaris ZFS file system is a revolutionary new file system that fundamentally changes the
way file systems are administered, with features and benefits not found in any other file system
available today. ZFS has been designed to be robust, scalable, and simple to administer.

ZFS Pooled Storage

ZFS uses the concept of storage pools to manage physical storage. Historically, file systems were
constructed on top of a single physical device. To address multiple devices and provide for data
redundancy, the concept of a volume manager was introduced to provide the image of a single
device so that file systems would not have to be modified to take advantage of multiple devices.
This design added another layer of complexity and ultimately prevented certain file system
advances, because the file system had no control over the physical placement of data on the
virtualized volumes.

ZFS eliminates the volume management altogether. Instead of forcing you to create virtualized
volumes, ZFS aggregates devices into a storage pool. The storage pool describes the physical
characteristics of the storage (device layout, data redundancy, and so on,) and acts as an
arbitrary data store from which file systems can be created. File systems are no longer
constrained to individual devices, allowing them to share space with all file systems in the pool.
You no longer need to predetermine the size of a file system, as file systems grow automatically
within the space allocated to the storage pool. When new storage is added, all file systems within
the pool can immediately use the additional space without additional work. In many ways, the
storage pool works similarly to a virtual memory system. When a memory DIMM is added to a
system, the operating system doesn't force you to invoke some commands to configure the
memory and assign it to individual processes. All processes on the system automatically use the
additional memory.

Transactional Semantics

ZFS is a transactional file system, which means that the file system state is always consistent on
disk. Traditional file systems overwrite data in place, which means that if the machine loses
power, for example, between the time a data block is allocated and when it is linked into a
directory, the file system will be left in an inconsistent state. Historically, this problem was
solved through the use of the fsck command. This command was responsible for going
through and verifying file system state, making an attempt to repair any inconsistencies in the
process. This problem caused great pain to administrators and was never guaranteed to fix all
possible problems. More recently, file systems have introduced the concept of journaling. The
journaling process records action in a separate journal, which can then be replayed safely ifa
system crash occurs. This process introduces unnecessary overhead, because the data needs to
be written twice, and often results in a new set of problems, such as when the journal can't be
replayed properly.

ZFS Administration Guide « January 2010

What s ZFS?

With a transactional file system, data is managed using copy on write semantics. Data is never
overwritten, and any sequence of operations is either entirely committed or entirely ignored.
This mechanism means that the file system can never be corrupted through accidental loss of
power or a system crash. So, no need for a fsck equivalent exists. While the most recently
written pieces of data might be lost, the file system itself will always be consistent. In addition,
synchronous data (written using the 0_DSYNC flag) is always guaranteed to be written before
returning, so it is never lost.

Checksums and Self-Healing Data

With ZFS, all data and metadata is checksummed using a user-selectable algorithm. Traditional
file systems that do provide checksumming have performed it on a per-block basis, out of
necessity due to the volume management layer and traditional file system design. The
traditional design means that certain failure modes, such as writing a complete block to an
incorrect location, can result in properly checksummed data that is actually incorrect. ZFS
checksums are stored in a way such that these failure modes are detected and can be recovered
from gracefully. All checksumming and data recovery is done at the file system layer, and is
transparent to applications.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of
data redundancy. When a bad data block is detected, ZFS fetches the correct data from another
redundant copy, and repairs the bad data, replacing it with the good copy.

Unparalleled Scalability

ZFS has been designed from the ground up to be the most scalable file system, ever. The file
system itself is 128-bit, allowing for 256 quadrillion zettabytes of storage. All metadata is
allocated dynamically, so no need exists to pre-allocate inodes or otherwise limit the scalability
of the file system when it is first created. All the algorithms have been written with scalability in
mind. Directories can have up to 2** (256 trillion) entries, and no limit exists on the number of
file systems or number of files that can be contained within a file system.

ZFS Snapshots

A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and
easily. Initially, snapshots consume no additional space within the pool.

As data within the active dataset changes, the snapshot consumes space by continuing to
reference the old data. As a result, the snapshot prevents the data from being freed back to the
pool.

Chapter 1 « ZFSFile System (Introduction) 47

ZFSTerminology

Simplified Administration

Most importantly, ZFS provides a greatly simplified administration model. Through the use of
hierarchical file system layout, property inheritance, and automanagement of mount points and
NEFS share semantics, ZFS makes it easy to create and manage file systems without needing
multiple commands or editing configuration files. You can easily set quotas or reservations,
turn compression on or off, or manage mount points for numerous file systems with a single
command. Devices can be examined or repaired without having to understand a separate set of
volume manager commands. You can take an unlimited number of instantaneous snapshots of
file systems. You can backup and restore individual file systems.

ZFS manages file systems through a hierarchy that allows for this simplified management of
properties such as quotas, reservations, compression, and mount points. In this model, file
systems become the central point of control. File systems themselves are very cheap (equivalent
to a new directory), so you are encouraged to create a file system for each user, project,
workspace, and so on. This design allows you to define fine-grained management points.

ZFS Terminology

48

This section describes the basic terminology used throughout this book:

alternate boot environment A boot environment that is created by the lucreate command
and possibly updated by the luupgrade command, but it is not
currently the active or primary boot environment. The
alternate boot environment (ABE) can be changed to the
primary boot environment (PBE) by running the luactivate
command.

checksum A 256-bit hash of the data in a file system block. The checksum
capability can range from the simple and fast fletcher4 (the
default) to cryptographically strong hashes such as SHA256.

clone A file system whose initial contents are identical to the contents
of a snapshot.

For information about clones, see “Overview of ZFS Clones” on
page 210.

dataset A generic name for the following ZFS entities: clones, file
systems, snapshots, or volumes.

Each dataset is identified by a unique name in the ZFS
namespace. Datasets are identified using the following format:

pool/path|@snapshot]

ZFS Administration Guide « January 2010

ZFSTerminology

file system

mirror

pool

primary boot environment

RAID-Z

resilvering

pool Identifies the name of the storage pool that
contains the dataset

path Is a slash-delimited path name for the dataset
object

snapshot Isan optional component that identifies a
snapshot of a dataset

For more information about datasets, see Chapter 6,
“Managing ZFS File Systems”

A ZFS dataset of type filesystem that is mounted within the
standard system namespace and behaves like other file systems.

For more information about file systems, see Chapter 6,
“Managing ZFS File Systems.”

A virtual device that stores identical copies of data on two or
more disks. If any disk in a mirror fails, any other disk in that
mirror can provide the same data.

A logical group of devices describing the layout and physical
characteristics of the available storage. Space for datasets is
allocated from a pool.

For more information about storage pools, see Chapter 4,
“Managing ZFS Storage Pools.”

A boot environment that is used by the lucreate command to
build the alternate boot environment. By default, the primary
boot environment (PBE) is the current boot environment. This
default can be overridden by using the lucreate -s option.

A virtual device that stores data and parity on multiple disks.
For more information about RAID-Z, see “RAID-Z Storage
Pool Configuration” on page 67.

The process of transferring data from one device to another
device is known as resilvering. For example, if a mirror
component is replaced or taken offline, the data from the
up-to-date mirror component is copied to the newly restored
mirror component. This process is referred to as mirror
resynchronization in traditional volume management products.

For more information about ZFS resilvering, see “Viewing
Resilvering Status” on page 295.

Chapter 1 « ZFSFile System (Introduction) 49

ZFS Component Naming Requirements

snapshot A read-only image of a file system or volume at a given point in
time.

For more information about snapshots, see “Overview of ZFS
Snapshots” on page 201.

virtual device A logical device in a pool, which can be a physical device, a file,
or a collection of devices.

For more information about virtual devices, see “Displaying
Storage Pool Virtual Device Information” on page 74.

volume A dataset used to emulate a physical device. For example, you
can create a ZFS volume as a swap device.

For more information about ZFS volumes, see “ZFS Volumes”
on page 267.

ZFS Component Naming Requirements

50

Each ZFS component must be named according to the following rules:

= Empty components are not allowed.

= Each component can only contain alphanumeric characters in addition to the following
four special characters:

Underscore (_)

Hyphen (-)

Colon (:)

Period (.)

= Pool names must begin with a letter, except for the following restrictions:

= The beginning sequence c[0-9] is not allowed

= The name log is reserved

= A name thatbegins withmirror, raidz, raidz1, raidz2, raidz3, or spare is not allowed
because these name are reserved.

In addition, pool names must not contain a percent sign (%)

= Dataset names must begin with an alphanumeric character. Dataset names must not contain
a percent sign (%).

ZFS Administration Guide « January 2010

L K R 4 CHAPTER 2

Getting Started With ZFS

This chapter provides step-by-step instructions on setting up simple ZFS configurations. By the
end of this chapter, you should have a basic idea of how the ZFS commands work, and should be
able to create simple pools and file systems. This chapter is not designed to be a comprehensive
overview and refers to later chapters for more detailed information.

The following sections are provided in this chapter:

= “ZFS Hardware and Software Requirements and Recommendations” on page 51
= “Creating a Basic ZFS File System” on page 52

= “Creatinga ZFS Storage Pool” on page 53

= “Creating a ZFS File System Hierarchy” on page 54

ZFS Hardware and Software Requirements and
Recommendations

Make sure you review the following hardware and software requirements and
recommendations before attempting to use the ZFS software:

= A SPARC® or x86 system that is running the Solaris Express Community Edition, build 27
release.

= The minimum amount of disk space required for a storage pool is 64 Mbytes. The minimum
disk size is 128 Mbytes.

= Currently, the minimum amount of memory recommended to install a Solaris system is 768
Mbytes. However, for good ZFS performance, at least one Gbyte or more of memory is
recommended.

= Ifyou create a mirrored disk configuration, multiple controllers are recommended.

51

Creating a Basic ZFS File System

Creating a Basic ZFS File System

52

ZFS administration has been designed with simplicity in mind. Among the goals of the ZFS
design is to reduce the number of commands needed to create a usable file system. When you
create a new pool, a new ZFS file system is created and mounted automatically.

The following example illustrates how to create a simple mirrored storage pool named tank and
a ZFS file system named tank in one command. Assume that the whole disks /dev/dsk/c1t0d0
and /dev/dsk/c2t0d0 are available for use.

zpool create tank mirror cl1t@d@ c2t@do

For more information about redundant ZFS pool configurations, see “Replication Features of a
ZFS Storage Pool” on page 67.

The new ZFS file system, tank, can use as much of the disk space as needed, and is automatically
mounted at /tank.

mkfile 100m /tank/foo

df -h /tank

Filesystem size used avail capacity Mounted on
tank 80G 100M 80G 1% /tank

Within a pool, you will probably want to create additional file systems. File systems provide
points of administration that allow you to manage different sets of data within the same pool.

The following example illustrates how to create a file system named fs in the storage pool tank.

zfs create tank/fs

The new ZFS file system, tank/fs, can use as much of the disk space as needed, and is
automatically mounted at /tank/fs.

mkfile 100m /tank/fs/foo

df -h /tank/fs

Filesystem size used avail capacity Mounted on
tank/fs 80G 1o00M 80G 1% /tank/fs

In most cases, you will probably want to create and organize a hierarchy of file systems that
matches your organizational needs. For more information about creating a hierarchy of ZFS file
systems, see “Creating a ZFS File System Hierarchy” on page 54.

ZFS Administration Guide « January 2010

Creating a ZFS Storage Pool

Creating a ZFS Storage Pool

The previous example illustrates the simplicity of ZFS. The remainder of this chapter
demonstrates a more complete example similar to what you would encounter in your
environment. The first tasks are to identify your storage requirements and create a storage pool.
The pool describes the physical characteristics of the storage and must be created before any file
systems are created.

v How to Identify Storage Requirements for Your ZFS
Storage Pool

1 Determine available devices.

Before creating a storage pool, you must determine which devices will store your data. These
devices must be disks of at least 128 Mbytes in size, and they must not be in use by other parts of
the operating system. The devices can be individual slices on a preformatted disk, or they can be
entire disks that ZFS formats as a single large slice.

For the storage example used in “How to Create a ZFS Storage Pool” on page 53, assume that
the whole disks /dev/dsk/c1t@d0 and /dev/dsk/c2t0d0 are available for use.

For more information about disks and how they are used and labeled, see “Using Disks in a ZFS

Storage Pool” on page 63.

2 Choose datareplication.

ZFS supports multiple types of data replication, which determines what types of hardware
failures the pool can withstand. ZFS supports non-redundant (striped) configurations, as well
as mirroring and RAID-Z (a variation on RAID-5).

For the storage example used in “How to Create a ZFS Storage Pool” on page 53, basic
mirroring of two available disks is used.

For more information about ZFS replication features, see “Replication Features of a ZFS Storage
Pool” on page 67.

v Howto Create a ZFS Storage Pool

1 Becomeroot orassume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 276.

Chapter2 - Getting Started With ZFS 53

Creating a ZFS File System Hierarchy

Pick a pool name.

The pool name is used to identify the storage pool when you are using the zpool or zfs
commands. Most systems require only a single pool, so you can pick any name that you prefer,
provided it satisfies the naming requirements outlined in “ZFS Component Naming
Requirements” on page 50.

Create the pool.
For example, create a mirrored pool that is named tank.
zpool create tank mirror clt0d0 c2t0d0

If one or more devices contains another file system or is otherwise in use, the command cannot
create the pool.

For more information about creating storage pools, see “Creating a ZFS Storage Pool” on
page 70.

For more information about how device usage is determined, see “Detecting In-Use Devices”
on page 75.

View the results.
You can determine if your pool was successfully created by using the zpool list command.

zpool list
NAME SIZE USED AVAIL CAP HEALTH ALTROOT
tank 80G 137K 80G 0% ONLINE

For more information about viewing pool status, see “Querying ZFS Storage Pool Status” on
page 100.

Creating a ZFS File System Hierarchy

54

After creating a storage pool to store your data, you can create your file system hierarchy.
Hierarchies are simple yet powerful mechanisms for organizing information. They are also very
familiar to anyone who has used a file system.

ZFS allows file systems to be organized into arbitrary hierarchies, where each file system has
only a single parent. The root of the hierarchy is always the pool name. ZFS leverages this
hierarchy by supporting property inheritance so that common properties can be set quickly and
easily on entire trees of file systems.

ZFS Administration Guide « January 2010

Creating a ZFS File System Hierarchy

How to Determine Your ZFS File System Hierarchy

Pick the file system granularity.

ZFS file systems are the central point of administration. They are lightweight and can be created
easily. A good model to use is a file system per user or project, as this model allows properties,
snapshots, and backups to be controlled on a per-user or per-project basis.

Two ZFS file systems, bonwick and billm, are created in “How to Create ZFS File Systems” on
page 55.

For more information on managing file systems, see Chapter 6, “Managing ZFS File Systems.”

Group similar file systems.

ZEFS allows file systems to be organized into hierarchies so that similar file systems can be
grouped. This model provides a central point of administration for controlling properties and
administering file systems. Similar file systems should be created under a common name.

For the example in “How to Create ZFS File Systems” on page 55, the two file systems are placed
under a file system named home.

Choose the file system properties.

Most file system characteristics are controlled by using simple properties. These properties
control a variety of behavior, including where the file systems are mounted, how they are
shared, if they use compression, and if any quotas are in effect.

For the example in “How to Create ZFS File Systems” on page 55, all home directories are
mounted at /export/zfs/user, are shared by using NFS, and with compression enabled. In
addition, a quota of 10 Gbytes on bonwick is enforced.

For more information about properties, see “Introducing ZFS Properties” on page 161.

How to Create ZFS File Systems

Become root or assume an equivalent role with the appropriate ZFS rights profile.
For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 276.

Create the desired hierarchy.
In this example, a file system that acts as a container for individual file systems is created.

zfs create tank/home

Chapter2 - Getting Started With ZFS 55

Creating a ZFS File System Hierarchy

56

Set the inherited properties.

After the file system hierarchy is established, set up any properties that should be shared among
all users:

zfs set mountpoint=/export/zfs tank/home

zfs set sharenfs=on tank/home

zfs set compression=on tank/home

zfs get compression tank/home

NAME PROPERTY VALUE SOURCE
tank/home compression on local

A new feature is available that enables you to set file system properties when the file system is
created. For example:

zfs create -o mountpoint=/export/zfs -o sharenfs=on -o compression=on tank/home

For more information about properties and property inheritance, see “Introducing ZFS
Properties” on page 161.

Next, individual file systems are grouped under the home file system in the pool tank.

Create the individual file systems.

Note that the file systems could have been created and then the properties could have been
changed at the home level. All properties can be changed dynamically while file systems are in
use.

zfs create tank/home/bonwick
zfs create tank/home/billm

These file systems inherit their property settings from their parent, so they are automatically
mounted at /export/zfs/user and are NFS shared. You do not need to edit the /etc/vfstab or
/etc/dfs/dfstab file.

For more information about creating file systems, see “Creating a ZFS File System” on page 158.

For more information about mounting and sharing file systems, see “Mounting and Sharing
ZFS File Systems” on page 184.

Set the file system-specific properties.

In this example, user bonwick is assigned a quota of 10 Gbytes. This property places a limit on
the amount of space he can consume, regardless of how much space is available in the pool.

zfs set quota=10G tank/home/bonwick

View the results.

View available file system information by using the zfs 1ist command:

zfs list
NAME USED AVAIL REFER MOUNTPOINT
tank 92.0K 67.0G 9.5K /tank

ZFS Administration Guide « January 2010

Creating a ZFS File System Hierarchy

tank/home 24.0K 67.0G 8K /export/zfs
tank/home/billm 8K 67.0G 8K /export/zfs/billm
tank/home/bonwick 8K 10.0G 8K /export/zfs/bonwick

Note that the user bonwick only has 10 Gbytes of space available, while the user billm can use
the full pool (67 Gbytes).

For more information about viewing file system status, see “Querying ZFS File System
Information” on page 177.

For more information about how space is used and calculated, see “ZFS Space Accounting” on
page 60.

Chapter2 - Getting Started With ZFS

57

58

CHAPTER 3

ZFS and Traditional File System Differences

This chapter discusses some significant differences between ZFS and traditional file systems.
Understanding these key differences can help reduce confusion when using traditional tools to
interact with ZFS.

The following sections are provided in this chapter:

“ZFS File System Granularity” on page 59

“ZFS Space Accounting” on page 60

“Out of Space Behavior” on page 60
“Mounting ZFS File Systems” on page 61
“Traditional Volume Management” on page 61
“New Solaris ACL Model” on page 61

ZFS File System Granularity

Historically, file systems have been constrained to one device so that the file systems themselves
have been constrained to the size of the device. Creating and re-creating traditional file systems
because of size constraints are time-consuming and sometimes difficult. Traditional volume
management products helped manage this process.

Because ZFS file systems are not constrained to specific devices, they can be created easily and
quickly, similar to the way directories are created. ZFS file systems grow automatically within
the space allocated to the storage pool.

Instead of creating one file system, such as /export/home, to manage many user subdirectories,
you can create one file system per user. In addition, ZFS provides a file system hierarchy so that
you can easily set up and manage many file systems by applying properties that can be inherited
by file systems contained within the hierarchy.

For an example of creating a file system hierarchy, see “Creating a ZFS File System Hierarchy”
on page 54.

59

ZFS Space Accounting

ZFS Space Accounting

60

ZFS is based on a concept of pooled storage. Unlike typical file systems, which are mapped to
physical storage, all ZFS file systems in a pool share the available storage in the pool. So, the
available space reported by utilities such as df might change even when the file system is
inactive, as other file systems in the pool consume or release space. Note that the maximum file
system size can be limited by using quotas. For information about quotas, see “Setting Quotas
on ZFS File Systems” on page 193. Space can be guaranteed to a file system by using reservations.
For information about reservations, see “Setting Reservations on ZFS File Systems” on page 197.
This model is very similar to the NFS model, where multiple directories are mounted from the
same file system (consider /home).

All metadata in ZFS is allocated dynamically. Most other file systems pre-allocate much of their
metadata. As a result, an immediate space cost at file system creation for this metadata is
required. This behavior also means that the total number of files supported by the file systems is
predetermined. Because ZFS allocates its metadata as it needs it, no initial space cost is required,
and the number of files is limited only by the available space. The output from the df -g
command must be interpreted differently for ZFS than other file systems. The total files
reported is only an estimate based on the amount of storage that is available in the pool.

ZFS is a transactional file system. Most file system modifications are bundled into transaction
groups and committed to disk asynchronously. Until these modifications are committed to
disk, they are termed pending changes. The amount of space used, available, and referenced by a
file or file system does not consider pending changes. Pending changes are generally accounted
for within a few seconds. Even committing a change to disk by using fsync(3c) or 0_SYNC does
not necessarily guarantee that the space usage information is updated immediately.

For additional details about ZFS space consumption reported by the du and df commands, see
the following link:

http://hub.opensolaris.org/bin/view/Community+Group+zfs/faq/#whydusize

Out of Space Behavior

File system snapshots are inexpensive and easy to create in ZFS. Most likely, snapshots will be
common in most ZFS environments. For information about ZFS snapshots, see Chapter 7,
“Working With ZFS Snapshots and Clones”

The presence of snapshots can cause some unexpected behavior when you attempt to free space.
Typically, given appropriate permissions, you can remove a file from a full file system, and this
action results in more space becoming available in the file system. However, if the file to be
removed exists in a snapshot of the file system, then no space is gained from the file deletion.
The blocks used by the file continue to be referenced from the snapshot.

ZFS Administration Guide « January 2010

http://hub.opensolaris.org/bin/view/Community+Group+zfs/faq/#whydusize

New Solaris ACL Model

As aresult, the file deletion can consume more disk space, because a new version of the
directory needs to be created to reflect the new state of the namespace. This behavior means that
you can get an unexpected ENOSPC or EDQUOT when attempting to remove a file.

Mounting ZFS File Systems

ZFS is designed to reduce complexity and ease administration. For example, with existing file
systems you must edit the /etc/vfstab file every time you add a new file system. ZFS has
eliminated this requirement by automatically mounting and unmounting file systems
according to the properties of the dataset. You do not need to manage ZFS entries in the
/etc/vfstab file.

For more information about mounting and sharing ZFS file systems, see “Mounting and
Sharing ZFS File Systems” on page 184.

Traditional Volume Management

As described in “ZFS Pooled Storage” on page 46, ZFS eliminates the need for a separate volume
manager. ZFS operates on raw devices, so it is possible to create a storage pool comprised of
logical volumes, either software or hardware. This configuration is not recommended, as ZFS
works best when it uses raw physical devices. Using logical volumes might sacrifice
performance, reliability, or both, and should be avoided.

New Solaris ACL Model

Previous versions of the Solaris OS supported an ACL implementation that was primarily based
on the POSIX ACL draft specification. The POSIX-draft based ACLs are used to protect UFS
files. A new ACL model that is based on the NFSv4 specification is used to protect ZFS files.

The main differences of the new Solaris ACL model are as follows:

= Based on the NFSv4 specification and are similar to NT-style ACLs.
= Much more granular set of access privileges.

= Setand displayed with the chmod and 1s commands rather than the setfacl and getfacl
commands.

= Richer inheritance semantics for designating how access privileges are applied from
directory to subdirectories, and so on.

For more information about using ACLs with ZFS files, see Chapter 8, “Using ACLs and
Attributes to Protect ZFS Files”

Chapter 3 « ZFS and Traditional File System Differences 61

62

L R 2 4 CHAPTER 4

Managing ZFS Storage Pools

This chapter describes how to create and administer ZFS storage pools.

The following sections are provided in this chapter:

“Components of a ZFS Storage Pool” on page 63
“Creating and Destroying ZFS Storage Pools” on page 69
“Managing Devices in ZFS Storage Pools” on page 79
“Managing ZFS Storage Pool Properties” on page 97
“Querying ZFS Storage Pool Status” on page 100
“Migrating ZFS Storage Pools” on page 108

“Upgrading ZFS Storage Pools” on page 115

Components of a ZFS Storage Pool

The following sections provide detailed information about the following storage pool
components:

= “Using Disks in a ZFS Storage Pool” on page 63
= “Using Slices in a ZFS Storage Pool” on page 65
= “Using Files in a ZFS Storage Pool” on page 66

Using Disks in a ZFS Storage Pool

The most basic element of a storage pool is a piece of physical storage. Physical storage can be
any block device of at least 128 Mbytes in size. Typically, this device is a hard drive that is visible
to the system in the /dev/dsk directory.

A storage device can be a whole disk (c1t@d@) or an individual slice (c0t0d@s7). The
recommended mode of operation is to use an entire disk, in which case the disk does not need

63

Components of a ZFS Storage Pool

64

to be specially formatted. ZFS formats the disk using an EFI label to contain a single, large slice.
When used in this way, the partition table that is displayed by the format command appears
similar to the following:

Current partition table (original):
Total disk sectors available: 17672849 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector
0 usr wm 256 8.43GB 17672849
1 unassigned wm 0 0 0
2 unassigned wm 0 0 0
3 unassigned wm 0 0 0
4 unassigned wm 0 0 0
5 unassigned wm 0 0 0
6 unassigned wm 0 0 0
8 reserved wm 17672850 8.00MB 17689233

To use whole disks, the disks must be named by using the /dev/dsk/cXtXdX naming
convention. Some third-party drivers use a different naming convention or place disks in a
location other than the /dev/dsk directory. To use these disks, you must manually label the disk
and provide a slice to ZFS.

ZFS applies an EFI label when you create a storage pool with whole disks. For more information
about EFI labels, see “EFI Disk Label” in System Administration Guide: Devices and File Systems.

A disk that is intended for a ZFS root pool must be created with an SMI label, not an EFI label.
You can relabel a disk with an SMI label by using the format -e command.

Disks can be specified by using either the full path, such as /dev/dsk/c1t@d®, or a shorthand
name that consists of the device name within the /dev/dsk directory, such as c1t@de. For
example, the following are valid disk names:

= c1t0do
m /dev/dsk/clt0d0
® CcQt0d6s2

m /dev/foo/disk

Using whole physical disks is the simplest way to create ZFS storage pools. ZFS configurations
become progressively more complex, from management, reliability, and performance
perspectives, when you build pools from disk slices, LUNs in hardware RAID arrays, or
volumes presented by software-based volume managers. The following considerations might
help you determine how to configure ZFS with other hardware or software storage solutions:

= Ifyou construct ZFS configurations on top of LUNs from hardware RAID arrays, you need
to understand the relationship between ZFS redundancy features and the redundancy
features offered by the array. Certain configurations might provide adequate redundancy
and performance, but other configurations might not.

ZFS Administration Guide « January 2010

http://docs.sun.com/doc/819-2723

Components of a ZFS Storage Pool

= You can construct logical devices for ZFS using volumes presented by software-based
volume managers, such as Solaris™ Volume Manager (SVM) or Veritas Volume Manager
(VxVM). However, these configurations are not recommended. While ZFS functions
properly on such devices, less-than-optimal performance might be the result.

For additional information about storage pool recommendations, see the ZFS best practices
site:

http://www.solarisinternals.com/wiki/index.php/ZFS Best Practices Guide

Disks are identified both by their path and by their device ID, if available. This method allows
devices to be reconfigured on a system without having to update any ZFS state. If a disk is
switched between controller 1 and controller 2, ZFS uses the device ID to detect that the disk
has moved and should now be accessed using controller 2. The device ID is unique to the drive's
firmware. While unlikely, some firmware updates have been known to change device IDs. If this
situation happens, ZFS can still access the device by path and update the stored device ID
automatically. If you inadvertently change both the path and the ID of the device, then export
and re-import the pool in order to use it.

Using Slices in a ZFS Storage Pool

Disks can be labeled with a traditional Solaris VTOC (SMI) label when you create a storage pool
with a disk slice.

For a bootable ZFS root pool, the disks in the pool must contain slices and must be labeled with
an SMI label. The simplest configuration would be to put the entire disk capacity in slice 0 and
use that slice for the root pool.

On a SPARC based system, a 72-Gbyte disk has 68 Gbytes of usable space located in slice 0 as
shown in the following format output.

format

Specify disk (enter its number): 4

selecting cltldo

partition> p

Current partition table (original):

Total disk cylinders available: 14087 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks
0 root wm 0 - 14086 68.35GB (14087/0/0) 143349312
1 unassigned wm (1]} (1] (0/0/0) 0
2 backup wm 0 - 14086 68.35GB (14087/0/0) 143349312
3 unassigned wm 1] (1] (0/0/0) 0

Chapter4 - Managing ZFS Storage Pools 65

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Components of a ZFS Storage Pool

66

4 unassigned wm 0 0 (0/0/0) 0
5 unassigned wm 0 0 (0/0/0) 0
6 unassigned wm 0 0 (0/0/0) 0
7 unassigned wm 0 0 (0/0/0) (7]

On a x86 based system, a 72-GByte disk has 68 GBytes of usable space located in slice 0 as
shown in the following format output. A small amount of boot information is contained in slice
8. Slice 8 requires no administration and cannot be changed.

format

selecting c1t0@do

partition> p

Current partition table (original):

Total disk cylinders available: 49779 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks
0 root wm 1 - 49778 68.36GB (49778/0/0) 143360640
1 unassigned wu 0 0 (0/0/0) 0
2 backup wm 0 - 49778 68.36GB (49779/0/0) 143363520
3 unassigned wu 0 (1] (0/0/0) 0
4 unassigned wu 0 0 (0/0/0) 0
5 unassigned wu 0 0 (0/0/0) 0
6 unassigned wu 0 (1] (0/0/0) 0
7 unassigned wu 0 (1] (0/0/0) 0
8 boot wu 0 - 0 1.41MB (1/0/0) 2880
9 unassigned wu 0 0 (0/0/0) 0

Using Files in a ZFS Storage Pool

ZFS also allows you to use UFS files as virtual devices in your storage pool. This feature is aimed
primarily at testing and enabling simple experimentation, not for production use. The reason is
that any use of files relies on the underlying file system for consistency. If you create a ZFS
pool backed by files on a UFS file system, then you are implicitly relying on UFS to guarantee
correctness and synchronous semantics.

However, files can be quite useful when you are first trying out ZFS or experimenting with more
complicated layouts when not enough physical devices are present. All files must be specified as
complete paths and must be at least 64 Mbytes in size.

ZFS Administration Guide « January 2010

Replication Features of a ZFS Storage Pool

Replication Features of a ZFS Storage Pool

ZFS provides data redundancy, as well as self-healing properties, in a mirrored and a RAID-Z

configuration.

= “Mirrored Storage Pool Configuration” on page 67

= “RAID-Z Storage Pool Configuration” on page 67

= “Self-Healing Data in a Redundant Configuration” on page 68
= “Dynamic Striping in a Storage Pool” on page 69

| |

“ZFS Hybrid Storage Pool” on page 68

Mirrored Storage Pool Configuration

A mirrored storage pool configuration requires at least two disks, preferably on separate
controllers. Many disks can be used in a mirrored configuration. In addition, you can create
more than one mirror in each pool. Conceptually, a simple mirrored configuration would look
similar to the following:

mirror clt@d0 c2t0do

Conceptually, a more complex mirrored configuration would look similar to the following:

mirror cl1lt@d@ c2t0d@ c3t0d@ mirror c4t@d0 c5t0d0 c6t0do

For information about creating a mirrored storage pool, see “Creating a Mirrored Storage Pool”
on page 70.

RAID-Z Storage Pool Configuration

In addition to a mirrored storage pool configuration, ZFS provides a RAID-Z configuration
with either single, double, or triple parity fault tolerance. Single-parity RAID-Z (raidz or
raidz1) is similar to RAID-5. Double-parity RAID-Z (raidz2) is similar to RAID-6.

For more information about RAIDZ-3 (raidz3), see the following blog:
http://blogs.sun.com/ahl/entry/triple parity raid z

All traditional RAID-5-like algorithms (RAID-4, RAID-6, RDP, and EVEN-ODD, for example)
suffer from a problem known as the “RAID-5 write hole” If only part of a RAID-5 stripe is
written, and power is lost before all blocks have made it to disk, the parity will remain out of
sync with the data, and therefore useless, forever (unless a subsequent full-stripe write
overwrites it). In RAID-Z, ZFS uses variable-width RAID stripes so that all writes are full-stripe
writes. This design is only possible because ZFS integrates file system and device management
in such a way that the file system's metadata has enough information about the underlying data
redundancy model to handle variable-width RAID stripes. RAID-Z is the world's first
software-only solution to the RAID-5 write hole.

Chapter4 - Managing ZFS Storage Pools 67

http://blogs.sun.com/ahl/entry/triple_parity_raid_z

Replication Features of a ZFS Storage Pool

A RAID-Z configuration with N disks of size X with P parity disks can hold approximately
(N-P)*X bytes and can withstand P device(s) failing before data integrity is compromised. You
need at least two disks for a single-parity RAID-Z configuration and at least three disks for a
double-parity RAID-Z configuration. For example, if you have three disks in a single-parity
RAID-Z configuration, parity data occupies space equal to one of the three disks. Otherwise, no
special hardware is required to create a RAID-Z configuration.

Conceptually, a RAID-Z configuration with three disks would look similar to the following:

raidz c1t0d0@ c2t0d0 c3t0do

A more complex conceptual RAID-Z configuration would look similar to the following:

raidz c1t@d0 c2t@d0@ c3t0d0 c4t0d0 c5t0d0 c6t@dd c7t0d0@ raidz c8t0d0 c9t0d0 clot@dd cl1t0do
c12t0d0 c13t0d0 cl4t0do

68

If you are creating a RAID-Z configuration with many disks, as in this example, a RAID-Z
configuration with 14 disks is better split into a two 7-disk groupings. RAID-Z configurations
with single-digit groupings of disks should perform better.

For information about creating a RAID-Z storage pool, see “Creating RAID-Z Storage Pools”
on page 71.

For more information about choosing between a mirrored configuration or a RAID-Z
configuration based on performance and space considerations, see the following blog:

http://blogs.sun.com/roller/page/roch?entry=when to and not to

For additional information on RAID-Z storage pool recommendations, see the ZFS best
practices site:

http://www.solarisinternals.com/wiki/index.php/ZFS Best Practices Guide

ZFS Hybrid Storage Pool

The ZFS hybrid storage pool, available in the Sun Storage 7000 product series, is a special
storage pool that combines DRAM, SSDs, and HDDs, to improve performance and increase
capacity, while reducing power consumption. You can select the ZFS redundancy configuration
of the storage pool and easily manage other configuration options with this product's
management interface.

For more information about this product, see the Sun Storage Unified Storage System
Administration Guide.

Self-Healing Data in a Redundant Configuration

ZFS provides for self-healing data in a mirrored or RAID-Z configuration.

ZFS Administration Guide « January 2010

http://blogs.sun.com/roller/page/roch?entry=when_to_and_not_to
http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Creating and Destroying ZFS Storage Pools

When a bad data block is detected, not only does ZFS fetch the correct data from another
redundant copy, but it also repairs the bad data by replacing it with the good copy.

Dynamic Striping in a Storage Pool

ZFS dynamically stripes data across all top-level virtualdevices. The decision about where to
place data is done at write time, so no fixed width stripes are created at allocation time.

When new virtual devices are added to a pool, ZFS gradually allocates data to the new device in
order to maintain performance and space allocation policies. Each virtual device can also be a
mirror or a RAID-Z device that contains other disk devices or files. This configuration allows
for flexibility in controlling the fault characteristics of your pool. For example, you could create
the following configurations out of 4 disks:

= Four disks using dynamic striping
= One four-way RAID-Z configuration
= Two two-way mirrors using dynamic striping

While ZFS supports combining different types of virtual devices within the same pool, this
practice is not recommended. For example, you can create a pool with a two-way mirror and a
three-way RAID-Z configuration. However, your fault tolerance is as good as your worst virtual
device, RAID-Z in this case. The recommended practice is to use top-level virtual devices of the
same type with the same redundancy level in each device.

Creating and Destroying ZFS Storage Pools

The following sections describe different scenarios for creating and destroying ZFS storage
pools.

“Creating a ZFS Storage Pool” on page 70

“Handling ZFS Storage Pool Creation Errors” on page 75
“Destroying ZFS Storage Pools” on page 78

“Displaying Storage Pool Virtual Device Information” on page 74

By design, creating and destroying pools is fast and easy. However, be cautious when doing
these operations. Although checks are performed to prevent using devices known to be in use in
anew pool, ZFS cannot always know when a device is already in use. Destroying a pool is even
easier. Use zpool destroy with caution. This is a simple command with significant
consequences.

Chapter4 - Managing ZFS Storage Pools 69

Creating and Destroying ZFS Storage Pools

70

Creating a ZFS Storage Pool

To create a storage pool, use the zpool create command. This command takes a pool name
and any number of virtual devices as arguments. The pool name must satisfy the naming
conventions outlined in “ZFS Component Naming Requirements” on page 50.

Creating a Basic Storage Pool

The following command creates a new pool named tank that consists of the disks c1t0d@ and
cltldo:

zpool create tank c1t0d0 cltldo

These whole disks are found in the /dev/dsk directory and are labelled appropriately by ZFS to
contain a single, large slice. Data is dynamically striped across both disks.

Creating a Mirrored Storage Pool

To create a mirrored pool, use the mirror keyword, followed by any number of storage devices
that will comprise the mirror. Multiple mirrors can be specified by repeating themirror
keyword on the command line. The following command creates a pool with two, two-way
mirrors:

zpool create tank mirror cld0 c2d@ mirror c3d0 c4do

The second mirror keyword indicates that a new top-level virtual device is being specified. Data
is dynamically striped across both mirrors, with data being redundant between each disk
appropriately.

For more information about recommended mirrored configurations, see the following site:
http://www.solarisinternals.com/wiki/index.php/ZFS Best Practices Guide

Currently, the following operations are supported on a ZFS mirrored configuration:

= Addinganother set of disks for an additional top-level vdev to an existing mirrored
configuration. For more information, see “Adding Devices to a Storage Pool” on page 79.

= Attaching additional disks to an existing mirrored configuration. Or, attaching additional
disks to a non-replicated configuration to create a mirrored configuration. For more
information, see “Attaching and Detaching Devices in a Storage Pool” on page 85.

= Replacing a disk or disks in an existing mirrored configuration as long as the replacement
disks are greater than or equal to the device to be replaced. For more information, see
“Replacing Devices in a Storage Pool” on page 89.

m Detachinga disk in a mirrored configuration as long as the remaining devices provide
adequate redundancy for the configuration. For more information, see “Attaching and
Detaching Devices in a Storage Pool” on page 85.

ZFS Administration Guide « January 2010

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Creating and Destroying ZFS Storage Pools

= Splitting a mirrored configuration by detaching one of the disks to create a new, identical
pool. For more information, see Broken Link (Target ID: GJOOC).

Currently, the following operations are not supported on a mirrored configuration:

= You cannot outright remove a top-level device from a mirrored storage pool. An RFE is filed
for this feature.

Creating a ZFS Root Pool

In current Solaris releases, you can install and boot from a ZFS root file system. Review the
following root pool configuration information:

= Disks used for the root pool must have a VTOC (SMI) label and the pool must be created
with disk slices

= Aroot pool must be created as a mirrored configuration or a single-disk configuration. You
cannot add additional disks to create multiple mirrored top-level virtual devicess by using
the zpool add command, but you can expand a mirrored virtual device by using the zpool
attach command.

= A RAID-Z orastriped configuration is not supported
= Aroot pool cannot have a separate log device

= Ifyouattempt to use an unsupported configuration for a root pool, you will see messages
similar to the following:

ERROR: ZFS pool <pool-name> does not support boot environments

zpool add -f rpool log c0t6d0s0
cannot add to 'rpool’: root pool can not have multiple vdevs or separate logs

For more information about installing and booting a ZFS root file system, see Chapter 5,

“Installing and Booting a ZFS Root File System?

Creating RAID-Z Storage Pools

Creating a single-parity RAID-Z pool is identical to creating a mirrored pool, except that the
raidz or raidz1 keyword is used instead of mirror. The following example shows how to create
a pool with a single RAID-Z device that consists of five disks:

zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

This example illustrates that disks can be specified by using their full paths, if desired. The
/dev/dsk/c5t0d0 device is identical to the c5t0d@ device.

A similar configuration could be created with disk slices. For example:

zpool create tank raidz c1t0d0s0 c2t0d0s0 c3t0d0s0 c4t0d0s@ c5t0d0s0

However, the disks must be preformatted to have an appropriately sized slice zero.

Chapter4 - Managing ZFS Storage Pools 71

Creating and Destroying ZFS Storage Pools

You can create a double-parity RAID-Z configuration by using the raidz2 keyword when the
pool is created. For example:

You can create a double-parity or triple-parity RAID-Z configuration by using the raidz2 or
raidz3 keyword when the pool is created. For example:

zpool create tank raidz2 clt0d0 c2t0d0 c3t0do
zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
raidz2-0 ONLINE
c1t0dd ONLINE
c2t0d® ONLINE
c3t0d0 ONLINE

[SENSENSENST
[SENSENSENST
[SENSENSENST

errors: No known data errors

zpool create tank raidz3 clt0d0 c2t0d0 c3t0d0 c4t0d0 c5t0do
zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0
raidz3-0@ ONLINE 0 0 0

c1t@dd ONLINE 0 0 0

€c2t0d0 ONLINE 0 0 0

€3t0d0 ONLINE 0 0 0

c4t0d0 ONLINE 0 0 0

c5t0d0 ONLINE 0 0 0

errors: No known data errors

Currently, the following operations are supported on a ZFS RAID-Z configuration:

= Add another set of disks for an additional top-level vdev to an existing RAID-Z
configuration. For more information, see “Adding Devices to a Storage Pool” on page 79.

= Replace a disk or disks in an existing RAID-Z configuration as long as the replacement disks
are greater than or equal to the device to be replaced. For more information, see “Replacing
Devices in a Storage Pool” on page 89.

72 ZFS Administration Guide « January 2010

Creating and Destroying ZFS Storage Pools

Currently, the following operations are not supported on a RAID-Z configuration:

= Attach an additional disk to an existing RAID-Z configuration.
= Detach a disk from a RAID-Z configuration.

= You cannot outright remove a device from a RAID-Z configuration. An RFE is filed for this
feature.

For more information about a RAID-Z configuration, see “RAID-Z Storage Pool
Configuration” on page 67.

Creating a ZFS Storage Pool with Log Devices

By default, the ZIL is allocated from blocks within the main pool. However, better performance
might be possible by using separate intent log devices, such as NVRAM or a dedicated disk. For
more information about ZFS log devices, see “Setting Up Separate ZFS Logging Devices” on
page 33.

You can set up a ZFS logging device when the storage pool is created or after the pool is created.

For example, create a mirrored storage pool with mirrored log devices.

zpool create datap mirror cltld0® clt2d0 mirror clt3d@ cl1t4d0 log mirror clt5d0 clt8d0
zpool status datap

pool: datap

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

datap ONLINE 0 0 0
mirror-@ ONLINE 0 0 0

clt1ld® ONLINE 0 0 0

clt2d® ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

clt3d0 ONLINE 0 0 0

clt4dd ONLINE 0 0 0

logs

mirror-2 ONLINE 0 0 0
c1lt5d0 ONLINE 0 0 0
c1t8d@ ONLINE 0 0 0

errors: No known data errors

For information about recovering from a log device failure, see Example 11-2.

Creating a ZFS Storage Pool with Cache Devices

You can create a storage pool with cache devices to cache storage pool data. For example:

Chapter4 - Managing ZFS Storage Pools 73

Creating and Destroying ZFS Storage Pools

74

zpool create tank mirror c2t0d0 c2t1d0 c2t3d0 cache c2t5d0 c2t8d0
zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-@ ONLINE 0 0 0
c2t0d0® ONLINE 0 0 0
c2t1d® ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0
cache
c2t5d0o ONLINE
c2t8d0 ONLINE 0 0 0

errors: No known data errors

Review the following points when considering whether to create a ZFS storage pool with cache
devices:

= Using cache devices provide the greatest performance improvement for random
read-workloads of mostly static content.

= Capacity and reads can be monitored by using the zpool iostat command.

= Single or multiple cache devices can be added when the pool is created or added and
removed after the pool is created. For more information, see Example 4-4.

= Cache devices cannot be mirrored or be part of a RAID-Z configuration.

= Jfaread error is encountered on a cache device, that read I/O is reissued to the original
storage pool device, which might be part of a mirrored or RAID-Z configuration. The
content of the cache devices is considered volatile, as is the case with other system caches.

Displaying Storage Pool Virtual Device Information

Each storage pool is comprised of one or more virtual devices. A virtual device is an internal
representation of the storage pool that describes the layout of physical storage and its fault
characteristics. As such, a virtual device represents the disk devices or files that are used to
create the storage pool. A pool can have any number of virtual devices at the top of the
configuration, known as a root vdev.

If the top-level virtual device contains two or more physical devices, the configuration provide
data redundancy as mirror or RAID-Z virtual devices. These virtual devices consist of disks,
disk slices, or files. A spare is a special vdev that keeps track of available hot spares for a pool.

The following example shows how to create a pool that consists of two top-level virtual devicess,
each a mirror of two disks.

ZFS Administration Guide « January 2010

Creating and Destroying ZFS Storage Pools

zpool create tank mirror c1d@ c2d@ mirror c3d0 c4do0

The following example shows how to create pool that consists of one top-level virtual device of 4
disks.

zpool create mypool raidz2 cld@ c2d0@ c3d0 c4do

You can add another top-level virtual device to this pool by using the zpool add command. For
example:

zpool add mypool raidz2 c2dl c3dl c4dl c5d1

Disks, disk slices, or files that are used in non-redundant pools function as top-level virtual
devices themselves. Storage pools typically contain multiple top-level virtual devices. ZFS
dynamically stripes data among all of the top-level virtual devices in a pool.

Virtual devices and the physical devices that are contained in a ZFS storage pool are displayed
with the zpool status command. For example:

zpool status tank
pool: tank
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE
mirror-@ ONLINE
c0t1ldd ONLINE
cltld® ONLINE
mirror-1 ONLINE
c0t2d®@ ONLINE
c1lt2d@ ONLINE
mirror-2 ONLINE
c0t3dd ONLINE
c1lt3d@ ONLINE

S
S

[SENSENSENSENSEINSE S IR S]
[SENSENSENSENSINSE I S]
[SENSENSENSENS INSIS IS SIS

errors: No known data errors

Handling ZFS Storage Pool Creation Errors

Pool creation errors can occur for many reasons. Some of these reasons are obvious, such as
when a specified device doesn't exist, while other reasons are more subtle.

Detecting In-Use Devices

Before formatting a device, ZFS first determines if the disk is in-use by ZFS or some other part
of the operating system. If the disk is in use, you might see errors such as the following:

Chapter4 - Managing ZFS Storage Pools 75

Creating and Destroying ZFS Storage Pools

76

zpool create tank clt0d0 cltldo

invalid vdev specification

use '-f’ to override the following errors:

/dev/dsk/c1t@d0s0@ is currently mounted on /. Please see umount(1M).
/dev/dsk/clt@d@sl is currently mounted on swap. Please see swap(1lM).
/dev/dsk/clt1ld@s0@ is part of active ZFS pool zeepool. Please see zpool(1M).

Some of these errors can be overridden by using the - f option, but most errors cannot. The
following uses cannot be overridden by using the - f option, and you must manually correct

them:

Mounted file system

File system in /etc/vfstab

Dedicated dump device

Part of a ZFS pool

The disk or one of its slices contains a file system that is currently
mounted. To correct this error, use the umount command.

The disk contains a file system that is listed in the /etc/vfstab
file, but the file system is not currently mounted. To correct this
error, remove or comment out the line in the /etc/vfstab file.

The disk is in use as the dedicated dump device for the system. To
correct this error, use the dumpadm command.

The disk or file is part of an active ZFS storage pool. To correct
this error, use the zpool destroy command to destroy the other
pool, if it is no longer needed. Or, use the zpool detach
command to detach the disk from the other pool. You can only
detach a disk from a mirrored storage pool.

The following in-use checks serve as helpful warnings and can be overridden by using the - f

option to create the pool:

Contains a file system

Part of volume

Live upgrade

Part of exported ZFS pool

The disk contains a known file system, though it is not mounted
and doesn't appear to be in use.

The disk is part of an SVM volume.

The disk is in use as an alternate boot environment for Solaris
Live Upgrade.

The disk is part of a storage pool that has been exported or
manually removed from a system. In the latter case, the pool is
reported as potentially active, as the disk might or might
not be a network-attached drive in use by another system. Be
cautious when overriding a potentially active pool.

The following example demonstrates how the - f option is used:

zpool create tank c1t0do
invalid vdev specification

use '-f’ to override the following errors:

ZFS Administration Guide « January 2010

Creating and Destroying ZFS Storage Pools

/dev/dsk/c1t0d0s@ contains a ufs filesystem.
zpool create -f tank clt0do

Ideally, correct the errors rather than use the - f option.

Mismatched Replication Levels

Creating pools with virtual devices of different replication levels is not recommended. The
zpool command tries to prevent you from accidentally creating a pool with mismatched levels
of redundancy. If you try to create a pool with such a configuration, you see errors similar to the
following:

zpool create tank c1t0d@ mirror c2t0d0 c3t0do

invalid vdev specification

use '-f' to override the following errors:

mismatched replication level: both disk and mirror vdevs are present

zpool create tank mirror clt0d0 c2t0d@ mirror c3t0d0 c4t0d0 c5t0do

invalid vdev specification

use '-f' to override the following errors:

mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the - f option, though this practice is not recommended. The
command also warns you about creating a mirrored or RAID-Z pool using devices of different
sizes. While this configuration is allowed, mismatched levels of redundancy result in unused
space on the larger device, and requires the - f option to override the warning.

Doing a Dry Run of Storage Pool Creation

Because creating a pool can fail unexpectedly in different ways, and because formatting disks is
such a potentially harmful action, the zpool create command has an additional option, -n,
which simulates creating the pool without actually writing to the device. This option performs
the device in-use checking and replication level validation, and reports any errors in the
process. If no errors are found, you see output similar to the following:

zpool create -n tank mirror c1t0d0 cltldo
would create 'tank’ with the following layout:

tank
mirror
cltodo
cltldo

Some errors cannot be detected without actually creating the pool. The most common example
is specifying the same device twice in the same configuration. This error cannot be reliably
detected without writing the data itself, so the create -n command can report success and yet
fail to create the pool when run for real.

Chapter4 - Managing ZFS Storage Pools 77

Creating and Destroying ZFS Storage Pools

Default Mount Point for Storage Pools

When a pool is created, the default mount point for the root dataset is /pool-name. This
directory must either not exist or be empty. If the directory does not exist, it is automatically
created. If the directory is empty, the root dataset is mounted on top of the existing directory.
To create a pool with a different default mount point, use the -m option of the zpool create
command:

zpool create home c1t0do

default mountpoint ’/home’ exists and is not empty
use '-m’ option to provide a different default

zpool create -m /export/zfs home c1t0do

This command creates a new pool home and the home dataset with a mount point of
/export/zfs.

For more information about mount points, see “Managing ZFS Mount Points” on page 185.

Destroying ZFS Storage Pools

Pools are destroyed by using the zpool destroy command. This command destroys the pool
even if it contains mounted datasets.

zpool destroy tank

A Caution - Be very careful when you destroy a pool. Make sure you are destroying the right pool
and you always have copies of your data. If you accidentally destroy the wrong pool, you can
attempt to recover the pool. For more information, see “Recovering Destroyed ZFS Storage
Pools” on page 113.

Destroying a Pool With Faulted Devices

The act of destroying a pool requires that data be written to disk to indicate that the pool is no
longer valid. This state information prevents the devices from showing up as a potential pool
when you perform an import. If one or more devices are unavailable, the pool can still be
destroyed. However, the necessary state information won't be written to these damaged devices.

These devices, when suitably repaired, are reported as potentially active when you create a new
pool, and appear as valid devices when you search for pools to import. If a pool has enough
faulted devices such that the pool itself is faulted (meaning that a top-level virtual device is
faulted), then the command prints a warning and cannot complete without the - f option. This
option is necessary because the pool cannot be opened, so whether data is stored there or not is
unknown. For example:

78 ZFS Administration Guide « January 2010

Managing Devices in ZFS Storage Pools

zpool destroy tank

cannot destroy ’'tank’: pool is faulted
use '-f’ to force destruction anyway
zpool destroy -f tank

For more information about pool and device health, see “Determining the Health Status of ZFS
Storage Pools” on page 105.

For more information about importing pools, see “Importing ZFS Storage Pools” on page 112.

Managing Devices in ZFS Storage Pools

Most of the basic information regarding devices is covered in “Components of a ZFS Storage
Pool” on page 63. Once a pool has been created, you can perform several tasks to manage the
physical devices within the pool.

“Adding Devices to a Storage Pool” on page 79

“Attaching and Detaching Devices in a Storage Pool” on page 85
“Onlining and Offlining Devices in a Storage Pool” on page 87
“Clearing Storage Pool Device Errors” on page 89

“Replacing Devices in a Storage Pool” on page 89

“Designating Hot Spares in Your Storage Pool” on page 91

Adding Devices to a Storage Pool

You can dynamically add space to a pool by adding a new top-level virtual device. This space is
immediately available to all datasets within the pool. To add a new virtual device to a pool, use
the zpool add command. For example:

zpool add zeepool mirror c2tld0 c2t2d0

The format for specifying the virtual devices is the same as for the zpool create command, and
the same rules apply. Devices are checked to determine if they are in use, and the command
cannot change the level of redundancy without the - f option. The command also supports the
-n option so that you can perform a dry run. For example:

zpool add -n zeepool mirror c3tl1d0 c3t2d0
would update ’'zeepool’ to the following configuration:
zeepool
mirror
clt0odo
clt1ldo
mirror

Chapter4 - Managing ZFS Storage Pools 79

Managing Devices in ZFS Storage Pools

c2t1do
c2t2do
mirror
c3t1ldo
c3t2do

This command syntax would add mirrored devices c3t1d0@ and c3t2d0 to zeepool's existing
configuration.

For more information about how virtual device validation is done, see “Detecting In-Use
Devices” on page 75.

EXAMPLE4-1 Adding Disks to a Mirrored ZFS Configuration

In the following example, another mirror is added to an existing mirrored ZFS configuration on
a Sun Fire x4500 system.

zpool status tank
pool: tank
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0
mirror-0 ONLINE 0 0 0

c0t1ld® ONLINE 0 0 0

cltld® ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d® ONLINE 0 0 0

clt2d® ONLINE 0 0 0

errors: No known data errors
zpool add tank mirror c0t3d0 clt3do
zpool status tank
pool: tank
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0
mirror-@ ONLINE
c0t1ld® ONLINE
cltld® ONLINE
mirror-1 ONLINE
c0t2d® ONLINE

[SICSTI SIS R S
(SIS SIS I SIS
(SIS IS I SIS

80 ZFS Administration Guide - January 2010

Managing Devices in ZFS Storage Pools

EXAMPLE 4-1 Adding Disks to a Mirrored ZFS Configuration (Continued)

clt2d®@ ONLINE
mirror-2 ONLINE
c0t3dd ONLINE
clt3d@ ONLINE

[SIS NS
[SIS NS
[SENSENS NS

errors: No known data errors

EXAMPLE4-2 Adding Disks to a RAID-Z Configuration

Additional disks can be added similarly to a RAID-Z configuration. The following example
shows how to convert a storage pool with one RAID-Z device comprised of 3 disks to a storage
pool with two RAID-Z devices comprised of 3 disks.

zpool status rzpool
pool: rzpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
rzpool ONLINE 0 0 0
raidz1-0 ONLINE
clt2d0 ONLINE
c1t3d0 ONLINE
clt4dd ONLINE

SIS IS
SIS IS
[SENSENS NS

errors: No known data errors
zpool add rzpool raidz c2t2d0 c2t3d0 c2t4do
zpool status rzpool
pool: rzpool
state: ONLINE
scrub: none requested
config:

NAME STATE READ WRITE CKSUM
rzpool ONLINE 0 0
raidz1-@ ONLINE
c1t0d0 ONLINE
c1t2d® ONLINE
c1t3d0 ONLINE
raidz1-1 ONLINE
clt4d0 ONLINE
c1t5d0 ONLINE
clt6d®@ ONLINE

[SENSISENS IS A A)
[SENSENSENSEINSE S ARy
[SENSENS NS IS S SRS S

Chapter4 - Managing ZFS Storage Pools 81

Managing Devices in ZFS Storage Pools

EXAMPLE4-2 Adding Disks to a RAID-Z Configuration (Continued)

errors: No known data errors

EXAMPLE 4-3 Adding and Removing a Mirrored Log Device to a ZFS Storage Pool

The following example shows how to add a mirrored log device to mirrored storage pool.For
more information about using log devices in your storage pool, see “Setting Up Separate ZFS
Logging Devices” on page 33.

zpool status newpool
pool: newpool
state: ONLINE
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
newpool ONLINE 0 0 0
mirror-0@ ONLINE 0 0 0
c0t4d0 ONLINE 0 0 0
c0t5d0 ONLINE 0 0 0

errors: No known data errors
zpool add newpool log mirror c0t6d0 c0Ot7do
zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM
newpool ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
c0t4d0 ONLINE 0 0 0
c0t5d0 ONLINE 0 0 0

logs
mirror-1 ONLINE 0 0 0
c0t6d0 ONLINE 0 0 0
c0t7d0 ONLINE 0 0 0

errors: No known data errors

You can attach alog device to an existing log device to create a mirrored log device. This
operation is identical to attaching a device in a unmirrored storage pool.

82 ZFS Administration Guide « January 2010

Managing Devices in ZFS Storage Pools

EXAMPLE 4-3 Adding and Removing a Mirrored Log Device to a ZFS Storage Pool (Continued)

Log devices can be removed by using the zpool remove command. The mirrored log device in
the previous example can be removed by specifying the mirror-1 argument. For example:

zpool remove newpool mirror-1
zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:
NAME STATE READ WRITE CKSUM
newpool ONLINE 0 0 0
mirror-@ ONLINE 0 0 0
c0t4dd ONLINE 0 0 0
c0t5d0 ONLINE 0 0 0

errors: No known data errors

If your pool configuration only contains one log device, you would remove the log device by
specifying the device name. For example:

zpool status pool
pool: pool
state: ONLINE
scrub: none requested

config:

NAME STATE READ WRITE CKSUM
pool ONLINE 0 0 0
raidz1-0 ONLINE 0 0 0
c0t8d0 ONLINE 0 0 0
c0t9d0 ONLINE 0 0 0

logs
c0t1l0dd ONLINE 0 0 0

errors: No known data errors
zpool remove pool c0t10d0

EXAMPLE 4-4 Adding and Removing Cache Devices to Your ZFS Storage Pool

You can add and remove cache devices to your ZFS storage pool.

Use the zpool add command to add cache devices. For example:

Chapter4 - Managing ZFS Storage Pools

83

Managing Devices in ZFS Storage Pools

EXAMPLE 4-4 Adding and Removing Cache Devices to Your ZFS Storage Pool (Continued)

zpool add tank cache c2t5d0 c2t8d0
zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-0@ ONLINE 0 0 0
c2t0d@ ONLINE 0 0 0
c2t1d® ONLINE 0 0 0
c2t3d0 ONLINE 0 0 0

cache
c2t5d0 ONLINE 0 0 0
c2t8d0 ONLINE 0 0 0

errors: No known data errors
Cache devices cannot be mirrored or be part of a RAID-Z configuration.

Use the zpool remove command to remove cache devices. For example:

zpool remove tank c2t5d0 c2t8d0
zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
mirror-0 ONLINE
c2t0d0® ONLINE
c2t1d0® ONLINE
c2t3d0 ONLINE

[SISTR SIS
S o o
[SERSTRS IS

errors: No known data errors

Currently, the zpool remove command only supports removing hot spares, log devices, and
cache devices. Devices that are part of the main mirrored pool configuration can be removed by
using the zpool detach command. Non-redundant and RAID-Z devices cannot be removed
from a pool.

84 ZFS Administration Guide - January 2010

Managing Devices in ZFS Storage Pools

EXAMPLE 4-4 Adding and Removing Cache Devices to Your ZFS Storage Pool (Continued)

For more information about using cache devices in a ZFS storage pool, see “Creating a ZFS
Storage Pool with Cache Devices” on page 73.

Attaching and Detaching Devices in a Storage Pool

In addition to the zpool add command, you can use the zpool attach command to add a new
device to an existing mirrored or non-mirrored device.

If you are adding and detaching a disk in a ZFS root pool to replace a disk, see “How to Replace a
Disk in the ZFS Root Pool” on page 148.

EXAMPLE 4-5 Converting a Two-Way Mirrored Storage Pool to a Three-way Mirrored Storage Pool

In this example, zeepool is an existing two-way mirror that is transformed to a three-way
mirror by attaching c2t1d, the new device, to the existing device, c1t1de.

zpool status zeepool
pool: zeepool
state: ONLINE
scrub: none requested

config:
NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0
mirror-@ ONLINE 0 0 0
c0t1dd ONLINE 0 0 0
cltldd ONLINE 0 0 0

errors: No known data errors
zpool attach zeepool cltld0 c2t1d0
zpool status zeepool
pool: zeepool
state: ONLINE
scrub: resilver completed after @h@m with @ errors on Fri Jan 8 12:59:20 2010
config:

NAME STATE READ WRITE CKSUM
zeepool ONLINE 0 0 0
mirror-@ ONLINE 0 0 0
c0t1ldd ONLINE 0 0 0
cltldd ONLINE 0 0 0
c2t1d@ ONLINE 0 0 0 592K resilvered

Chapter4 - Managing ZFS Storage Pools 85

Managing Devices in ZFS Storage